Artificial intelligence and global carbon inequality: Addressing the challenges and opportunities for SDG 10, SDG 12, and SDG 13

Qiang Wang , Yuanfan Li , Ugur Korkut , Rongrong Li

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102072

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102072 DOI: 10.1016/j.gsf.2025.102072

Artificial intelligence and global carbon inequality: Addressing the challenges and opportunities for SDG 10, SDG 12, and SDG 13

Author information +
History +
PDF

Abstract

This study examines the impact of artificial intelligence (AI) on carbon inequality (CI) in 67 countries from 1995 to 2019. The results suggest that (i) AI significantly amplifies CI both between and within countries due to its energy requirements and uneven deployment; (ii) trade openness and global value chain (GVC) positioning mitigate AI's effect on inter-country CI, while robust governance-marked by larger government size and institutional transparency-curtails intra-country disparities; (iii) specific thresholds (trade openness > 4.74, GVC position > -1.07, government size > 2.90, transparency > -0.22) shift the impact of AI from exacerbating to reducing CI. The adverse effects of AI can be reversed through enhanced trade, GVC integration, and strong governance. Key policy implications: Policymakers must prioritize exceeding these thresholds to leverage AI for sustainable and equitable outcomes. This requires (a) promoting trade liberalization to spread the benefits of AI globally, reducing inter-country CI; (b) strengthening GVC participation to offset the carbon-intensive use of AI; (c) building government capacity and transparency to ensure fair adoption of AI domestically; and (d) embedding these strategies in climate policies to align AI with the long-term goals of environmental justice and the SDGs, particularly climate action (SDG 13) and reducing inequalities (SDG 10).

Keywords

Artificial intelligence / Carbon inequality / Sustainable development goals / Climate action / Income inequality / Responsible consumption and production

Cite this article

Download citation ▾
Qiang Wang, Yuanfan Li, Ugur Korkut, Rongrong Li. Artificial intelligence and global carbon inequality: Addressing the challenges and opportunities for SDG 10, SDG 12, and SDG 13. Geoscience Frontiers, 2025, 16(4): 102072 DOI:10.1016/j.gsf.2025.102072

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Qiang Wang: Writing - review & editing, Writing - original draft, Funding acquisition, Data curation, Conceptualization. Yuanfan Li: Writing - review & editing, Writing - original draft, Visualization, Formal analysis. Ugur Korkut Pata: Writing -review & editing, Writing - original draft, Resources, Investigation. Rongrong Li: Writing - review & editing, Writing - original draft, Investigation, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 72104246).

References

[1]

Acemoglu D., Restrepo P., 2020a. The wrong kind of AI? Artificial intelligence and

[2]

the future of labour demand. Camb. J. Reg. Econ. Soc. 13, 25-35.

[3]

Acemoglu D., Restrepo P., 2020b. Robots and jobs: Evidence from US labor markets. J. Polit. Econ. 128, 2188-2244.

[4]

Acheampong A.O., Dzator J., Shahbaz M., 2021. Empowering the powerless: does access to energy improve income inequality? Energy Econ. 99, 105288.

[5]

Ahmad M., Satrovic E., 2024a. How does monetary policy moderate the influence of economic complexity and technological innovation on environmental sustainability? The role of green central banking. Int. J. Financ. Econ. 29 (4), 4197-4224.

[6]

Ahmad M., Satrovic E., 2024b. Modeling natural resources for ecological sustainability. Gondw. Res. 126, 243-266.

[7]

Ahmad M., Satrovic E., 2023. How do fiscal policy, technological innovation, and economic openness expedite environmental sustainability? Gondw. Res. 124, 143-164.

[8]

Anderson E., Jalles D'Orey M.A., Duvendack M., Esposito L., 2017. Does government spending affect income inequality? A meta-regression analysis. J. Econ. Sur. 31, 961-987.

[9]

Autor D., Salomons A., 2018. Is Automation Labor-displacing? Productivity Growth, Employment, and the Labor Share. NBER Working Paper Series. National Bureau of Economic Research, Cambridge.

[10]

Autor D., Dorn D., Katz L.F., Patterson C., Van Reenen J., 2020. The fall of the labor share and the rise of superstar firms. Q. J. Econ. 135, 645-709.

[11]

Bianco V., Cascetta F., Marino A., Nardini S., 2019. Understanding energy consumption and carbon emissions in Europe: A focus on inequality issues. Energy 170, 120-130.

[12]

Blundell R., Bond S., 1998. Initial conditions and moment restrictions in dynamic panel data models. J. Econ. 87, 115-143.

[13]

Bolea L., Duarte R., Sanchez-Choliz J., 2020. Exploring carbon emissions and international inequality in a globalized world: A multiregional-multisectoral perspective. Resour. Conserv. Recycl. 152, 104516.

[14]

Borland J., Coelli M., 2017. Are robots taking our jobs? Aus. Econ. Rev. 50, 377-397.

[15]

Chancel L., 2022. Global carbon inequality over 1990-2019. Natur. Sus. 5, 931-938.

[16]

Cobham A., Sumner A., 2013. Is it all about the tails? The Palma measure of income inequality. Center for Global Development Working Paper 343.

[17]

Ding T., Li J., Shi X., Li X., Chen Y., 2023. Is artificial intelligence associated with carbon emissions reduction? Case of China. Resour. Pol. 85, 103892.

[18]

Duarte R., Espinosa-Gracia A., Jiménez S., Sánchez-Chóliz J., 2022. New insights on the relationship between the involvement of countries in global value chains, and intra-and inter-country inequalities. Struct. Change Econ. Dyn. 63, 320-329.

[19]

Duro J.A., Padilla E., 2013. Cross-country polarisation in CO 2 emissions per capita in the European Union: changes and explanatory factors. Environ. Res. Econ. 54, 571-591.

[20]

Dwivedi Y.K., Hughes L., Ismagilova E., Aarts G., Coombs C., Crick T., Duan Y., Dwivedi R., Edwards J., Eirug A., Galanos V., Ilavarasan P.V., Janssen M., Jones P., Kar A.K., Kizgin H., Kronemann B., Lal B., Lucini B., Medaglia R., Le Meunier-FitzHugh K., Le Meunier-FitzHugh L.C., Misra S., Mogaji E., Sharma S. K., Singh J.B., Raghavan V., Raman R., Rana N.P., Samothrakis S., Spencer J., Tamilmani K., Tubadji A., Walton P., Williams M.D., 2021. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 57, 101994.

[21]

Eia, 2024. Spot Prices for Crude Oil and Petroleum Products. Energy Information Administration.

[22]

Fan W., Li L., Wang F., Li D., 2020. Driving factors of CO2 emission inequality in China: The role of government expenditure. China Econ. Rev. 64, 101545.

[23]

Firpo S., Fortin N.M., Lemieux T., 2009. Unconditional quantile regressions. Econ. 77, 953-973.

[24]

Fuso Nerini F., Sovacool B., Hughes N., Cozzi L., Cosgrave E., Howells M., Tavoni M., Tomei J., Zerriffi H., Milligan B., 2019. Connecting climate action with other Sustainable Development Goals. Natur. Sustain. 2, 674-680.

[25]

Golgeci I., Makhmadshoev D., Demirbag M., 2021. Global value chains and the environmental sustainability of emerging market firms: a systematic review of literature and research agenda. Int. Bus. Rev. 30 (5), 101857.

[26]

Graetz G., Michaels G., 2018. Robots at work. Rev. Econ. Stat. 100, 753-768.

[27]

Guo J., Wang Q., Li R., 2024. Can official development assistance promote renewable energy in sub-Saharan Africa countries? A matter of institutional transparency of recipient countries. Energy Pol. 186, 113999.

[28]

He F., Ning J., Qiu X., Yu S., Zhang L., Huang C., 2025. Study on provincial carbon emission inequality in China from 1995 to 2019 based on the improved Gini index. Sci. Rep. 15 (1), 10301.

[29]

Hémous D., Olsen M., 2022. The rise of the machines: Automation, horizontal innovation, and income inequality. Am. Econ. J. Macroecon. 14, 179-223.

[30]

Hondroyiannis G., Papapetrou E., Tsalaporta P., 2024. The effect of population aging on environmental degradation: new evidence and insights. J. Econ. Stud. 51 (2), 471-484.

[31]

Hu D., Jiao J., Tang Y., Han X., Sun H., 2021. The effect of global value chain position on green technology innovation efficiency: From the perspective of environmental regulation. Ecol. Ind. 121, 107195.

[32]

Huang G., He L.-Y., Lin X., 2022. Robot adoption and energy performance: Evidence from Chinese industrial firms. Energy Econ. 107, 105837.

[33]

Hubacek K., Baiocchi G., Feng K., Muñoz Castillo R., Sun L., Xue J., 2017. Global carbon inequality. Energy. Ecol. Environ. 2, 361-369.

[34]

IFR, 2023. World Robotics Report 2023. International Federal of Robotics. https://ifr.org/ifr-press-releases/news/world-robotics-2023-report-asia-ahead-of-europe-and-the-americas(Accessed 20 September 2024).

[35]

Jarrahi M.H., 2018. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Bus. Horiz. 61, 577-586.

[36]

Jobin A., Ienca M., Vayena E., 2019. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 1, 389-399.

[37]

Kaack L.H., Donti P.L., Strubell E., Kamiya G., Creutzig F., Rolnick D., 2022. Aligning artificial intelligence with climate change mitigation. Nature Clim. Change 12 (6), 518-527.

[38]

Kenner D., 2019. Carbon Inequality: The Role of the Richest in Climate Change. Routledge, London.

[39]

Koopman R., Wang Z., Wei S.J., 2014. Tracing value-added and double counting in gross exports. American Econ. Rev. 104 (2), 459-494.

[40]

Korinek A., Stiglitz J.E., 2018. Artificial Intelligence and Its Implications for Income Distribution and Unemployment. An Agenda. University of Chicago Press, The Economics of Artificial Intelligence, pp. 349-390.

[41]

Korinek A., Stiglitz J.E., 2021. Artificial Intelligence, Globalization, and Strategies for Economic Development. NBER Working Papers 28453, National Bureau of Economic Research, Inc.

[42]

Köbis N., Starke C., Rahwan I., 2022. The promise and perils of using artificial intelligence to fight corruption. Nat. Mach. Intell. 4, 418-424.

[43]

Liu J., Chang H., Forrest J.-Y.-L., Yang B., 2020. Influence of artificial intelligence on technological innovation: Evidence from the panel data of China's manufacturing sectors. Technol. Forecast. Soc. Change 158, 120142.

[44]

Liu X., You C., Cifuentes-Faura J., Peng X., 2024. Bigger cities and less carbon? Government-driven urbanization and carbon emissions in China. J. Clean. Prod. 467, 142808.

[45]

Luan F., Yang X., Chen Y., Regis P.J., 2022. Industrial robots and air environment: A moderated mediation model of population density and energy consumption. Sustain. Prod. Consum. 30, 870-888.

[46]

Meng B., Liu Y., Gao Y., Li M., Wang Z., Xue J., Andrew R., Feng K., Qi Y., Sun Y., 2023. Developing countries' responsibilities for CO 2 emissions in value chains are larger and growing faster than those of developed countries. One Earth 6, 167-181.

[47]

Milner H.V., 2021. Resisting Protectionism: Global Industries and the Politics of International Trade. Princeton University Press.

[48]

Musah M., Onifade S.T., Satrovic E., Nkyi J.A., 2024. Assessing the palliative aspects of green innovations in the non-linear tendencies of environmental sustainability-financial globalization nexus among West African states. Geosci. Front. 15 (6), 101893.

[49]

Nickell S., 1981. Biases in dynamic models with fixed effects. J. Econ. Soc. 49 (6), 1417-1426.

[50]

Norton A., 2017a. Automation will end the dream of rapid economic growth for poorer countries. The Guardian. www.theguardian.com/sustainable-business/2016/sep/20/robotsautomationend-rapid-economic-growth-poorer-countries-africa-asia. (Accessed 10 July 2024).

[51]

Norton A., 2017b. Automation and Inequality: The Changing World of Work in the Global South. International Institute for Environment and Development.

[52]

Nyasha S., Odhiambo N.M., 2019. Government size and economic growth: A review of international literature. SAGE Open 9, 2158244019877200.

[53]

Ouyang X., Li Q., Du K., 2020. How does environmental regulation promote technological innovations in the industrial sector? Evidence from Chinese provincial panel data. Energy Pol. 139, 111310.

[54]

Pata U.K., 2021. Do renewable energy and health expenditures improve load capacity factor in the USA and Japan? A new approach to environmental issues. Eur. J. Health Econ. 22 (9), 1427-1439.

[55]

Pata U.K., Dam M.M., Kaya F., 2023. How effective are renewable energy, tourism, trade openness, and foreign direct investment on CO 2 emissions? An EKC analysis for ASEAN countries. Env. Sci. Poll. Res. 30 (6), 14821-14837.

[56]

Pata U.K., Pata S.K., 2024. Determining the effectiveness of the forest load capacity factor in assisting decarbonization in India. Forest Policy Econ. 166, 103281.

[57]

Patel G., Pal S., Sahu A.K., 2024. Does energy transition reduce carbon inequality? A global analysis. Env. Sci. Poll. Res. 31 (23), 34689-34708.

[58]

Pesaran M.H., Yamagata T., 2008. Testing slope homogeneity in large panels. J. Econ. 142 (1), 50-93.

[59]

Pickson R.B., Gui P., Jian L., Boateng E., 2024. Do population-related factors matter for carbon emissions? Lessons from different income groups of countries. Urb. Clim. 55, 101934.

[60]

Rzayeva U., Huseynova R., 2025. Corporate Responsibility in the Context of Conflicting Environmental and Economic Interests:Consequences of an Imperfect Legal Environment. In: Navigating Corporate Social Responsibility through Leadership and Sustainable Entrepreneurship. IGI Global Scientific Publishing, New York, USA, pp. 27-56.

[61]

Sarkis J., Cohen M.J., Dewick P., Schröder P., 2020. A brave new world: Lessons from the COVID-19 pandemic for transitioning to sustainable supply and production. Res. Cons. Recyc. 159, 104894.

[62]

Satrovic E., Ahmad M., Muslija A., 2021. Does democracy improve environmental quality of GCC region? Analysis robust to cross-section dependence and slope heterogeneity. Envi Sci. Pol. Res. 28, 62927-62942.

[63]

Semieniuk G., Yakovenko V.M., 2020. Historical evolution of global inequality in carbon emissions and footprints versus redistributive scenarios. J. Clean. Prod. 264, 121420.

[64]

Seo M.H., Kim S., Kim Y.-J., 2019. Estimation of dynamic panel threshold model using Stata. Stata J. 19, 685-697.

[65]

Shang Y., Zhou S., Zhuang D., Zywiołek J., Dincer H., 2024. The impact of artificial intelligence application on enterprise environmental performance: Evidence from microenterprises. Gondw. Res. 131, 181-195.

[66]

Starr J., Nicolson C., Ash M., Markowitz E.M., Moran D., 2023. Assessing US consumers' carbon footprints reveals outsized impact of the top 1%. Ecol. Econ. 205, 107698.

[67]

Statista, 2023. Artificial Intelligence - Worldwide (Accessed 10 July 2024). https://www.statista.com/outlook/tmo/artificial-intelligence/worldwide.

[68]

Stern D.I., 2017. The environmental Kuznets curve after 25 years. J. Bioecon. 19, 7-28.

[69]

Stern D.I., 2011. The role of energy in economic growth. Ann. N.Y. Acad. Sci. 1219 (1), 26-51.

[70]

Strubell E., Ganesh A., McCallum A., 2020. Energy and policy considerations for modern deep learning research. In Proceedings of the AAAI Conference on Artificial Intelligence 34 (9), 13693-13696.

[71]

Sultana F., 2022. Critical climate justice. Geogr. J. 188, 118-124.

[72]

Tong D., Zhang Q., Zheng Y., Caldeira K., Shearer C., Hong C., Qin Y., Davis S.J., 2019. Committed emissions from existing energy infrastructure jeopardize 1.5 C climate target. Nature 572, 373-377.

[73]

Uibe, 2024. UIBE GVC Database. University of International Business and Economics of China.

[74]

Undp, 2021. How large are inequalities in global carbon emissions - and what to do about it? (Accessed 6 February 2025). https://hdrundp.org/content/how-largeare-inequalities-global-carbon-emissions-and-what-do-about-it.

[75]

Wachter S., Mittelstadt B., Floridi L., 2017. Transparent, explainable, and accountable AI for robotics. Sci. Rob. 2, eaan6080.

[76]

Wang E.-Z., Lee C.-C., Li Y., 2022a. Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries. Energy Econ. 105, 105748.

[77]

Wang Q., Sun T., Li R., 2023a. Does artificial intelligence promote green innovation? An assessment based on direct, indirect, spillover, and heterogeneity effects. Energy & Environ. 0958305X231220520.

[78]

Wang Q., Sun T., Li R., 2023b. Does artificial intelligence (AI) reduce ecological footprint? The role of globalization. Envi Sci. Pol. Res. 30, 123948-123965.

[79]

Wang Q., Zhang F., Li R., Sun J., 2024. Does artificial intelligence facilitate the energy transition and curb carbon emissions? The role of trade openness. J. Clean. Prod. 141298.

[80]

Wang S., Wang X., Chen S., 2022b. Global value chains and carbon emission reduction in developing countries: does industrial upgrading matter? Environ. Impact Assess. Rev. 97, 106895.

[81]

Wang Y., Xiong S., Ma X., 2022c. Carbon inequality in global trade: Evidence from the mismatch between embodied carbon emissions and value added. Ecol. Econ. 195, 107398.

[82]

Wang Q., Sun T., Li R., 2025. Does Artificial Intelligence (AI) enhance green economy efficiency? The role of green finance, trade openness, and R&D investment. Human. Soc. Sci. Com. 12 (1), 1-22.

[83]

Wb, 2024. World Bank Open Data (Accessed 14 July 2024) https://data.worldbank.org/.

[84]

Wei T., Zhu Q., Glomsrød S., 2018. How will demographic characteristics of the labor force matter for the global economy and carbon dioxide emissions? Ecol. Econ. 47, 197-207.

[85]

Westerlund J., Breitung J., 2013. Lessons from a decade of IPS and LLC. Econ. Rev. 32, 547-591.

[86]

WID, 2024. World Inequality Database. World Inequality Database. https://wid.world/ (Accessed 15 June 2024).

[87]

Wiedenhofer D., Guan D., Liu Z., Meng J., Zhang N., Wei Y.-M., 2017. Unequal household carbon footprints in China. Nat. Clim. Chang. 7, 75-80.

[88]

Wiedmann T., Lenzen M., 2018. Environmental and social footprints of international trade. Nat. Geo. 11, 314-321.

[89]

Xu C., Wang B., Chen J., Shen Z., Song M., An J., 2022. Carbon inequality in China: novel drivers and policy driven scenario analysis. Energy Pol. 170, 113259.

[90]

Ye M., Meng B., Wei S.-J., 2015. Measuring Smile Curves in Global Value Chains. IDE Discussion Paper, No, p. 530.

[91]

Zhang Z., Zhu K., Hewings G.J., 2017. A multi-regional input-output analysis of the pollution haven hypothesis from the perspective of global production fragmentation. Energy Econ. 64, 13-23.

[92]

Zhao C., Li Y., Liu Z., Ma X., 2024. Artificial intelligence and carbon emissions inequality: Evidence from industrial robot application. J. Clean. Prod. 438, 140817.

[93]

Zheng H., Long Y., Wood R., Moran D., Zhang Z., Meng J., Feng K., Hertwich E., Guan D., 2022. Ageing society in developed countries challenges carbon mitigation. Nat. Clim. Chang. 12, 241-248.

[94]

Zheng H., Wood R., Moran D., Feng K., Tisserant A., Jiang M., Hertwich E.G., 2023. Rising carbon inequality and its driving factors from 2005 to 2015. Glob. Environ. Change 82, 102704.

[95]

Zhong H., Feng K., Sun L., Cheng L., Hubacek K., 2020. Household carbon and energy inequality in Latin American and Caribbean countries. J. Environ. Manag. 273, 110979.

[96]

Zhong J., Zhong Y., Han M., Yang T., Zhang Q., 2024. The impact of AI on carbon emissions: evidence from 66 countries. Appl. Econ. 56 (25), 2975-2989.

[97]

Zhou X., Hang Y., Zhou D., Ang B., Wang Q., Su B., Zhou P., 2022. Carbon-economic inequality in global ICT trade. iScience 25 (12), 105604.

[98]

zur Muehlen M., 2023. GPTs Spitball about OpenAI. Available at SSRN 4642520. DOI: 10.2139/ssrn.4642520.

AI Summary AI Mindmap
PDF

792

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/