Heavy Si isotope compositions of subduction zone fluids controlled by fluid-rock interaction and fluid evolution

Kun Chen , Yi-Xiang Chen , Hui-Min Yu , Hans-Peter Schertl , Tatsuki Tsujimori , Sergei Skuzovatov

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102071

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102071 DOI: 10.1016/j.gsf.2025.102071

Heavy Si isotope compositions of subduction zone fluids controlled by fluid-rock interaction and fluid evolution

Author information +
History +
PDF

Abstract

Jadeitites are formed either through direct precipitation from Na-Al-Si rich fluids (P-type), or by replacement of magmatic protoliths (R-type) in subduction zones. They are valuable targets for investigating the mobility behavior and chemical composition of subduction zone fluids. The Rio San Juan Complex (RSJC) in the northern Dominican Republic hosts both P- and R-type jadeitites and jadeite-rich rocks, which provide ideal samples for addressing such issues. Here, we present trace element and Sr-Nd-O-Si isotope compositions of RSJC jadeitites and related rocks. Most samples show similar REE patterns, trace element distributions and δ18O values to those of plagiogranite protoliths, indicating the predominance of R-type origin in RSJC. The P-type samples exhibit slightly higher δ30Si values (-0.15‰ to 0.25‰) than that of R-type samples (-0.20‰ to 0.08‰), which place above the igneous array. The low (87Sr/86Sr)i (0.70346 to 0.70505) and high εNd(t) values (4.6 to 6.8) of the P-type jadeitites and quartzites, along with relatively low δ18O values (4.7‰ to 6.4‰) of their forming fluids, indicate that the fluids are likely derived from the altered basaltic crust rather than from oceanic sediment. However, the estimated jadeitite- and quartzite-forming fluids exhibit distinct δ30Si values (0.76‰ to 0.99‰ and -0.48‰ to -0.08‰, respectively), implying an evolution of the fluids that modified the Si isotopic compositions. Since fluid metasomatism and related desilication process could have lowered the whole-rock δ30Si values, the heavy Si isotope compositions of the R-type samples are produced from the external fluids. Combing Rayleigh distillation and binary mixing simulations, we propose that fluids derived from altered oceanic crust obtained high δ30Si values after crystallization of minerals enriched in light Si isotopes. The P-type jadeitites are formed through direct precipitation from this fluid. As the plagiogranite protoliths were continuously replaced by this fluid, the formed R-type samples (jadeitites and quartzites) also exhibit high δ30Si values. Such rocks could significantly alter the Si isotope compositions of local mantle when they are deeply subducted at convergent plate margins.

Keywords

Subduction zone fluid / Si isotopes / Jadeitite / Fluid-rock interaction

Cite this article

Download citation ▾
Kun Chen, Yi-Xiang Chen, Hui-Min Yu, Hans-Peter Schertl, Tatsuki Tsujimori, Sergei Skuzovatov. Heavy Si isotope compositions of subduction zone fluids controlled by fluid-rock interaction and fluid evolution. Geoscience Frontiers, 2025, 16(4): 102071 DOI:10.1016/j.gsf.2025.102071

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Kun Chen: Writing - original draft, Validation, Investigation, Formal analysis, Data curation. Yi-Xiang Chen: Writing - review & editing, Validation, Supervision, Project administration, Investi-gation, Funding acquisition, Formal analysis, Data curation, Con-ceptualization. Hui-Min Yu: Writing - review & editing, Validation, Resources, Investigation, Formal analysis, Data cura-tion. Hans-Peter Schertl: Writing - review & editing, Resources, Investigation, Formal analysis, Data curation. Tatsuki Tsujimori: Writing - review & editing, Investigation, Formal analysis, Data curation. Sergei Skuzovatov: Writing - review & editing, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This study is supported by funds from the National Key Research and Development Program of China (Grant No. 2024YFF0807302), National Natural Science Foundation of China (42273043, 42173003), and the International Visiting Professor-ship of USTC (2024BVR23). We are grateful to Walter Maresch, Luc André and the anonymous reviewers for valuable comments.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102071.

References

[1]

André L., Monin L., Hofmann A., 2022. The origin of early continental crust: New clues from coupling Ge/Si ratios with silicon isotopes. Earth Planet. Sci. Lett. 582, 117415.

[2]

André L., Abraham K., Hofmann A., Monin L., Kleinhanns I.C., Foley S., 2019. Early continental crust generated by reworking of basalts variably silicified by seawater. Nat. Geosci. 12, 769-773.

[3]

Angiboust S., Muñoz-Montecinos J., Cambeses A., Raimondo T., Deldicque D., Garcia-Casco A., 2021. Jolts in the jade factory: a route for subduction fluids and their implications for mantle wedge seismicity. Earth-Sci. Rev. 220, 103720.

[4]

Angiboust S., Glodny J., Cambeses A., Raimondo T., Monié P., Popov M., Garcia-Casco A., 2020. Drainage of subduction interface fluids into the forearc mantle evidenced by a pristine jadeitite network (Polar Urals). J. Metam. Geol. 39, 473-500.

[5]

Bayon G., Delvigne C., Ponzevera E., Borges A.V., Darchambeau F., De Deckker P., Lambert T., Monin L., Toucanne S., André L., 2018. The silicon isotopic composition of fine-grained river sediments and its relation to climate and lithology. Geochim. Cosmochim. Acta 229, 147-161.

[6]

Bebout G.E., Penniston-Dorland S.C., 2016. Fluid and mass transfer at subduction interfaces-the field metamorphic record. Lithos 240-243, 228-258.

[7]

Blanco-Quintero I.F., Rojas-Agramonte Y., García-Casco A., Kröner A., Mertz D.F., Lázaro C., Blanco-Moreno J., Renne P.R., 2011. Timing of subduction and exhumation in a subduction channel: evidence from slab melts from La Corea mélange (Eastern Cuba). Lithos 127, 86-100.

[8]

Bureau H., Keppler H., 1999. Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications. Earth Planet. Sci. Lett. 165, 187-196.

[9]

Cárdenas-Párraga J., Garcia-Casco A., Blanco-Quintero I.F., Rojas-Agramonte Y., Cambra K.N., Harlow G.E., 2021. A highly dynamic hot hydrothermal system in the subduction environment: geochemistry and geochronology of jadeitite and associated rocks of the Sierra Del Convento mélange (Eastern Cuba). Am. J. Sci. 321, 822-887.

[10]

Cárdenas-Párraga J., García-Casco A., Harlow G.E., Blanco-Quintero I.F., Agramonte Y.R., Kröner A., 2012. Hydrothermal origin and age of jadeitites from Sierra del Convento mélange (Eastern Cuba). Eur. J. Mineral. 24, 313-331.

[11]

Chakrabarti R., Knoll A.H., Jacobsen S.B., Fischer W.W., 2012. Si isotope variability in Proterozoic cherts. Geochim. Cosmochim. Acta 91, 187-201.

[12]

Chen Y.-X., Demény A., Schertl H.-P., Zheng Y.-F., Huang F., Zhou K., Jin Q.-Z., Xia X.-P., 2020a. Tracing subduction zone fluids with distinct Mg isotope compositions: insights from high-pressure metasomatic rocks (leucophyllites) from the Eastern Alps. Geochim. Cosmochim. Acta 271, 154-178.

[13]

Chen Y., Huang F., Shi G.-H., Wu F.-Y., Chen X., Jin Q.-Z., Su B., Guo S., Sein K., Nyunt T.T., 2018. Magnesium isotope composition of subduction zone fluids as constrained by jadeitites from Myanmar. J. Geophys. Res. Solid Earth 123, 7566-7585.

[14]

Chen X.-Y., Chafetz H.S., Andreasen R., Lapen T.J., 2016a. Silicon isotope compositions of euhedral authigenic quartz crystals: implications for abiotic fractionation at surface temperatures. Chem. Geol. 423, 61-73.

[15]

Chen Y.-X., 2024. Reverse metasomatism of subduction zone fluids. Sci. China Earth Sci. 67, 634-638.

[16]

Chen A.-X., Li Y.-H., Chen Y., Yu H.-M., Huang F., 2020b. Silicon isotope composition of subduction zone fluids as recorded by jadeitites from Myanmar. Contrib. Mineral. Petrol. 175, 6. https://doi.org/10.1007/s00410-019-1645-8.

[17]

Chen Y.-X., Schertl H.-P., Zheng Y.-F., Huang F., Zhou K., Gong Y.-Z., 2016b. Mg-O isotopes trace the origin of Mg-rich fluids in the deeply subducted continental crust of Western Alps. Earth Planet. Sci. Lett. 456, 157-167.

[18]

Coleman R.G., 1961. Jadeite deposits of the Clear Creek Area, New Idria District, San Benito Country, California. J. Petrol. 2, 209-247.

[19]

Compagnoni R., Rolfo F., Castelli D., 2012. Jadeitite from the Monviso meta-ophiolite, western Alps: occurrence and genesis. Eur. J. Mineral 24, 333-343.

[20]

Deng Z., Chaussidon M., Guitreau M., Puchtel I.S., Dauphas N., Moynier F., 2019. An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes. Nat. Geosci. 12, 774-778.

[21]

Ding T., Jiang S., Li Y., Gao J., Hu B., 2018. Geochemistry of Silicon Isotopes. De Gruyter, Berlin. https://doi.org/10.1515/9783110402452.

[22]

Escuder-Viruete J., Valverde-Vaquero P., Rojas-Agramonte Y., Gabites J., Castillo-Carrion M., Perez-Estaun A., 2013. Timing of deformational events in the Río San Juan Complex: implications for the tectonic controls on the exhumation of high-P rocks in the northern Caribbean subduction-accretionary prism. Lithos 177, 416-435.

[23]

Frings P.J., Clymans W., Fontorbe G., Gray W., Chakrapani G.J., Conley D.J., De La Rocha C., 2015. Silicate weathering in the Ganges alluvial plain. Earth Planet. Sci. Lett. 427, 136-148.

[24]

Geilert S., Albers E., Frick D.A., Hansen C.T., von Blanckenburg F., 2021. Systematic changes in serpentine Si isotope signatures across the Mariana forearc-a new proxy for slab dehydration processes. Earth Planet. Sci. Lett. 575, 117193.

[25]

Geilert S., Grasse P., Wallmann K., Liebetrau V., Menzies C.D., 2020. Serpentine alteration as source of high dissolved silicon and elevated d 30 Si values to the marine Si cycle. Nat. Commun. 11, 5123.

[26]

Goto A., Kunugiza K., Miyajima H., 2017. Phase relation in the NaAlSiO4-SiO2-H2O system for the hydrothermal precipitation of jadeite, albite, natrolite, and analcime in jadeitite of the Itoigawa-Omi area, Japan. J. Mineral. Petrol. Sci. 112, 271-280.

[27]

Grasse P., Ehlert C., Frank M., 2013. The influence of water mass mixing on the dissolved Si isotope composition in the eastern equatorial Pacific. Earth Planet. Sci. Lett. 380, 60-71.

[28]

Harlow G.E., Tsujimori T., Sorensen S.S., 2015. Jadeitites and plate tectonics. Annu. Rev. Earth Planet Sci. 43, 105-138.

[29]

Harlow G.E., Sorensen S.S., 2005. Jade (nephrite and jadeitite) and serpentinite: metasomatic connections. Int. Geol. Rev. 47, 113-146.

[30]

Hertwig A., Maresch W.V., Schertl H.P., 2021. Jadeitite and related rocks in serpentinite mélanges from the Rio San Juan Complex, Dominican Republic: evidence for both isochemical replacement and metasomatic desilication of igneous protoliths with fluid-assisted jadeite growth. Russ. Geol. Geophys. 62, 496-524.

[31]

Hertwig A., McClelland W.C., Kitajima K., Schertl H.-P., Maresch W.V., Stanek K., Valley J.W., Sergeev S.A., 2016. Inherited igneous zircons in jadeitite predate high-pressure metamorphism and jadeitite formation in the Jagua Clara serpentinite mélange of the Rio San Juan Complex (Dominican Republic). Contrib. Mineral. Petrol. 171, 48. https://doi.org/10.1007/s00410-016-1256-6.

[32]

Hyndman R.D., McCrory P.A., Wech A., Kao H., Ague J., 2015. Cascadia subducting plate fluids channelled to fore-arc mantle corner: ETS and silica deposition. J. Geophys. Res. Solid Earth 120, 4344-4358.

[33]

Jin X., Whitney D.L., Zhang Y.-X., Blatchford H.J., Zhang K.J., Tsujimori T., Xiao Y.-Y., Liu H.-Y., von der Handt A., Yan L.-L., Liu Y., Lu L., Li, C.-Y., 2024. Isochemical metamorphism origin of the newly discovered Baqing jadeitoid, eastern-central Tibet, China. J. Metamor. Geol. 42, 1069-1097.

[34]

Johnson C.A., Harlow G.E., 1999. Guatemala jadeitites and albitites were formed by deuterium-rich serpentinizing fluids deep within a subduction zone. Geology 27, 629-632.

[35]

Kawamoto T., Hertwig A., Schertl H.-P., Maresch W.V., 2018. Fluid inclusions in jadeitite and jadeite-rich rock from serpentinite mélanges in northern Hispaniola: trapped ambient fluids in a cold subduction channel. Lithos 308-309, 227-241.

[36]

Kleine B.I., Stefánsson A., Halldórsson S.A., Whitehouse M.J., Jónasson K., 2018. Silicon and oxygen isotopes unravel quartz formation processes in the Icelandic crust. Geochem. Perspect. Lett. 7, 5-11.

[37]

Krebs M., Schertl H.P., Maresch W.V., Draper G., 2011. Mass flow in serpentinite-hosted subduction channels: P-T-t path patterns of metamorphic blocks in the Rio San Juan mélange (Dominican Republic). J. Asian Earth Sci. 42, 569-595.

[38]

Krebs M., Maresch W.V., Schertl H.P., Münker C., Baumann A., Draper G., Idleman B., Trapp E., 2008. The dynamics of intra-oceanic subduction zones: a direct comparison between fossil petrological evidence (Rio San Juan Complex, Dominican Republic) and numerical simulation. Lithos 103, 106-137.

[39]

Lázaro C., Blanco-Quintero I.F., Marchesi C., Bosch D., Rojas-Agramonte Y., García-Casco A., 2011. The imprint of subduction fluids on subducted MORB-derived melts (Sierra del Convento mélange, Cuba). Lithos 126, 341-354.

[40]

Li Y.-H., Yu H.-M., Gu X.-F., Guo S., Huang F., 2020. Silicon isotopic fractionation during metamorphic fluid activities: constraints from eclogites and ultrahigh-pressure veins in the Dabie orogen, China. Chem. Geol. 540, 119550.

[41]

Lázaro C., García-Casco A., 2008. Geochemical and Sr-Nd isotope signatures of pristine slab melts and their residues (Sierra del Convento mélange, Eastern Cuba). Chem. Geol. 255, 120-133.

[42]

Lázaro C., García-Casco A., Rojas Agramonte Y., Kröner A., Neubauer F., Iturralde-Vinent M., 2008. Fifty-five-million-year history of oceanic subduction and exhumation at the northern edge of the Caribbean plate (Sierra del Convento mélange, Cuba). J. Metamor. Geol. 27, 19-40.

[43]

Li Y.-H., Wang W.-Z., Zhou C., Huang F., 2019. First-principles calculations of equilibrium silicon isotope fractionation in metamorphic silicate minerals. Solid Earth Sci. 4, 142-149.

[44]

Manning C.E., Frezzotti M.L., 2020. Subduction-zone fluids. Elements 16, 395-400.

[45]

Manning C., 2004. The chemistry of subduction-zone fluids. Earth Planet. Sci. Lett. 223, 1-16.

[46]

Martin C., Flores K.E., Harlow G.E., 2016. Boron isotopic discrimination for subduction-related serpentinites. Geology 44, 899-902.

[47]

Matthews A., 1994. Oxygen-isotope geothermometers for metamorphic rocks. J. Metamorph. Geol. 12, 211-219.

[48]

McDonough W.F., Sun S.S., 1995. The composition of the Earth. Chem. Geol. 120, 223-253.

[49]

Minnaert C., Angiboust S., Cambeses A., Glodny J., Muñoz-Montecinos J., Garcia-Casco A., 2024. Omphacitite formation and fluid-rock interaction processes in an intra-slab eclogite-facies shear zone. Lithos 484-485, 107738.

[50]

Mori Y., Orihashi Y., Miyamoto T., Shimada K., Shigeno M., Nishiyama T., 2011. Origin of zircon in jadeitite from the Nishisonogi metamorphic rocks, Kyushu, Japan. J. Metamorph. Geol. 29, 673-684.

[51]

Mysen B., 2022. Fluids and physicochemical properties and processes in the Earth. Prog. Earth Planet. Sci. 9, 54.

[52]

Newton R.C., Manning C.E., 2002. Experimental determination of calcite solubility in H2O-NaCl solutions at deep crust/upper mantle pressures and temperatures: implications for metasomatic processes in shear zones. Am. Mineral. 87, 1401-1409.

[53]

Oelze M., von Blanckenburg F., Bouchez J., Hoellen D., Dietzel M., 2015. The effect of Al on Si isotope fractionation investigated by silica precipitation experiments. Chem. Geol. 397, 94-105.

[54]

Pagé L., Hattori K., 2017. Tracing halogen and B cycling in subduction zones based on obducted, subducted and forearc serpentinites of the Dominican Republic. Sci. Rep. 7, 17776.

[55]

Peverelli V., Olivieri O.S., Tsujimori T., Giovannelli D., Shi G., Cannaò E., Piccoli F., Vitale A., Brovarone, 2025. Cold-subduction biogeodynamics boosts deep energy delivery to the forearc. Geochim. Cosmochim. Acta 388, 195-207.

[56]

Pindell J., Maresch W.V., Martens U., Stanek K., 2011. The Greater Antillean Arc: Early Cretaceous origin and proposed relationship to Central American subduction mélanges: implications for models of Caribbean evolution. Int. Geol. Rev. 54, 131-143.

[57]

Pindell J.L., Kennan L., 2009. Tectonic evolution of the gulf of Mexico, Caribbean and Northern South America in the mantle reference frame:an update. In: JamesK.H., LorenteM.A., PindellJ.L. (The Origin and Evolution of the Caribbean Plate.Eds.), Geol. Soc, London. https://doi.org/10.1144/SP328.1.

[58]

Plank T., 2014. The chemical composition of subducting sediments. In: HollandH., TurekianK. (Treatise on Geochemistrysecond ed.Eds.), 4. Elsevier-Pergamon, Oxford, pp. 607-629. http://dx.doi.org/10.1016/b978-0-08-095975-7.00319-3

[59]

Poitrasson F., 2017. Silicon Isotope Geochemistry. Rev. Mineral Geochem. 82, 289-344.

[60]

Poitrasson F., Zambardi T., 2015. An Earth-Moon silicon isotope model to track silicic magma origins. Geochim. Cosmochim. Acta 167, 301-312.

[61]

Pollington A.D., Kozdon R., Anovitz L.M., Georg R.B., Spicuzza M.J., Valley J.W., 2016. Experimental calibration of silicon and oxygen isotope fractionations between quartz and water at 250 °C by in situ microanalysis of experimental products and application to zoned low d30 Si quartz overgrowths. Chem. Geol. 421, 127-142.

[62]

Pringle E.A., Moynier F., Savage P.S., Jackson M.G., Moreira M., Day J.M.D., 2016. Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of ocean island basalts. Geochim. Cosmochim. Acta 189, 282-295.

[63]

Qiao X.-Y., Xiong J.-W., Chen Y.-X., De Hoog J.C.M., Pearce J., Huang F., Zhao Z.-F., Chen K., 2025. Magnesium and boron isotope evidence for the generation of arc magma through serpentinite-mélange melting. Natl. Sci. Rev. 12, nwae363.

[64]

Qin T., Wu F., Wu Z., Huang F., 2016. First-principles calculations of equilibrium fractionation of O and Si isotopes in quartz, albite, anorthite, and zircon. Contrib. Mineral. Petrol. 171, 91.

[65]

Saumur B.-M., Hattori K.H., Guillot S., 2010. Contrasting origins of serpentinites in a subduction complex, Northern Dominican Republic. Geol. Soc. Am. Bull. 122, 292-304.

[66]

Savage P.S., Georg R.B., Williams H.M., Turner S., Halliday A.N., Chappell B.W., 2012. The silicon isotope composition of granites. Geochim. Cosmochim. Acta 92, 184-202.

[67]

Savage P.S., Georg R.B., Williams H.M., Burton K.W., Halliday A.N., 2011. Silicon isotope fractionation during magmatic differentiation. Geochim. Cosmochim. Acta 75, 6124-6139.

[68]

Savage P.S., Georg R.B., Armytage R.M.G., Williams H.M., Halliday A.N., 2010. Silicon isotope homogeneity in the mantle. Earth Planet. Sci. Lett. 295, 139-146.

[69]

Schertl H.P., Maresch W.V., Stanek K.P., Hertwig A., Krebs M., Baese R., Sergeev S. S., 2012. New occurrences of jadeitite, jadeite quartzite and jadeite-lawsonite quartzite in the Dominican Republic, Hispaniola: petrological and geochronological overview. Eur. J. Mineral 24, 199-216.

[70]

Shen A.H., Keppler H., 1997. Direct observation of complete miscibility in the albite-H2O system. Nature 385, 710-712.

[71]

Shi G.U., Tropper P., Cui W.Y., Tan J., Wang C.Q., 2005. Methane, (CH4)-bearing fluid inclusions in the Myanmar jadeitite. Geochem. J. 39, 503-516.

[72]

Shigeno M., Mori Y., Shimada K., Nishiyama T., 2012. Jadeitites with metasomatic zoning from the Nishisonogi metamorphic rocks, Western Japan: fluid-tectonic block interaction during exhumation. Eur. J. Mineral 24, 289-311.

[73]

Simons K.K., Harlow G.E., Brueckner H.K., Goldstein S.L., Sorensen S.S., Hemming N.G., Langmuir C.H., 2010. Lithium isotopes in Guatemalan and Franciscan HP- LT rocks: insights into the role of sediment-derived fluids during subduction. Geochim. Cosmochim. Acta 74, 3621-3641.

[74]

Sorensen S.S., Harlow G.E., Rumble D., 2006. The origin of jadeitite-forming subduction-zone fluids: CL-guided SIMS oxygen-isotope and trace-element evidence. Am. Mineral. 91, 979-996.

[75]

Sorensen S.S., Sisson V.B., Harlow G.E., Avé Lallemant H.G., 2010. Element residence and transport during subduction-zone metasomatism: evidence from a jadeitite-serpentinite contact, Guatemala. Int. Geol. Rev. 52, 899-940.

[76]

Stern R.J., Tsujimori T., Harlow G.E., Groat L.A., 2013. Plate tectonic gemstones. Geology 41, 723-726.

[77]

Sun S.-S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42, 313-345.

[78]

Takahashi N., Tsujimori T., Kamada S., Nakamura M., 2022. In-situ Raman spectroscopic analysis of dissolved silica structures in Na2CO3 and NaOH solutions at high pressure and temperature. Contrib. Mineral. Petrol. 177, 36.

[79]

Takahashi N., Tsujimori T., Chang Q., Kimura J.-I., 2018. In-situ lithium isotope geochemistry for a veined jadeitite from the New Idria serpentinite body, California: Constraints on slab-derived fluid and fluid-rock interaction. Lithos 318-319, 376-385.

[80]

Takahashi N., Tsujimori T., Kayama M., Nishido H., 2017. Cathodoluminescence petrography of P-type jadeitites from the New Idria serpentinite body, California. J. Mineral. Petrol. Sci. 112, 291-299.

[81]

Tatzel M., Oelze M., Frick D.A., Di Rocco T., Liesegang M., Stuff M., Wiedenbeck M., 2024. Silicon and oxygen isotope fractionation in a silicified carbonate rock. Chem. Geol. 658, 122120.

[82]

Tsujimori T., Harlow G.E., 2017. Jadeitite (jadeite jade) from Japan: History, characteristics, and perspectives. J. Mineral. Petrol. Sci. 112, 184-196.

[83]

Tsujimori T., Harlow G.E., 2012. Petrogenetic relationships between jadeitite and associated high-pressure and low-temperature metamorphic rocks in worldwide jadeitite localities: a review. Eur. J. Mineral 24, 371-390.

[84]

Wang B., Li W.-Y., Deng G., Huang F., Yu H.-M., 2019. Silicon isotope compositions of metaperidotites from the Franciscan Complex of California-implications for Si isotope fractionation during subduction dehydration. Lithos 350-351, 105228.

[85]

Xu Y., Liu C.-Z., Chen Y., Guo S., Wang J.-G., Sein K., 2017. Petrogenesis and tectonic implications of gabbro and plagiogranite intrusions in mantle peridotites of the Myitkyina ophiolite, Myanmar. Lithos 284-285, 180-193.

[86]

Young E.D., Galy A., Nagahara H., 2002. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim. Cosmochim. Acta 66, 1095-1104.

[87]

Yu H.-M., Shi Z., Chen Y.-X., Schertl H.-P., Wang B.-L., Huang F., 2024. Fluid metasomatism of subducted continental crust: insights from Si isotope compositions of metasomatic rocks from the Western and Eastern Alps. Lithos 470-471, 107503.

[88]

Yu H.-M., Li Y.-H., Gao Y.-J., Huang J., Huang F., 2018. Silicon isotopic compositions of altered oceanic crust: implications for Si isotope heterogeneity in the mantle. Chem. Geol. 479, 1-9.

[89]

Yui T.-F., Maki K., Usuki T., Lan C.-Y., Martens U., Wu C.-M., Wu T.-W., Liou J.G., 2010. Genesis of Guatemala jadeitite and related fluid characteristics: insight from zircon. Chem. Geol. 270, 45-55.

[90]

Zhang Q., Zhao L., Zhou D., Nutman A.P., Mitchell R.N., Liu Y., Li Q.-L., Yu H.-M., Fan B., Spencer C.J., Li X.-H., 2023. No evidence of supracrustal recycling in Si-O isotopes of Earth's oldest rocks 4 Ga ago. Sci. Adv. 9, eadf0693.

[91]

Zheng Y.-F., Chen R.-X., Xu Z., Zhang S.-B., 2016. The transport of water in subduction zones. Sci. China Earth Sci. 59, 651-682.

[92]

Zheng Y.-F., 1993. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta 57, 1079-1091.

AI Summary AI Mindmap
PDF

571

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/