Early Cretaceous columnar basalts from the Mesoarchean Coorg Block, Southern India: A potential plume-influenced rifting event or a localized magmatic phenomenon?

S.G. Dhanil Dev , Pooja Pradeep , Chengxue Yang , Anoop Sooraj , P.K. Krishnaprasad , K.V. Sarath

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102058

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102058 DOI: 10.1016/j.gsf.2025.102058

Early Cretaceous columnar basalts from the Mesoarchean Coorg Block, Southern India: A potential plume-influenced rifting event or a localized magmatic phenomenon?

Author information +
History +
PDF

Abstract

The role of mantle plume in the final stages of rifting of the East Gondwana crustal fragments remains equivocal with only limited evidence so far reported from the southern part of Peninsular India. Here, we report for the first time a suite of columnar basalts from the Mesoarchean Coorg Block in the Southern Granulite Terrain (SGT) of India and characterize these rocks through field, petrological, geochemical, and isotope geochronological studies. The basalts show porphyritic texture with phenocrysts of pyroxene and plagioclase embedded in fine groundmass. Geochemical data reveal tholeiitic flood basalt affinity with affinities of plume-related magmatism. The zircon U-Pb data of the rocks yield a weighted mean age of 137 Ma, thus corresponding to the Valanginian Age of the Early Cretaceous Period. We suggest the possible geochemical affinity of the studied rocks Kerguelen plume basalts which provide new insights into magmatism associated with the final stages of East Gondwana rifting.

Keywords

Southern granulite terrain / Valanginian magmatism / Columnar basalts / Plume magmatism / East Gondwana

Cite this article

Download citation ▾
S.G. Dhanil Dev, Pooja Pradeep, Chengxue Yang, Anoop Sooraj, P.K. Krishnaprasad, K.V. Sarath. Early Cretaceous columnar basalts from the Mesoarchean Coorg Block, Southern India: A potential plume-influenced rifting event or a localized magmatic phenomenon?. Geoscience Frontiers, 2025, 16(4): 102058 DOI:10.1016/j.gsf.2025.102058

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statemen

S.G. Dhanil Dev: Writing - original draft, Validation. Pooja Pra-deep: Writing - original draft, Visualization, Validation, Investiga-tion, Formal analysis. Chengxue Yang: Visualization, Formal analysis. Anoop Sooraj: Visualization, Investigation, Formal analy-sis. P.K. Krishnaprasad: Visualization. K.V. Sarath: Investigation.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors sincerely acknowledge the invaluable guidance and constructive feedback provided by Prof. M. Santosh and Prof. E. Shaji, which greatly contributed to the improvement of this work. We sincerely thank Dr. Federico Lucci, Associate Editor, for his valuable insights and suggestions, which enhanced the quality of our manuscript. We thank Dr. Ram Mohan, National Geophysical Research Laboratory, Hyderabad, India, for help with generating the geochemical data reported in this study. We acknowledge Dr. R.S. Prasanth, M.G University and V Deepchand, Department of Geology, University of Kerala, for their valuable help during field-work. The fieldwork component is supported by the "Startup Grant for the University Teachers" of the University of Kerala.

Appendix A. Supplementary Data

Supplementary Data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102058.

References

[1]

Abdel-Rahman A.F.M., Nassar P.E., 2004. Cenozoic volcanism in the Middle East: petrogenesis of alkali basalts from northern Lebanon. Geol. Magazine 141 (5), 545-563.

[2]

Anand M., Gibson S.A., Subbarao K.V., Kelley S.P., Dickin A.P., 2003. Early Proterozoic melt generation processes beneath the intra-cratonic Cuddapah Basin, southern India. J. Petrol. 44 (12), 2139-2171.

[3]

An A.R., Choi S.H., Yu Y., Lee D.C., 2017. Petrogenesis of Late Cenozoic basaltic rocks from southern Vietnam. Lithos 272, 192-204.

[4]

Anoop K.S., Anilkumar Y., Santosh M., Yu B., Joy K.D., Kavyanjali K.V., Sathyan A., Mathew A., Sajinkumar K.S., 2022. Magmatic and metamorphic evolution of a layered gabbro-anorthosite complex from the Coorg Block, southern India: Implications for Mesoarchean supra subduction zone process. Gondwana Res. 103, 105-134.

[5]

Balaram V., Rao T.G., 2003. Rapid determination of REEs and other trace elements in geological samples by microwave acid digestion and ICP-MS. Atomic Spectrosc. 24 (6), 206-212.

[6]

Bas M.L., Maitre R.L., Streckeisen A., Zanettin B., 1986. IUGS Subcommission on the Systematics of Igneous Rocks, 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 27 (3), 745-750.

[7]

Bosshard S.A., Mattsson H.B., Hetényi G., 2012. Origin of internal flow structures in columnar-jointed basalt from Hrepphólar, Iceland: I Textural and geochemical characterization. Bull. Volcanol. 74 (7), 1645-1666.

[8]

Boynton W.V., 1984. Cosmochemistry of the rare earth elements: Meteorite studies. Develop. Geochem. 2, 63-114.

[9]

Burianek D., Hanzl P., Erban V., Gilikova H., Bolormaa K., 2008. The Early Cretaceous volcanic activity in the western part of the Gobi-Altay rift (Shiliin Nuruu, SW Mongolia). J. Geosci. 53 (2), 167-180.

[10]

Chetty T.R.K., Rao Y.B., 2006. The Cauvery shear zone, Southern Granulite Terrain, India: a crustal-scale flower structure. Gondwana Res. 10 (1-2), 77-85.

[11]

Coffin M.F., Pringle M.S., Duncan R.A., Gladczenko T.P., Storey M., Müller R.D., Gahagan L.A., 2002. Kerguelen hotspot magma output since 130 Ma. J. Petrol. 43 (7), 1121-1137.

[12]

Collins A.S., Clark C., Plavsa D., 2014. Peninsular India in Gondwana: The tectonothermal evolution of the Southern Granulite Terrain and its Gondwanan counterparts. Gondwana Res. 25 (1), 190-203.

[13]

Condie K.C., 2003. Incompatible element ratios in oceanic basalts and komatiites: tracking deep mantle sources and continental growth rates with time. Geochem. Geophys. Geosyst. 4 (1), 1-28.

[14]

DeGraff J.M., Aydin A., 1987. Surface morphology of columnar joints and its significance to mechanics and direction of joint growth. Geol. Soc. Am. Bull. 99 (5), 605-617.

[15]

DePaolo D.J., Daley E.E., 2000. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chem. Geol. 169 (1-2), 157-185.

[16]

Dev S.D., Shaji E., Santosh M., Tsunogae T., Prasanth R.S., 2022. Mesoarchean charnockites from the Coorg Block, Southern India: Petrology, geochemistry and tectonic implications. Geosyst. Geoenviron. 2 (1), 100134.

[17]

Duncan R.A., 2002. A time frame for construction of the Kerguelen Plateau and Broken Ridge. J. Petrol. 43 (7), 1109-1119.

[18]

Ernst R.E., 2007. Mafic-ultramafic large igneous provinces (LIPs): Importance of the pre-Mesozoic record. Episodes J. Int. Geosci. 30 (2), 108-114.

[19]

Ernst R.E., 2014. Large Igneous Provinces. Cambridge University Press, Cambridge. Fitton, J.G., Saunders, A.D., Norry, M.J., Hardarson, B.S., Taylor, R.N., 1997. Thermal and chemical structure of the Iceland plume. Earth Planet. Sci. Lett. 153 (3-4), 197-208.

[20]

Gamble J.A., Smith I.E.M., McCulloch M.T., Graham I.J., Kokelaar B.P., 1993. The geochemistry and petrogenesis of basalts from the Taupo Volcanic Zone and Kermadec Island Arc, S.W. Pacific. J. Volcanol. Geotherm. Res. 54, 265-290.

[21]

Grossenbacher K.A., McDuffie S.M., 1995. Conductive cooling of lava: columnar joint diameter and stria width as functions of cooling rate and thermal gradient. J. Volcanol. Geotherm. Res. 69 (1-2), 95-103.

[22]

Hooper P., Widdowson M., Kelley S., 2010. Tectonic setting and timing of the final Deccan flood basalt eruptions. Geology 38 (9), 839-842.

[23]

Hu Z., Li X.H., Luo T., Zhang W., Crowley J., Li Q., Ling X., Yang C., Li Y., Feng L., Xia X., 2021. Tanz zircon megacrysts: A new zircon reference material for the microbeam determination of U-Pb ages and Zr-O isotopes. J. Analyt. Atomic Spectrom. 36 (12), 2715-2734.

[24]

Irvine T.N., Baragar W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8 (5), 523-548.

[25]

Jensen L.S., 1976. A new cation plot for classifying subalkalic volcanic rocks. Ministry of Natural Resources.

[26]

Jiang Q., Jourdan F., Olierook H.K., Merle R.E., Whittaker J.M., 2021. Longest continuously erupting large igneous province driven by plume-ridge interaction. Geology 49 (2), 206-210.

[27]

Kasbohm J., Schoene B., 2018. Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum. Sci. Adv. 4 (9), eaat8223.

[28]

Kent R., 1991. Lithospheric uplift in eastern Gondwana: evidence for a long-lived mantle plume system? Geology 19 (1), 19-23.

[29]

Kent R.W., Pringle M.S., Müller R.D., Saunders A.D., Ghose N.C., 2002. Ar 40 /Ar39 geochronology of the Rajmahal basalts, India, and their relationship to the Kerguelen Plateau. J. Petrol. 43 (7), 1141-1153.

[30]

Keppie J.D., Dostal J., 2007. Rift-related basalts in the 1.2-1.3 Ga granulites of the northern Oaxacan Complex, southern Mexico:evidence for a rifted arc on the northwestern margin of Amazonia. Proc. Geologists Asso. 118 (1), 63-74.

[31]

Leat P.T., Thompson R.N., Morrison M.A., Hendry G.L., Dickin A.P., 1988. Compositionally-diverse Miocene—recent Rift-related magmatism in Northwest Colorado: partial melting, and mixing of mafic magmas from 3 different Asthenospheric and Lithospheric mantle sources. J. Petrol. 1, 351-377.

[32]

Le Maitre R.W., Streckeisen A., Zanettin B., Le Bas M.J., Bonin B., Bateman P., Bellieni G., Dudek A., Efremova S., Keller J., Lameyre J., 2002. Igneous Rocks. In: Le MaitreR.W. (Ed.), A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge.

[33]

Liu Y., Gao S., Hu Z., Gao C., Zong K., Wang D., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petr. 51 (1-2), 537-571.

[34]

Liu Y., Hu Z., Gao S., Günther D., Xu J., Gao C., Chen H., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 257 (1-2), 34-43.

[35]

Ludwig K.R., 2011. Isoplot 4.15. Berkeley Geochronology Center Special Publication. Lyle, P., 2000. The eruption environment of multi-tiered columnar basalt lava flows. J. Geol. Soc. 157 (4), 715-722.

[36]

Mallet R., 1875. I. On the origin and mechanism of production of the prismatic (or columnar) structure of basalt. Proc. Royal Soc. London 23 (156-163), 180-184. Manikyamba, C., Pahari, A., Santosh, M., Subramanyam, K.S.V., Reddy, G.H., 2022. Geochemistry of basalts in unravelling the mantle processes and crustal evolution: Insights from the greenstone belts of western Dharwar Craton. Geosyst. Geoenviron. 1 (4), 100070.

[37]

Manikyamba C., Pahari A., Santosh M., Subramanyam K.S.V., Reddy G.H., , , 2022. Geochemistry of basalts in unravelling the mantle processes and crustal evolution:Insights from the greenstone belts of western Dharwar Craton.Geosyst. Geoenviron. 1 (4), 100070.

[38]

McDonough W.F., Sun S.S., 1995. The composition of the Earth. Chem. Geol. 120 (3-4), 223-253.

[39]

Middlemost E.A., 1975. The basalt clan. Earth-Sci. Rev. 11 (4), 337-364.

[40]

Miyashiro A., 1974. Volcanic rock series in island arcs and active continental margins. Am. J. Sci. 274 (4), 321-355.

[41]

Naqvi S.M., Rogers J.J.W., 1987. Precambrian Geology of India. Oxford University Press, Oxford.

[42]

Olierook H.K., Merle R.E., Jourdan F., 2017. Toward a Greater Kerguelen large igneous province: Evolving mantle source contributions in and around the Indian Ocean. Lithos 282, 163-172.

[43]

Olierook H.K., Clark C., Reddy S.M., Mazumder R., Jourdan F., Evans N.J., 2019. Evolution of the Singhbhum Craton and supracrustal provinces from age, isotopic and chemical constraints. Earth-Sci. Rev. 193, 237-259.

[44]

Ottens B., Götze J., Schuster R., Krenn K., Hauzenberger C., Zsolt B., Vennemann T., 2019. Exceptional multi stage mineralization of secondary minerals in cavities of flood basalts from the Deccan Volcanic Province, India. Minerals 9 (6), 351.

[45]

Pearce J.A., Cann J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett. 19 (2), 290-300.

[46]

Pearce J.A., Norry M.J., 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Miner. Petr. 69 (1), 33-47.

[47]

Pearce J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In: ThorpeR.S. (Ed.), Orogenic Andesites and Related Rocks. John Wiley and Sons eBooks, Hoboken, pp. 528-548.

[48]

Pearce J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100 (1- 4), 14-48.

[49]

Pearce N.J., Perkins W.T., Westgate J.A., Gorton M.P., Jackson S.E., Neal C.R., Chenery S.P., 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newslett. 21 (1), 115-144.

[50]

Peck D.L., Minakami T., 1968. The formation of columnar joints in the upper part of Kilauean lava lakes Hawaii. Geol. Soc. Am. Bull. 79 (9), 1151-1166.

[51]

Piercey S.J., Mortensen J.K., Murphy D.C., Paradis S., Creaser R.A., 2002. Geochemistry and tectonic significance of alkalic mafic magmatism in the Yukon-Tanana terrane, Finlayson Lake region Yukon. Can. J. Earth Sci. 39 (12), 1729-1744.

[52]

Rollinson H., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Group, London, pp, 23-89.

[53]

Sabale A.B., Vishwakarma L.L., 1996. Zeolites and associated secondary minerals in Deccan volcanics: Study of their distribution, genesis and economic importance. Gondwana Geol. Mag. 2, 511-518.

[54]

Salavati M., 2008. Petrology, geochemistry and mineral chemistry of extrusive alkalic rocks of the Southern caspian sea ophiolite, Northern Alborz, Iran: evidence of alkaline magmatism in Southern Eurasia. J. Applied Sci. 8 (12), 2202-2216.

[55]

Samal A.K., Srivastava R.K., Ernst R.E., 2021. An appraisal of mineral systems associated with Precambrian Large Igneous Provinces of the Indian Shield. Ore Geol. Rev. 131, 104009.

[56]

Santosh M., 2020. The southern granulite terrane: A synopsis. Episodes J. Int. Geosci. 43 (1), 109-123.

[57]

Santosh M., Tsunogae T., Yang C.X., Han Y.S., Hari K.R., Prasanth M.M., Uthup S., 2020. The Bastar craton, central India: A window to Archean-Paleoproterozoic crustal evolution. Gondwana Res. 79, 157-184.

[58]

Santosh M., Yang Q.Y., Mohan M.R., Tsunogae T., Shaji E., Satyanarayanan M., 2014. Cryogenian alkaline magmatism in the Southern Granulite Terrane, India: Petrology, geochemistry, zircon U-Pb ages and Lu-Hf isotopes. Lithos 208, 430-445.

[59]

Santosh M., Yang Q.Y., Shaji E., Tsunogae T., Mohan M.R., Satyanarayanan M., 2015. An exotic Mesoarchean microcontinent: The Coorg block, southern India. Gondwana Res. 27 (1), 165-195.

[60]

Sensarma S., Palme H., 2013. Silicate liquid immiscibility in the∼ 2.5 Ga Fe-rich andesite at the top of the Dongargarh large igneous province (India). Lithos 170, 239-251.

[61]

Schiano P., Monzier M., Eissen J.P., Martin H., Koga K.T., 2010. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib. Mineral. Petr. 160 (2), 297-312.

[62]

Shervais J.W., 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett. 59 (1), 101-118.

[63]

Sheth H.C., 2006. The emplacement of pahoehoe lavas on Kilauea and in the Deccan Traps. J. Earth Syst. Sci. 115, 615-629.

[64]

Shi Y., Hou C., Anderson J.L., Yang T., Ma Y., Bian W., Jin J., 2018. Zircon SHRIMP U-Pb age of Late Jurassic OIB-type volcanic rocks from the Tethyan Himalaya: constraints on the initial activity time of the Kerguelen mantle plume. Acta Geochim. 37, 441-455.

[65]

Singh A.K., Chung S.L., Bikramaditya R., Lee H.Y., Khogenkumar S., 2020. Zircon U-Pb geochronology, Hf isotopic compositions, and petrogenetic study of Abor volcanic rocks of Eastern Himalayan Syntaxis, Northeast India: Implications for eruption during breakup of Eastern Gondwana. Geol. J. 55 (2), 1227-1244.

[66]

Srivastava R.K., 2022. Early Cretaceous Greater Kerguelen large igneous province and its plumbing systems: a contemplation on concurrent magmatic records of the eastern Indian Shield and adjoining regions. Geol. J. 57 (2), 681-693.

[67]

Srivastava R.K., Wang F., Shi W., Ernst R.E., 2023. Early Cretaceous mafic dykes from the Chhota Nagpur Gneissic Terrane, eastern India: Evidence of multiple magma pulses for the main stage of the Greater Kerguelen mantle plume. J. Asian Earth Sci. 241, 105464.

[68]

Suetsugu D., Steinberger B., Kogiso T., 2005. Mantle plumes and hot spots. In: SelleyR.C., CocksL.R.M., PlimerI.R. (Encyclopediaof Geology.Eds.), Elsevier, pp. 335-343.

[69]

Sun S.S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. London Spe. Publ. 42 (1), 313-345.

[70]

Thompson R.N., Morrison M.A., 1988. Asthenospheric and lower-lithospheric mantle contributions to continental extensional magmatism: An example from the British Tertiary Province. Chem. Geol. 68 (1-2), 1-15.

[71]

Treuil M., Joron J.L., 1975. Utilisation des elements hygromagmatophiles pour la simplification de la mordelisation quantitqative des processus magmatiques. Exemples de L'afar et de la dorsale medioatlantique.

[72]

Walker G.P.L., 1971. Compound and simple lava flows and flood basalts. Bull. Volcanologique 35, 579-590.

[73]

Wang P., Glover III L., 1992. A tectonics test of the most commonly used geochemical discriminant diagrams and patterns. Earth-Sci. Rev. 33, 111-131.

[74]

Wang W., Tang J., Xu W.L., Wang F., 2015. Geochronology and geochemistry of Early Jurassic volcanic rocks in the Erguna Massif, northeast China: Petrogenesis and implications for the tectonic evolution of the Mongol-Okhotsk suture belt. Lithos 218, 73-86.

[75]

Wilson M. (Ed.), 1989. Igneous Petrogenesis. Springer, Dordrecht.

[76]

Winchester J.A., Floyd P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 20, 325-343.

[77]

Wood D.A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet. Sci. Lett. 50 (1), 11-30.

[78]

Xia L., Li X., 2019. Basalt geochemistry as a diagnostic indicator of tectonic setting. Gondwana Res. 65, 43-67.

[79]

Xiao L., Xu Y.G., Mei H.J., Zheng Y.F., He B., Pirajno F., 2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: Implications for plume-lithosphere interaction. Earth Planet. Sci. Lett. 228 (3-4), 525-546.

[80]

Yang C.X., Santosh M., Lloyd J.C., Glorie S., Gao P., Yu B., Anilkumar Y., Anoop K. S., Kim S.W., 2023. The Coorg Block, southern India: Insights from felsic and mafic magmatic suites on Mesoarchean plate tectonics and correlation with supercontinent Ur. Gondwana Res. 118, 1-36.

[81]

Yang C.X., Santosh M., Lloyd J., Glorie S., Anilkumar Y., Anoop K.S., Gao P., Kim S. W., 2024. Breakup of the Neoarchean supercontinent Kenorland: Evidence from zircon and baddeleyite U-Pb ages of LIP-related mafic dykes in the Coorg Block, southern India. Geosci. Front. 15 (4), 101804.

[82]

Yu B., Santosh M., Amaldev T., Jang Y., Yang C.X., 2022. Paleo-Mesoarchean crustal evolution in the Coorg Block, southern India: Insights from magmatic and metamorphic records in mafic granulites. Precambrian Res. 370, 106537.

[83]

Yuan H., Gao S., Liu X., Li H., Günther D., Wu F., 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 28 (3), 353-370.

[84]

Zhang Z., Ding H., Palin R.M., Dong X., Tian Z., Chen Y., 2020. The lower crust of the Gangdese magmatic arc, southern Tibet, implication for the growth of continental crust. Gondwana Res. 77, 136-146.

AI Summary AI Mindmap
PDF

242

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/