Petrogenesis and tectonic implications of peridotites of the Shangla Complex Ophiolite along Main Mantle Thrust, Northern Pakistan

Zaheen Ullah , Asad Khan , Huan Li , Tehseen Zafar , Asghar Ali , Muhammad Farhan , Zahid Hussain , Adnan Khan , Muhammad Idrees , Muhammad Ibrar

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102070

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102070 DOI: 10.1016/j.gsf.2025.102070

Petrogenesis and tectonic implications of peridotites of the Shangla Complex Ophiolite along Main Mantle Thrust, Northern Pakistan

Author information +
History +
PDF

Abstract

The Shangla Complex ophiolite represents a relic of the Neo-Tethyan oceanic lithosphere along the Indus Suture Zone (also known as the Main Mantle Thrust) in northern Pakistan. This section, thrust onto the continental margin between the Indian and Karakoram (Asian) plates, is predominantly composed of depleted harzburgites, dunites and chromitites. In this study, we conducted a thorough analysis of mineralogy, whole-rock geochemistry (major oxides, trace elements, PGE), and integrated Re-Os isotopic data from mantle-derived peridotites to understand their petrogenesis and melt evolution. These peridotites exhibit a depleted nature, characterized by a low modal composition of clinopyroxene, a wide forsterite content range in olivine (86.5 to 95.2), and a large variation in Cr# values (25.1-91.4). Their diverse whole-rock geochemistry further suggests varying degrees of partial melting. The Cpx-harzburgites show high average Al2O3 (1.83 wt.%), CaO (2.27 wt.%), ∑REE (12.9 ppb), and 187Os/188Os values between 0.13095 and 0.12571. On the other hand, the depleted harzburgites and dunites exhibit lower average Al2O3 (0.57 wt.% and 0.14 wt.%, respectively), CaO concentration (0.59 wt.% and 0.21 wt.%, respectively), and ∑REE concentrations, measured at 12.7 ppb and 8.9 ppb, respectively. The 187Os/188Os ratios in the depleted harzburgites and dunites range from 0.12643 to 0.11777, indicating they are less radiogenic compared to the Cpx-harzburgites. The spoon-shaped rare earth elements (REE) patterns suggest that the Cpx-harzburgites underwent low degrees of partial melting (~10%-15%), whereas the depleted harzburgites and dunites indicate somewhat higher degrees of partial melting (additional melting of the Cpx-harzburgites). The PGE abundances in these depleted harzburgites and dunites are linked to the partial melting of Cpx-harzburgites, resulting in a boninitic-like melt. Their low degree of melting and melt extraction suggests that Cpx-harzburgites initially formed at a mid-ocean ridge (MOR) spreading center or a distal fore-arc basin. In contrast, the depleted harzburgites and dunites were formed during a second phase of melting, followed by refertilization, closely associated with a supra-subduction zone (SSZ) setting. The Re-Os isotopic systematics of the Shangla Complex peridotites reveal model age clusters of ca. 250 Ma and ca. 450 Ma, potentially corresponding to significant tectonic events in the geodynamic evolution of the Neo-Tethyan, Rheic, and Proto- Tethyan oceans.

Keywords

Mantle peridotites / Supra subduction zone / Partial melting / Re-Os isotopes / Shangla Complex / Northern Pakistan

Cite this article

Download citation ▾
Zaheen Ullah, Asad Khan, Huan Li, Tehseen Zafar, Asghar Ali, Muhammad Farhan, Zahid Hussain, Adnan Khan, Muhammad Idrees, Muhammad Ibrar. Petrogenesis and tectonic implications of peridotites of the Shangla Complex Ophiolite along Main Mantle Thrust, Northern Pakistan. Geoscience Frontiers, 2025, 16(4): 102070 DOI:10.1016/j.gsf.2025.102070

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zaheen Ullah: Writing - review & editing, Writing - original draft, Software, Methodology, Formal analysis, Data curation. Asad Khan: Writing - review & editing, Validation, Software, Methodol-ogy, Data curation. Huan Li: Writing - review & editing, Supervi-sion, Resources, Project administration, Methodology, Investigation. Tehseen Zafar: Writing - review & editing, Visual-ization, Validation, Software, Methodology. Asghar Ali: Writing - review & editing, Visualization, Validation, Resources, Project administration. Muhammad Farhan: Writing - review & editing, Visualization, Software, Methodology, Formal analysis, Data cura-tion. Zahid Hussain: Writing - review & editing, Software, Methodology, Formal analysis, Data curation. Adnan Khan: Soft-ware, Methodology, Formal analysis, Data curation. Muhammad Idrees: Software, Methodology, Formal analysis. Muhammad Ibrar: Methodology, Formal analysis, Data curation.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was financially supported by a grant from the Science and Technology Innovation Program of Hunan Province (Grant No. 2021RC4055), and Key Laboratory of Metallogenic Pre-diction of Nonferrous Metals and Geological Environment Monitor-ing, during the Postdoctoral research of the first author (Zaheen Ullah, Assistant Professor, University of Swat, Pakistan) at the Cen-tral South University, Changsha, China. We are greatly thankful to the Editor-in-Chief Prof. Xuan-Xue Mo and Associate Editor Prof. Federico Lucci for their editorial handling. We are also thankful to two anonymous reviewers who have significantly improved the clarity and quality of this work.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102070.

References

[1]

Ackerman L., Pašava J., Erban V., 2013. Re-Os geochemistry and geochronology of the Ransko gabbro-peridotite massif, Bohemian Massif. Miner. Depos. 48, 799-804. https://doi.org/10.1007/s00126-013-0483-2.

[2]

Ackerman L., Walker R.J., Puchtel I.S., Pitcher L., Jelínek E., Strnad L., 2009. Effects of melt percolation on highly siderophile elements and Os isotopes in subcontinental lithospheric mantle: A study of the upper mantle profile beneath Central Europe. Geochim. Cosmochim. Acta 73, 2400-2414. https://doi.org/10.1016/j.gca.2009.02.002.

[3]

Alard O., Griffin W.L., Pearson N.J., Lorand J.P., O'Reilly S.Y., 2002. New insights into the Re-Os systematics of sub-continental lithospheric mantle from in situ analysis of sulphides. Earth Planet. Sci. Lett. 203, 651-663. https://doi.org/10.1016/S0012-821X(02)00799-9

[4]

Anczkiewicz R., Burg J.P., Villa I.M., Meier M., 2000. Late Cretaceous blueschist metamorphism in the Indus suture zone, Shangla region, Pakistan Himalaya. Tectonophysics 324 (1-2), 111-134. https://doi.org/10.1016/S0040-1951(00)00110-4

[5]

Aldanmaz E., Koprubasi N., 2006. Platinum-group-element systematics of peridotites from ophiolite complexes of northwest Anatolia, Turkey: Implications for mantle metasomatism by melt percolation in a supra-subduction zone environment. Int. Geol. Rev. 48, 420-442. https://doi.org/10.2747/0020-6814.48.5.420.

[6]

Arai S., 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chem. Geol. 113, 191-204. https://doi.org/10.1016/0009-2541(94)90066-3.

[7]

Arif M., Jan M.Q., 1993. Chemistry of chromite and associated phases from the Shangla ultramafic body in the Indus suture zone of Pakistan. Geol. Soc. Spec. Publ. 74, 101-112. https://doi.org/10.1144/GSL.SP.1993.074.01.08.

[8]

Arif M., Jan M.Q., 2006. Petrotectonic significance of the chemistry of chromite in the ultramafic-mafic complexes of Pakistan. J. Asian Earth Sci. 27, 628-646. https://doi.org/10.1016/j.jseaes.2005.06.004.

[9]

Ballhaus C., Berry R.F., Green D.H., 1990. Oxygen fugacity controls in the Earth's upper mantle. Nature 348, 437-440. https://doi.org/10.1038/348437a0.

[10]

Ballhaus C., Sylvester P., 2000. Noble metal enrichment processes in the Merensky Reef, Bushveld Complex. J. Petrol. 41, 545-561. https://doi.org/10.1093/ petrology/41.4.545.

[11]

Barnes S.J., Cruden A.R., Arndt N., Saumur B.M., 2016. The mineral system approach applied to magmatic Ni-Cu-PGE sulphide deposits. Ore Geol. Rev. 76, 296-316. https://doi.org/10.1016/j.oregeorev.2015.06.012.

[12]

Batanova V.G., Brügmann G.E., Bazylev B.A., Sobolev A.V., Kamenetsky V.S., Hofmann A.W., 2008. Platinum-group element abundances and Os isotope composition of mantle peridotites from the Mamonia complex, Cyprus. Chem. Geol. 248, 195-212. https://doi.org/10.1016/j.chemgeo.2007.09.002.

[13]

Bénard A., Müntener O., Pilet S., Arculus R.J., Nebel O., 2021. Silica-rich spinel harzburgite residues formed by fractional hybridization-melting of the intra-oceanic supra-subduction zone mantle: New evidence from TUBAF seamount peridotites. Geochim. Cosmochim. Acta 293, 477-506. https://doi.org/10.1016/j.gca.2020.11.001.

[14]

Bhat I.M., Ahmad T., Subba Rao D.V., 2019. Geodynamic significance of Cr-spinels from ophiolite mantle peridotites of Northwestern Himalaya. J. Geol. Soc. India 93, 657-662. https://doi.org/10.1007/s12594-019-1244-3.

[15]

Bhattacharya S., Pande K., Kumar A., Kingson O., Ray J.S., 2020. Timing of formation and obduction of the Andaman ophiolite. In: RayJ., RadhakrishnaM. (The Andaman Islands and Adjoining Offshore:Eds.), Geology, Tectonics and Palaeoclimate. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-030-39843-9_2.

[16]

Bodinier J.L., Godard M., 2007. 2.04-Orogenic, Ophiolitic, and Abyssal Peridotites. In: HollandH.D., TurekianK.K. (Treatiseon Geochemistry.Eds.), Elsevier, pp. 1-73. https://doi.org/10.1016/B0-08-043751-6/02004-1.

[17]

Castro A.I.L., Proenza J.A., Zaccarini F., Garuti G., Sarlabous M.S.C.P., 2015. Al-and Cr-rich chromitites from the Eastern Havana-Matanzas ophiolites (Western Cuba). Episodes 38, 334-343. https://doi.org/10.18814/epiugs/2015/v38i4/82429.

[18]

Chen G., Xia B., 2008. Platinum-group elemental geochemistry of mafic and ultramafic rocks from the Xigaze ophiolite, southern Tibet. J. Asian Earth Sci. 32, 406-422. https://doi.org/10.1016/j.jseaes.2007.11.009.

[19]

Corfield R.I., Searle M.P., Pedersen R.B., 2001. Tectonic setting, origin, and obduction history of the Spontang ophiolite, Ladakh Himalaya, NW India. J. Geol. 109, 715-736. https://doi.org/10.1086/323191.

[20]

De Hoog J.C.M., Gall L., Cornell D.H., 2010. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem. Geol. 270, 196-215. https://doi.org/10.1016/j.chemgeo.2009.11.017.

[21]

Deschamps F., Kaminski E., Tackley P.J., 2011. A deep mantle origin for the primitive signature of ocean island basalt. Nat. Geosci. 4, 879-882. https://doi.org/10.1038/ngeo1295.

[22]

Dick H.J.B., Bullen T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 86, 54-76. https://doi.org/10.1007/BF00373711.

[23]

Dilek Y., Furnes H., 2014. Ophiolites and their origins. Elements 10, 93-100. https://doi.org/10.2113/gselements.10.2.93.

[24]

Dilek Y., Furnes H., Shallo M., 2007. Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Res. 11, 453-475. https://doi.org/10.1016/j.gr.2007.01.005.

[25]

Dilek Y., Morishita T., 2009. Melt migration and upper mantle evolution during incipient arc construction: Jurassic Eastern Mirdita ophiolite, Albania. Isl. Arc 18, 551-554. https://doi.org/10.1111/j.1440-1738.2009.00692.x

[26]

Dilek Y.D., Robinson P.T., 2004. Ophiolites in Earth history: Introduction. Geol. Soc. Spec. Publ. 218, 1-8. https://doi.org/10.1144/GSL.SP.2003.218.01.01.

[27]

El Ghorfi M., Melcher F., Oberthü T., Boukhari A.E., Maacha L., Maddi A., Mhaili M., 2008. Platinum group minerals in podiform chromitites of the Bou Azzer ophiolite, Anti Atlas, Central Morocco. Mineral. Petrol. 92, 59-80. https://doi.org/10.1007/s00710-007-0208-2.

[28]

Falk E.S., Kelemen P.B., 2015. Geochemistry and petrology of listvenite in the Samail ophiolite, Sultanate of Oman: Complete carbonation of peridotite during ophiolite emplacement. Geochim. Cosmochim. Acta 160, 70-90. https://doi.org/10.1016/j.gca.2015.03.014.

[29]

Farhan M., Arif M., Ye Y., Li C.F., Chen X., Garbe-Schönberg D., Wu T., Ullah Z., Hussain Z., Zafar T., Sadiq I., Bukhari S.W.H., Khan A., 2023. Fluid source and physicochemical conditions of the polymetallic mineralization in Gawuch Formation, Kohistan Island Arc, NW Pakistan. Geochemistry 83 (1), 125949. https://doi.org/10.1016/j.chemer.2022.125949.

[30]

Farhan M., Arif M., Ying Y., Chen X., Garbe-Schönberg D., Li C.F., Hussain Z., Ullah Z., Zhang P., Khan A., 2021. Fluid source, element mobility and physicochemical conditions of porphyry-style hydrothermal alteration-mineralization at Mirkhani, Southern Chitral, Pakistan. Ore Geol. Rev. 135, 104222. https://doi.org/10.1016/j.oregeorev.2021.104222.

[31]

Feng G., Yang J., Niu X., Liu F., Qiu T., Dilek Y., 2021. Formation processes and tectonic implications of mantle peridotites of the Yushigou ophiolite in the North Qilian Orogenic Belt, NW China. Lithos 400-401, 106430. https://doi.org/10.1016/j.lithos.2021.106430.

[32]

Garuti G., Fershtater G., Bea F., Montero P., Pushkarev E.V., Zaccarini F., 1997. Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the central and southern Urals: Preliminary results. Tectonophysics 276, 181-194. https://doi.org/10.1016/S0040-1951(97)00050-4

[33]

González-Jiménez J., Gervilla F., Proenza J.A., Kerestedjian T., Augé T., Bailly L., 2009. Zoning of laurite (RuS2) erlichmanite (OsS2): implications for the origin of PGM in ophiolite chromitites. Eur. J. Mineral. 21, 419-432. https://doi.org/10.1127/0935-1221/2009/0021-1921.

[34]

González-Jiménez J.M., Proenza J.A., Gervilla F., Melgarejo J.C., Blanco-Moreno J. A., Ruiz-Sánchez R., Griffin W.L., 2011. High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos 125, 101-121. https://doi.org/10.1016/j.lithos.2011.01.016.

[35]

Hellebrand E., Snow J.E., Dick H.J.B., Hofmann A.W., 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410, 677-681. https://doi.org/10.1038/35070546.

[36]

O'Neill, H. St.C., Wall, V.J., 1987. The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the earth's upper mantle. J. Petrol. 28, 1169.

[37]

Jackson S.E., Fryer B.J., Gosse W., Healey D.C., Longerich H.P., Strong D.F., 1990. Determination of the precious metals in geological materials by inductively coupled plasma-mass spectrometry (ICP-MS) with nickel sulphide fire-assay collection and tellurium coprecipitation. Chem. Geol. 83, 119-132. https://doi.org/10.1016/0009-2541(90)90144-V.

[38]

Kakar M.I., Kerr A.C., Mahmood K., Collins A.S., Khan M., McDonald I., 2014. Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite, northwestern Pakistan: Insights from geochemistry and petrology. Lithos 202-203, 190-206. https://doi.org/10.1016/j.lithos.2014.05.029.

[39]

Kapsiotis A.N., 2016. Mineralogy, geochemistry and geotectonic significance of harzburgites from the southern Dramala upper mantle suite, Pindos ophiolite complex, NW Greece. Geol. J. 51, 236-262. https://doi.org/10.1002/gj.2626.

[40]

Kepezhinskas P., Defant M.J., Widom E., 2002. Abundance and distribution of PGE and Au in the island-arc mantle: Implications for sub-arc metasomatism. Lithos 60, 113-128. https://doi.org/10.1016/S0024-4937(01)00073-1

[41]

Khan A., Ali M., Khan S., Ullah Z., Faisal S., Ahmad L., 2023a. An integrated approach for rapid exploration of carbonatites and related mineral resources. Resour. Geol. 73 (1), e12321. https://doi.org/10.1111/rge.12321.

[42]

Khan A., Faisal S., Larson K.P., Robinson D.M., Li H., Ullah Z., Button M., Nawab J., Farhan M., Ali L., Ali M., 2023b. Geochemistry and in-situ U-Th/Pb geochronology of the Jambil meta-carbonatites, Northern Pakistan: Implications on petrogenesis and tectonic evolution. J. Earth Sci. 34, 70-85. https://doi.org/10.1007/s12583-021-1482-3.

[43]

Khan A., Faisal S., Larson K.P., Robinson D.M., Ullah Z., Li H., Rehman H., 2021. New geochronological and geochemical constraints on petrogenesis and tectonic setting of the Loe-Shilman carbonatite complex, Northwest Pakistan. Lithos 404-405, 106497. https://doi.org/10.1016/j.lithos.2021.106497.

[44]

Li J., Jiang X.Y., Xu J.F., Zhong L.F., Wang X.C., Wang G.Q., Zhao P.P., 2014. Determination of platinum-group elements and Re-Os isotopes using ID-ICP-MS and N-TIMS from a single digestion after two-stage column separation. Geostand. Geoanalytical Res. 38, 37-50. https://doi.org/10.1111/j.1751-908X.2013.00242.x

[45]

Li J., Zhao P.P., Liu J., Wang X.C., Yang A.Y., Wang G.Q., Xu J.F., 2015. Reassessment of hydrofluoric acid desilicification in the carius tube digestion technique for Re-Os isotopic determination in geological samples. Geostand. Geoanalytical Res. 39, 17-30. https://doi.org/10.1111/j.1751-908X.2014.00299.x.

[46]

Lian D., Yang J., Dilek Y., Rocholl A., 2018. Mineralogy and geochemistry of peridotites and chromitites in the aladag ophiolite (Southern Turkey): Melt evolution of the Cretaceous Neotethyan mantle. J. Geol. Soc. London. 176, 958-974. https://doi.org/10.1144/jgs2018-060.

[47]

Lian D.Y., Yang J.S., Xiong F.H., Liu F., Wang Y.P., 2015. Platinum-group element characteristics of the peridotite and podiform chromitite from Dajiweng ophiolite of the western segment of Yarlung-Zangbo suture zone, Tibet. Geol. China 42, 525-546.

[48]

Liang Q., Jing H., Gregoire D.C., 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51, 507-513. https://doi.org/10.1016/S0039-9140(99)00318-5

[49]

Liu C.Z., Wu F.Y., Chu Z.Y., Ji W.Q., Yu L.J., Li J.L., 2012. Preservation of ancient Os isotope signatures in the Yungbwa ophiolite (southwestern Tibet) after subduction modification. J. Asian Earth Sci. 53, 38-50. https://doi.org/10.1016/j.jseaes.2011.08.010.

[50]

Liu C.Z., Zhang C., Xu Y., Wang J.G., Chen Y., Guo S., Wu F.Y., Sein K., 2016. Petrology and geochemistry of mantle peridotites from the Kalaymyo and Myitkyina ophiolites (Myanmar): Implications for tectonic settings. Lithos 264, 495-508. https://doi.org/10.1016/j.lithos.2016.09.013.

[51]

Lorand J.P., Luguet A., Alard O., 2013. Platinum-group element systematics and petrogenetic processing of the continental upper mantle: A review. Lithos 164-167, 2-21. https://doi.org/10.1016/j.lithos.2012.08.017.

[52]

Luguet A., Shirey S.B., Lorand J.P., Horan M.F., Carlson R.W., 2007. Residual platinum-group minerals from highly depleted harzburgites of the Lherz massif (France) and their role in HSE fractionation of the mantle. Geochim. Cosmochim. Acta 71, 3082-3097. https://doi.org/10.1016/j.gca.2007.04.011.

[53]

Luguet A., Lorand J.-P., Alard O., Cottin J.-Y., 2004. A multi-technique study of platinum group element systematic in some Ligurian ophiolitic peridotites, Italy. Chem. Geol. 208, 175-194.

[54]

Mahmood K., Boudier F., Gnos E., Monié P., Nicolas A., 1995. 40 Ar/39 Ar dating of the emplacement of the Muslim Bagh ophiolite, Pakistan. Tectonophysics 250, 169-181. https://doi.org/10.1016/0040-1951(95)00017-5

[55]

Marchesi C., Garrido C.J., Harvey J., González-Jiménez J.M., Hidas K., Lorand J.P., Gervilla F., 2013. Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic Ocean Ridge (ODP Hole 1274A): Influence of hydrothermal and magmatic processes. Contrib. Mineral. Petrol. 166, 1521-1538. https://doi.org/10.1007/s00410-013-0942-x

[56]

Martin A.P., Price R.C., Cooper A.F., 2014. Constraints on the composition, source and petrogenesis of plagioclase-bearing mantle peridotite. Earth-Science Rev. 138, 89-101. https://doi.org/10.1016/j.earscirev.2014.08.006.

[57]

McDonough W.F., Sun S., 1995. The composition of the Earth. Chem. Geol. 120, 223-253. https://doi.org/10.1016/0009-2541(94)00140-4

[58]

Meisel T., Moser J., Wegscheider W., 2001. Recognizing heterogeneous distribution of platinum group elements (PGE) in geological materials by means of the Re-Os isotope system. Fresenius. J. Anal. Chem. 370, 566-572. https://doi.org/10.1007/s002160100791.

[59]

Moores E.M., Kellogg L.H., Dilek Y., 2000. Tethyan ophiolites, mantle convection, and tectonic "historical contingency": A resolution of the "ophiolite conundrum. ". Spec. Pap. Geol. Soc. Am. 349, 3-12. https://doi.org/10.1130/0-8137-2349-3.3.

[60]

Niu X., Liu F., Yang J., Dilek Y., Xu Z., Sein K., 2018. Mineralogy, geochemistry, and melt evolution of the Kalaymyo peridotite massif in the Indo-Myanmar Ranges (western Myanmar), and tectonic implications. Lithosphere 10, 79-94. https://doi.org/10.1130/L589.1.

[61]

Niu Y., 2004. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath Mid-Ocean ridges. J. Petrol. 45, 2423-2458. https://doi.org/10.1093/petrology/egh068.

[62]

O'Neil, J., Rizo, H., Boyet, M., Carlson, R.W., Rosing, M.T., 2016. Geochemistry and Nd isotopic characteristics of Earth's Hadean mantle and primitive crust. Earth Planet. Sci. Lett. 442, 194-205. https://doi.org/10.1016/j.epsl.2016.02.055.

[63]

Parkinson I.J., Pearce J.A., 1998. Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction Zone setting. J. Petrol. 39, 1577-1618. https://doi.org/10.1093/petrology/39.9.1577.

[64]

Parkinson I.J., Arculus R.J., 1999. The redox state of subduction zones: Insights from arc-peridotites. Chem. Geol. 160, 409-423. https://doi.org/10.1016/S0009-2541(99)00110-2

[65]

Pearce J.A., Barker P.F., Edwards S.J., Parkinson I.J., Leat P.T., 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contrib. Mineral. Petrol. 139, 36-53. https://doi.org/10.1007/s004100050572.

[66]

Pearson D.G., Woodland S.J., 2000. Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re-Os isotopes in geological samples by isotope dilution ICP-MS. Chem. Geol. 165, 87-107. https://doi.org/10.1016/S0009-2541(99)00161-8

[67]

Piccardo G.B., Zanetti A., Pruzzo A., Padovano M., 2007. The North Lanzo peridotite body (NW Italy): Lithospheric mantle percolated by MORB and alkaline melts. Period. Di Mineral. 76, 199-221. https://doi.org/10.2451/2007PM0025.

[68]

Potts P.J., Kane J.S., 2005. International association of geoanalysts certificate of analysis: Certified reference material OU-6 (Penrhyn Slate). Geostand. Geoanalytical Res. 29, 233-236. https://doi.org/10.1111/j.1751-908x.2005.tb00895.x

[69]

Rizeli M.E., Bingöl A.F., Wang K.L., Lee H.Y., 2023. Abyssal and forearc features of mantle peridotites in the Guleman ophiolite in SE Turkey. Lithos 436-437, 106958. https://doi.org/10.1016/j.lithos.2022.106958.

[70]

Robertson A.H.F., 2007. Overview of tectonic settings related to the rifting and opening of Mesozoic ocean basins in the Eastern Tethys: Oman, Himalayas and Eastern Mediterranean regions. Geol. Soc. Spec. Publ. 282, 325-388. https://doi.org/10.1144/SP282.15.

[71]

Robinson P.T., Zhou M., 2008. The origin and tectonic setting of ophiolites in China. J. Asian Earth Sci. 32, 301-307. https://doi.org/10.1016/j.jseaes.2007.11.014.

[72]

Saccani E., Photiades A., 2004. Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): Implications for magma genesis in a forearc setting. Lithos 73, 229-253. https://doi.org/10.1016/j.lithos.2003.12.002.

[73]

Saha A., Santosh M., Ganguly S., Manikyamba C., Ray J., Dutta J., 2018. Geochemical cycling during subduction initiation: Evidence from serpentinized mantle wedge peridotite in the south Andaman ophiolite suite. Geosci. Front. 9, 1755-1775. https://doi.org/10.1016/j.gsf.2017.12.017.

[74]

Saka S., Uysal I., Akmaz R.M., Kaliwoda M., Hochleitner R., 2014. The effects of partial melting, melt-mantle interaction and fractionation on ophiolite generation: Constraints from the late Cretaceous Pozanti-Karsanti ophiolite, southern Turkey. Lithos 202-203, 300-316. https://doi.org/10.1016/j.lithos.2014.05.027.

[75]

Shirey S.B., Walker R.J., 1998. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annu. Rev. Earth Planet. Sci. 26, 423-500. https://doi.org/10.1146/annurev.earth.26.1.423.

[76]

Snow J.E., Dick H.J.B., 1995. Pervasive magnesium loss by marine weathering of peridotite. Geochim. Cosmochim. Acta 59, 4219-4235. https://doi.org/10.1016/0016-7037(95)00239-V

[77]

Su B.X., Pan Q.Q., Xiao Y., Jing J.J., Robinson P.T., Uysal I., Liu X., Liu J.G., 2023. Mantle peridotites of ophiolites rarely preserve reliable records of paleo-oceanic lithospheric mantle. Earth-Sci. Rev. 244, 104544. https://doi.org/10.1016/j.earscirev.2023.104544.

[78]

Sun S.S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Spec. Publ. 42, 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.

[79]

Sun Y., Sun M., 2005. Nickel sulfide fire assay improved for pre-concentration of platinum group elements in geological samples: A practical means of ultra-trace analysis combined with inductively coupled plasma-mass spectrometry. Analyst 130, 664-669. https://doi.org/10.1039/b416844e

[80]

Takazawa E., Frey F.A., Shimizu N., Obata M., Bodinier J.L., 1992. Geochemical evidence for melt migration and reaction in the upper mantle. Nature 359, 55-58. https://doi.org/10.1038/359055a0.

[81]

Thompson M., Potts P.J., Kane J.S., Webb P.C., Watson J.S., 2000. GeoPT4. An international proficiency test for analytical geochemistry laboratories-Report on round 4 (March 1999). Geostand. Newsl. 24(1), E1-E37. https://doi.org/10.1111/j.1751-908x.2000.tb00591.x

[82]

Ullah Z., Khan A., Faisal S., Zafar T., Li H., Farhan M., 2022. Petrogenesis of peridotites in the Dargai Complex ophiolite, Indus Suture Zone, Northern Pakistan: Implications for two stages of melting, depletion, and enrichment of the Neo-Tethyan mantle. Lithos 426-427, 106798. https://doi.org/10.1016/j.lithos.2022.106798.

[83]

Ullah Z., Li H., Khan A., Faisal S., Dilek Y., Förster M.W., Farhan M., Ashraf U., Khattak S.A., Rehman G., Hussain S.A., 2023. Mineralogy and PGE geochemistry of chromitites and peridotites of the sapat complex in the indus suture zone, northern Pakistan: implications for magmatic processes in the supra-subduction zone. Int. Geol. Rev. 65, 1719-1744. https://doi.org/10.1080/00206814.2022.2106519.

[84]

Ullah Z., Li J.W., Robinson P.T., Wu W.W., Khan A., Dac N.X., Adam M.M.A., 2020a. Mineralogy and geochemistry of peridotites and chromitites in the Jijal Complex ophiolite along the Main Mantle Thrust (MMT or Indus Suture Zone) North Pakistan. Lithos 366-367, 105566. https://doi.org/10.1016/j.lithos.2020.105566.

[85]

Ullah Z., Shah M.T., Siddiqui R.H., Lian D.Y., Khan A., 2020b. Petrochemistry of high-Cr and high-Al chromitites occurrences of Dargai Complex along Indus Suture Zone, Northern Pakistan. Episodes 43, 689-709 https://doi.org/10.18814/EPIIUGS/2020/020045.

[86]

Völkening J., Walczyk T., Heumann G., 1991. Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. Int. J. Mass Spectrom. Ion Process. 105, 147-159. https://doi.org/10.1016/0168-1176(91)80077-Z

[87]

Walker R.J., Shirey S.B., Hanson G.N., Rajamani V., Horan M.F., 1989. Re-Os, Rb-Sr, and O isotopic systematics of the Archean Kolar schist belt, Karnataka, India. Geochim. Cosmochim. Acta 53, 3005-3013. https://doi.org/10.1016/0016-7037(89)90176-2

[88]

Wu W., Yang J., Dilek Y., Milushi I., Lian D., 2018. Multiple episodes of melting, depletion, and enrichment of the Tethyan mantle: Petrogenesis of the peridotites and chromitites in the Jurassic Skenderbeu massif, Mirdita ophiolite, Albania. Lithosphere 10, 54-78. https://doi.org/10.1130/L606.1.

[89]

Xiong F., Liu Z., Kapsiotis A., Yang J., Lenaz D., Robinson P.T., 2019. Petrogenesis of lherzolites from the Purang ophiolite, Yarlung-Zangbo suture zone, Tibet: origin and significance of ultra-high pressure and other 'unusual' minerals in the Neo-Tethyan lithospheric mantle. Int. Geol. Rev. 61, 2184-2210. https://doi.org/10.1080/00206814.2019.1584771.

[90]

Xiong F., Yang J., Robinson P.T., Xu X., Liu Z., Li Y., Li J., Chen S., 2015. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Res. 27, 525-542. https://doi.org/10.1016/j.gr.2014.04.008.

[91]

Xu M., Jing Z., Bajgain S.K., Mookherjee M., Orman J.A.V., Yu T., Wang Y., 2020a. High-pressure elastic properties of dolomite melt supporting carbonate-induced melting in deep upper mantle. Proc. Natl. Acad. Sci. U.S.A. 117, 18285-18291. https://doi.org/10.1073/pnas.2004347117.

[92]

Xu Y., Liu J., Xiong Q., Su B.X., Scott J.M., Xu B., Zhu D.C., Pearson D.G., 2020b. The complex life cycle of oceanic lithosphere: A study of Yarlung-Zangbo ophiolitic peridotites, Tibet. Geochim. Cosmochim. Acta 277, 175-191. https://doi.org/10.1016/j.gca.2020.03.024.

[93]

Yang J., 2015. Diamond-bearing ophiolites and their geological occurrence. Episodes 38 (4), 344-364. https://doi.org/10.18814/epigsi/2015/v38i4/82430.

[94]

Yang J.S., Robinson P.T., Dilek Y., 2014. Diamonds in ophiolites. Elements 10, 127-130. https://doi.org/10.2113/gselements.10.2.127.

[95]

Zaccarini F., Singh A.K., Garuti G., 2016. Platinum group minerals and silicate inclusions in chromitite from the Naga-Manipur ophiolite complex, Indo-Myanmar orogenic belt, northeast India. Can. Mineral. 54, 409-427. https://doi.org/10.3749/canmin.1500034.

[96]

Zafar T., Rehman H.U., Lutfi W., Ullah Z., Nouri F., Sepidbar F., Oyebamiji A., Leng C., Farhan M., Rehman S.U., 2023. Petrogenetic, geochemical, and geochronological constraints on magmatic evolution of the Chilas Complex gabbros, Kohistan arc, NW Himalaya. Geol. J. 58, 1401-1427. https://doi.org/10.1002/gj.4665.

[97]

Zafar T., Ur Rehman H., Maqbool Bhat I., Ullah Z., Farhan M., Oyebamiji A., Nouri F., Spedibar F., Song S., Hussain Z., Ali M., Leng C.B., Li C.F., Ahmed M.S., Sami M., 2024. Exploring the tectono-magmatic evolution of intraoceanic fore-arc setting during subduction initiation: perspectives from trace and platinum group element systematics of the Jijal ultramafic arc system, NE Pakistan. Int. Geol.Rev. 66(17),3116-3140.https://doi.org/10.1080/00206814.2024.2318573.

[98]

Zhang X.Z., Dong Y.S., Wang Q., Dan W., Zhang C., Deng M.R., Xu W., Xia X.P., Zeng J.P., Liang H., 2016. Carboniferous and Permian evolutionary records for the Paleo-Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang, central Tibet. Tectonics 35, 1670-1686. https://doi.org/10.1002/2016TC004170.

[99]

Zheng J., Sun M., Zhou M.F., Robinson P., 2005. Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton. Geochim. Cosmochim. Acta 69, 3401-3418. https://doi.org/10.1016/j.gca.2005.03.020.

[100]

Zhou M.F., Robinson P.T., Malpas J., Edwards S.J., Qi L., 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, Southern Tibet. J. Petrol. 46, 615-639. https://doi.org/10.1093/petrology/egh091.

AI Summary AI Mindmap
PDF

511

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/