CH4 and CO2 emissions and dissolved carbon exporting in rivers on the upper Lanzhou section of the Yellow River, China

Zhiheng Du , Hao Cui , Fangping Yan , Lei Wang , Zhiqiang Wei , Wenhan Hu , Simin Xie , Changlian Tao , Qian Xu , Qiangqiang Xu , Yicheng Wang , Jingfeng Liu , Xiaoxiang Wang , Minzhu He

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102057

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102057 DOI: 10.1016/j.gsf.2025.102057

CH4 and CO2 emissions and dissolved carbon exporting in rivers on the upper Lanzhou section of the Yellow River, China

Author information +
History +
PDF

Abstract

The Yellow River (YR), China's second-longest river, remains understudied regarding its greenhouse gases (GHGs) emissions, particularly the impacts of urban drainage ditches and wastewater treatment facilities on regional GHGs dynamics. This study investigated methane (CH4) and carbon dioxide (CO2) concentrations, fluxes and stable carbon isotopes (δ13C-CH4 and δ13C-CO2) across six main stream, three ditches, and one wastewater treatment site along the upper Lanzhou section of the YR, spanning from the urban entrance (36.176 °N, 103.449 °E) to the exit of Lanzhou city (36.056 °N, 104.020 °E). Measured CH4 diffusion fluxes in mainstem sites ranged from 0.01 to 2.58 mmol ·m-2 ·d-1 (mean: 0.36 mmol ·m-2 ·d-1), while ebullitive fluxes (gas bubbles) ranged from 0.01 to 18.89 mmol ·m-2 ·d-1 (mean: 0.90 mmol ·m-2 ·d-1). CO2 diffusion fluxes varied between 9.16-92.80 mmol ·m-2 ·d-1 (averaged: 39.11 mmol ·m-2 ·d-1) at these locations. Ebullition (bubble) fluxes accounted for 53.1% ± 22.4% (range: 9.0% to 98.4%) to total CH4 emissions (diffusion plus ebullition), with peak fluxes occurring during summer, indicating its significance as a CH4 transport mechanism. Notably, both diffusion CH4 and CO2 fluxes and ebullitive CH4 rates at ditch sites substantially exceeded those in mainstream reaches. The lowest CH4 and highest CO2 concentrations were observed at a wastewater treatment site, likely resulting from the removal of high organic loads. Acetoclastic methanogenesis €"the process converting acetate-derived methyl groups to CH4- was identified as the dominant production pathway in both mainstream and ditch environments. CH4 and CO2 flux magnitudes in the upper YR (Lanzhou section) were comparable to those observed in subtropical Yangtze River tributaries. These results demonstrate that anthropogenic influences significantly enhance CO2/CH4 emissions, and the lateral exports of dissolved carbon (DIC and DOC) in the main stream site was quantified., which cannot be overlooked. The findings emphasize the critical need to account for pronounced spatiotemporal variations in arid-region GHG fluxes to improve basin-scale estimates for the YR.

Keywords

Yellow River / CH4 and CO2 fluxes / δ13C isotope / Ditch and Wastewater treatment water / Acetoclastic methanogenesis

Cite this article

Download citation ▾
Zhiheng Du, Hao Cui, Fangping Yan, Lei Wang, Zhiqiang Wei, Wenhan Hu, Simin Xie, Changlian Tao, Qian Xu, Qiangqiang Xu, Yicheng Wang, Jingfeng Liu, Xiaoxiang Wang, Minzhu He. CH4 and CO2 emissions and dissolved carbon exporting in rivers on the upper Lanzhou section of the Yellow River, China. Geoscience Frontiers, 2025, 16(4): 102057 DOI:10.1016/j.gsf.2025.102057

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zhiheng Du: Writing - original draft, Methodology, Investigation, Funding acquisition, Data curation, Conceptualization. Hao Cui: Data curation,Investigation, Writing - original draft. Fangping Yan: Inves-tigation, Conceptualization, Writing - original draft. Lei Wang: Inves-tigation, Conceptualization, Writing - original draft. Zhiqiang Wei: Writing - review & editing, Investigation, Data curation, Funding acquisition. Wenhan Hu: Investigation, Writing - original draft. Simin Xie: Investigation, Writing - original draft. Changlian Tao: Investigation, Writing - original draft. Qian Xu: Investigation, Writing - original draft. Qiangqiang Xu: Writing - original draft. Yicheng Wang: Data curation, Writing - original draft. Jingfeng Liu: Writing -original draft. Xiaoxiang Wang: Data curation, Writing - original draft. Minzhu He: Writing - original draft.

Data availability

Data will be made available on request.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was funded by the Strategic Priority Research Pro-gram of the Chinese Academy of Sciences (Grant No. XDB0950000), the NSFC (Grant No. 42201155; 42401147; 42201137) and the State Key Laboratory of Cryospheric Science and Frozen Soil Engineering (CSFSE-ZQ-2410). We especially acknowledge Kai Wang for logistics, and samples collecting in field.

References

[1]

Battin T.J., Lauerwald R., Bernhardt E.S., Bertuzzo E., Gener L.G., Hall R.O., Hotchkiss E.R., Maavara T., Pavelsky T.M., Ran L., Raymond P., Rosentreter J. A., Regnier P., 2023. River ecosystem metabolism and carbon biogeochemistry in a changing world. Nature 613 (7944), 449-459.

[2]

Bodmer P., Wilkinson J., Lorke A., 2020. Sediment properties drive spatial variability of potential methane production and oxidation in small streams. J. Geophys. Res. Biogeosci. 125(1), e2019JG005213.

[3]

Chen S., Ran L., Zhong J., Liu B., Yang X., Yang P., Tian M., Yang Q., Li S., Yan Z., Fang N., 2024. Magnitude of and hydroclimatic controls on CO2 and CH 4 emissions in the subtropical monsoon Pearl River basin. J. Geophys. Res. Biogeosci. 129(5), e2023JG007967.

[4]

Beaulieu J.J., Tank J.L., Hamilton S.K., Wollheim W.M., Hall Jr. R.O., Mulholland P. J., Peterson B.J., Ashkenas L.R., Cooper L.W., Dahm C.N., Dodds W.K., Grimm N.B., Johnson S.L., McDowell W.H., Poole G.C., Valett H.M., Arango C.P., Bernot M.J., Burgin A.J., Crenshaw C.L., Helton A.M., Johnson L.T., O'Brien J.M., Potter J.D., Sheibley R.W., Sobota D.J., Thomas S.M., 2011. Nitrous oxide emission from denitrification in stream and river networks. Proc. Natl. Acad. Sci. U.S.A. 108 (1), 214-219.

[5]

Crawford J.T., Loken L.C., Stanley E.H., Stets E.G., Dornblaser M.M., Striegl R.G., 2016. Basin scale controls on CO2 and CH 4 emissions from the Upper Mississippi River. Geophys. Res. Lett. 43 (5), 1973-1979.

[6]

Cui P., Cui L., Zheng Y., Su F., 2024. Land use and urbanization indirectly control riverine CH4 and CO 2 emissions by altering nutrient input. Water Res. 265, 122266.

[7]

Du Z., Cui H., Wang L., Yan F., Liu Y., Xu Q., Xie S., Dou T., Li Y., Liu P., Qin X., Xiao C., 2024. Characteristics of methane and carbon dioxide in ice caves at a high mountain glacier of China. Environ. Sci. Technol. 946, 174074.

[8]

Drake T.W., Raymond P.A., Spencer R.G., 2018. Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett 3 (3), 132-142.

[9]

Fan X., Wang L., Li X., Zhou J., Chen D., Yang H., 2022. Increased discharge across the Yellow River Basin in the 21st century was dominated by precipitation in the headwater region. J. Hydrol.: Reg. Stud. 44, 101230.

[10]

Gao Y., Wang S.Y., Lu Y., Liu J., Lyu S.D., Sun K., Jia J.J., Li Z.X., Yu G.R., 2022. Carbon budget and balance critical processes of the regional land-water-air interface: indicating the earth system's carbon neutrality. Sci. China Earth Sci. 65, 773-782.

[11]

Gruca-Rokosz R., Koszelnik P., 2018. Production pathways for CH4 and CO2 in sediments of two freshwater ecosystems in south-eastern Poland. PloS One. 13 (6), e0199755.

[12]

Gu C., Lu M., Liu Y., 2025. The hyporheic exchange remarkably influences methane dynamics and effluxes in rivers. J. Hydrol. 648, 132400.

[13]

Hosen J.D., McDonough O.T., Febria C.M., Palmer, 2014. Dissolved organic matter quality and bioavailability changes across an urbanization gradient in headwater streams. Environ. Sci. Technol. 48, 7817-7824.

[14]

Hu C., Xu J., Liu C., Chen Y., Yang D., Huang W., Deng L., Liu S., Griffis T.J., Lee X., 2021. Anthropogenic and natural controls on atmospheric d13 C-CO2 variations in the Yangtze River delta: insights from a carbon isotope modeling framework. Atmos. Chem. Phys. 21, 10015-10037.

[15]

Huang H., Dong B., Wang N., Zhang Z., Wang Y., Ren J., Li H., Xiao Z., Zhou B., 2022. Revealing risk stress on the Lanzhou section of the Yellow River from the industries alongside it. Sustain. 14 (22), 15235.

[16]

Kabir M., Habiba U.E., Khan W., Shah A., Rahim S., Rios-Escalante P.R.D. los, Farooqi Z.-U.-R., Ali L., Shaffq M., 2023. Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review. J. King Saud Univ. Sci. 35 (5), 102693.

[17]

Li M., Peng C., Zhang K., Xu L., Wang J., Yang Y., Li P., Liu Z., He N., 2021. Headwater stream ecosystem: an important source of greenhouse gases to the atmosphere. Water Res. 190, 116738.

[18]

Li S., Lu X. X., Bush R. T., 2014. Chemical weathering and CO2 consumption in the Lower Mekong River. Sci. Total Environ. 472, 162-177.

[19]

Lin P., Du Z., Wang L., Liu J., Xu Q., Du J., Jiang R., 2023. Hotspots of riverine greenhouse gas (CH4, CO2, N2O) emissions from Qinghai Lake Basin on the northeast Tibetan Plateau. Sci. Total Environ. 857, 159373.

[20]

Liu J., Liu S., Chen X., Sun S., Xin Y., Liu L., Xia X., 2023. Strong CH 4 emissions modulated by hydrology and bed sediment properties in Qinghai-Tibetan Plateau rivers. J. Hydrol. 617, 129053.

[21]

Liu L., Zhou L., Vaughn B., Miller J.B., Brand W.A., Rothe M., Xia L., 2014. Background variations of atmospheric CO2 and carbon-stable isotopes at Waliguan and Shangdianzi stations in China. J. Geophys. Res. Atmos. 119, 5602-5612.

[22]

Liu S., Kuhn C., Amatulli G., Aho K., Butman D.E., Allen G.H., Lin P., Pan M., Yamazaki D., Brinkerhoff C., Gleason C., Xia X., Raymond P.A., 2022. The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers. Proc. Natl. Acad. Sci. U.S.A. 119 (11), e2106322119.

[23]

Marescaux A., Thieu V., Garnier J., 2018. Carbon dioxide, methane and nitrous oxide emissions from the human-impacted Seine watershed in France. Sci. Total Environ. 643, 247-259.

[24]

Marzadri A., Amatulli G., Tonina D., Bellin A., Shen L.Q., Allen G.H., Raymond P.A., 2021. Global riverine nitrous oxide emissions: The role of small streams and large rivers. Environ. Sci. Technol. 776, 145148.

[25]

Natchimuthu S., Panneer Selvam B., Bastviken D., 2014. Influence of weather variables on methane and carbon dioxide flux from a shallow pond. Biogeochemistry 119, 403-413.

[26]

Neal C., Harrow M.., Williams R. J., 1998. Dissolved carbon dioxide and oxygen in the River Thames: spring-summer 1997. Sci. Total Environ. 210, 205-217.

[27]

Qin Y., Gou Y., Yu Z., Tan W., 2021. Effects of environmental factors on the methane and carbon dioxide fluxes at the middle of Three Gorges Reservoir. J. Water Clim. Change. 12 (8), 4007-4020.

[28]

Qu B., Aho K.S., Li C., Kang S., Sillanpää M., Yan F., Raymond P.A., 2017. Greenhouse gases emissions in rivers of the Tibetan Plateau. Sci. Rep. 7, 16573.

[29]

Quick A.M., Reeder W.J., Farrell T.B., Tonina D., Feris K.P., Benner S.G., 2019. Nitrous oxide from streams and rivers: a review of primary biogeochemical pathways and environmental variables. Earth-Sci. Rev. 191, 224-262.

[30]

Raymond P.A., Hartmann J., Lauerwald R., Sobek S., Mcdonald C.P., Hoover M.D., Butman D., Striegl R., Mayorga E., Humborg C., 2013. Global carbon dioxide emissions from inland waters. Nature 503 (7476), 355-359.

[31]

Rocher-Ros G., Stanley E.H., Loken L.C., Casson N.J., Raymond P.A., Liu S., Amatulli A., Sponseller R.A., 2023. Global methane emissions from rivers and streams. Nature 621 (7979), 530-535.

[32]

Rosentreter J.A., Borges A.V., Deemer B.R., Holgerson M.A., Liu S., Song C., Eyre B. D., 2021. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. 14 (4), 225-230.

[33]

Runkel R.L., Crawford C.G., Cohn T.A., 2004. Load Estimator (LOADEST): A FORTRAN program for estimating constituent loads in streams and rivers. Page 69. U.S. Geological Survey Techniques and Methods Book 4, 69p.

[34]

Sawakuchi H.O., Bastviken D., Sawakuchi A.O., Krusche A.V., Ballester M.V.R., Richey J.E., 2014. Methane emissions from Amazonian Rivers and their contribution to the global methane budget. Glob. Chang. Biol. 20, 2829-2840.

[35]

Sawakuchi H.O., Bastviken D., Sawakuchi A.O., Ward N.D., Borges C.D., Tsai S.M., Richey J.E., Ballester M.V., Krusche A.V., 2016. Oxidative mitigation of aquatic methane emissions in large Amazonian rivers. Glob. Chang. Biol. 22 (3), 1075-1085.

[36]

Shang X., Gao T., Yao T., Zhang Y., Zhao Y., Zhao Y., Luo X., Chen R., Kang S., 2024. Riverine carbon dioxide release in the headwater region of the Qilian Mountains, northern China. J. Hydrol. 632, 130832.

[37]

Song C., Wang G., Sun X., Li Y., Ye S., Hu Z., Sun J., Lin S., 2023. Riverine CO2 variations in permafrost catchments of the Yangtze River source region: Hot spots and hot moments. Sci. Total Environ. 863, 160948.

[38]

Stanley E.H., Casson N.J., Christel S.T., Crawford J.T., Loken L.C., Oliver S.K., 2016. The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecol. Monogr. 86 (2), 146-171.

[39]

Stanley E.H., Loken L.C., Casson N.J., Oliver S.K., Sponseller R.A., Wallin M.B., Zhang L., Rocher-Ros G., 2022. GRiMeDB: The global river database of methane concentrations and fluxes. Earth Syst. Sci. Data. 15, 2879-2926.

[40]

Tang W., Xu Y., Li S., 2021. Rapid urbanization effects on partial pressure and emission of CO2 in three rivers with different urban intensities. Ecol. Indic. 125, 107515.

[41]

Thottathil S.D., Prairie Y.T., 2021. Coupling of stable carbon isotopic signature of methane and ebullitive fluxes in northern temperate lakes. Sci. Total Environ. 777, 146117.

[42]

Upadhyay P., Prajapati S.K., Kumar A., 2023. Impacts of riverine pollution on greenhouse gas emissions: A comprehensive review. Ecol. Indic. 154, 110649.

[43]

Valentine D.L., Chidthaisong A., Rice A., Reeburgh W.S., Tyler S.C., 2004. Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens. Geochim. Cosmochim. Acta 68, 1571-1590.

[44]

Wang J., Wang X., Liu T., Chen H., He Y., Yuan X., 2023a. Ecological restoration effectively mitigated pCO2 and CO2 evasions from severely polluted urban rivers. J. Geophys. Res. Biogeosci. 128 (11), e2023JG007531.

[45]

Wang J., Wu W., Zhou X., Li J., Li C., 2023b. Distribution characteristics and sources of dissolved organic matter in the river-reservoir system of the Upper Yellow River. Environ. Eng. Sci. 40 (2), 71-81.

[46]

Wang L., Du Z., Wei Z., Xu Q., Feng Y., Lin P., Xiao C., 2021. High methane emissions from thermokarst lakes on the Tibetan Plateau are largely attributed to ebullition fluxes. Sci. Total Environ. 801, 149692.

[47]

Wang Z.P., Delaune R.D., Patrick Jr W.H., Masscheleyn P.H., 1993. Soil redox and pH effects on methane production in a flooded rice soil. Soil Science Society of America Journal 57 (2), 382-385.

[48]

Whiticar M.J., Faber E., 1986. Methane oxidation in sediment and water column environments—isotope evidence. Org. Geochem. 10 (4-6), 759-768.

[49]

Xia L., Zhou L., Tans P.P., Liu L., Zhang G., Wang H., Luan T., 2015. Atmospheric CO2 and its delta C-13 measurements from flask sampling at Lin'an regional background station in China. Atmos. Environ. 117, 220-226.

[50]

Xiao S., Wang Y., Liu D., Yang Z., Lei D., Zhang C., 2013. Diel and seasonal variation of methane and carbon dioxide fluxes at Site Guojiaba, the Three Gorges Reservoir. J. Environ. Sci. 25, 2065-2071.

[51]

Xu W., Wang G., Liu S., Wang J., McDowell W.H., Huang K., Raymond P.A., Yang Z., Xia X., 2024. Globally elevated greenhouse gas emissions from polluted urban rivers. Nat. Sustain. 7, 938-948.

[52]

Yang P., Zhang Y., Yang H., Guo Q., Lai D.Y.F., Zhao G., Li L., Tong C., 2020. Ebullition was a major pathway of methane emissions from the aquaculture ponds in southeast China. Water Res. 184, 116176.

[53]

Yao Y., Tian H., Shi H., Pan S., Xu R., Pan N., Canadell J.G., 2020. Increased global nitrous oxide emissions from streams and rivers in the Anthropocene. Nat. Clim. Change. 10 (2), 138-142.

[54]

You X., Li X., 2021. Seasonal variations in dissolved organic carbon in the source region of the Yellow River on the Tibetan Plateau. Water 13 (20), 2901.

[55]

Zhao C., Wang C., Li J., Meng L., Xue J., Gao Y., Huang T., Bai Y., Li S., Yang H., Shi K., Xu Y., Huang C., 2023. Changes in dissolved inorganic carbon across Yangtze River regulated by dam and river-lake exchange. Glob. Biogeochem. Cycles 37 (9), e2023GB007749.

[56]

Zhao Z., Zhang D., Shi W., Ruan X., Sun J., 2017. Understanding the spatial heterogeneity of CO2 and CH 4 fluxes from an urban shallow lake: correlations with environmental factors. J. Chem. 2017 (1), 8175631.

[57]

Zhang L., Xia X., Liu S., Zhang S., Li S., Wang J., Wang G., Gao H., Zhang Z., Wang Q., Wen W., Liu R., Yang Z., Stanley E., Raymond P.A., 2020. Significant methane ebullition from alpine permafrost rivers on the East Qinghai-Tibet Plateau. Nat. Geosci. 13 (5), 349-354.

[58]

Zhang S., Xue S., Jian H., Yang F., Yao Q., 2024. Artificial water regulation and natural flood processes control heavy metal concentrations and transport in the Yellow River, China. Mar. Pollut. Bull. 209, 117092.

[59]

Zhang W., Li H., Xiao Q., Li X., 2021. Urban rivers are hotspots of riverine greenhouse gas (N2O, CH4, CO2) emissions in the mixed-landscape Chaohu lake basin. Water Res. 189, 116624.

[60]

Zheng Y., Wu S., Xiao S., Yu K., Fang X., Xia L., Wang J., Liu S., Freeman C., Zou J., 2022. Global methane and nitrous oxide emissions from inland waters and estuaries. Glob. Change Biol. 28 (15), 4713-4725.

[61]

Zhong J., Li S.L., Liu J., Ding H., Sun X., Xu S., Wang T., Ellam R., Liu C.Q., 2018. Climate variability controls on CO2 consumption fluxes and carbon dynamics for monsoonal rivers: evidence from Xijiang River, Southwest China. J. Geophys. Res. Biogeosci. 123 (8), 2553-2567.

[62]

Zhong J., Wallin M.B., Wang W., Li S.L., Guo L., Dong K., Ellam R., Liu C., Xu S., 2021. Synchronous evaporation and aquatic primary production in tropical river networks. Water Res. 200, 117272.

[63]

Zhu N., X. Z., Xia H., 2023. Temporal and spatial variation in surface water area and influencing factors in the Yellow River Basin from 1990 to 2020. Water Resources Planning and Design (11),59-65 (in Chinese).

AI Summary AI Mindmap
PDF

437

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/