The future of carbon capture: Basalt's role in low-hydration CO2 sequestration

Guoyan Li , Ranjith P. Gamage , Yong Liu

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102056

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102056 DOI: 10.1016/j.gsf.2025.102056

The future of carbon capture: Basalt's role in low-hydration CO2 sequestration

Author information +
History +
PDF

Abstract

Mitigating climate change demands innovative solutions, and carbon sequestration technologies are at the forefront. Among these, basalt, a mafic volcanic rock packed with calcium, magnesium, and iron, emerges as a powerful candidate for carbon dioxide (CO2) sequestration through mineral carbonation. This method transforms CO2 into stable carbonate minerals, ensuring a permanent and environmentally safe storage solution. While extensive research has explored into basalt's potential under high hydration conditions, the untapped promise of low water content scenarios remains largely unexplored. Our ground-breaking study investigates the mineral carbonation of basalt powder under low water conditions using supercritical CO2 (sc-CO2). Conducted at 50 ℃ and 15 MPa with a controlled moisture content of 30%, our experiment spans various time points (0, 7, 14, 21, and 28 days). Utilising advanced X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), we unveil the mineralogical and morphological transformations. The results are striking: even under low water conditions, basalt efficiently forms valuable carbonate minerals such as calcite, siderite, magnesite, and ankerite. The carbonation efficiency evolves over time, reflecting the dynamic transformation of the basalt matrix. These findings offer pivotal insights into optimising CO2 sequestration in basalt under low hydration, marking a significant leap toward sustainable carbon capture and storage.

Keywords

Carbon sequestration / Basalt mineralization / Supercritical CO2 / Low-hydration

Cite this article

Download citation ▾
Guoyan Li, Ranjith P. Gamage, Yong Liu. The future of carbon capture: Basalt's role in low-hydration CO2 sequestration. Geoscience Frontiers, 2025, 16(4): 102056 DOI:10.1016/j.gsf.2025.102056

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Guoyan Li: Writing-original draft, Writing-review & editing, Methodology, Data curation, Conceptualization. Ranjith P. Gam-age: Writing-review & editing, Supervision, Conceptualization, Funding acquisition, Resources. Yong Liu: Writing-review & edit-ing, Supervision, Conceptualization, Funding acquisition, Resources.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foun-dation of China (Grant No. 52374192), the Henan Province Funds for Distinguished Young Youths (Grant No. 242300421013), and the Innovative Scientific Research Team Project of Henan Polytech-nic University (Grant No. T2024-1). The first author acknowledges the support from the China Scholarship Council (CSC) and the tui-tion fee scholarship from Monash University. The authors would like to thank their colleagues in the laboratory for their valuable assistance and support.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102056.

References

[1]

Adeoye J.T., Zhang D., Li V.C., Ellis B.R., 2020. Novel ductile wellbore cementitious composite for geologic CO2 storage. Int. J. Greenh. Gas Control 94, 102896. https://doi.org/10.1016/j.ijggc.2019.102896.

[2]

Cardew P.T., 2023. Ostwald rule of stages─myth or reality? Cryst. Growth Des. 23, 3958-3969. https://doi.org/10.1021/acs.cgd.2c00141.

[3]

Clark D.E., Galeczka I.M., Dideriksen K., Voigt M.J., Wolff-Boenisch D., Gislason S. R., 2019. Experimental observations of CO2-water-basaltic glass interaction in a large column reactor experiment at 50 °C. Int. J. Greenh. Gas Control 89, 9-19. https://doi.org/10.1016/j.ijggc.2019.07.007.

[4]

Dai Q., Chen R., 2008. On the geologic characteristics and formation mechanisms of the basalt pillars in Shanhoujian, Fuding City. Geol. Fujian, 369-376 (in Chinese with English abstract).

[5]

Firdous R., Hirsch T., Klimm D., Lothenbach B., Stephan D., 2021. Reaction of calcium carbonate minerals in sodium silicate solution and its role in alkali-activated systems. Miner. Eng. 165, 106849. https://doi.org/10.1016/j.mineng.2021.106849.

[6]

Freeman C.L., Harding J.H., 2023. The transformation of amorphous calcium carbonate to calcite and classical nucleation theory. J. Cryst. Growth 603, 126978. https://doi.org/10.1016/j.jcrysgro.2022.126978.

[7]

Goldberg D.S., Takahashi T., Slagle A.L., 2008. Carbon dioxide sequestration in deep-sea basalt. Proc. Natl. Acad. Sci. 105, 9920-9925. https://doi.org/10.1073/pnas.0804397105.

[8]

Gysi A.P., Stefánsson A., 2011. CO2-water-basalt interaction. Numerical simulation of low temperature CO2 sequestration into basalts. Geochim. Cosmochim. Acta 75, 4728-4751. https://doi.org/10.1016/j.gca.2011.05.037.

[9]

Harrison A.L., Dipple G.M., Power I.M., Mayer K.U., 2015. Influence of surface passivation and water content on mineral reactions in unsaturated porous media: Implications for brucite carbonation and CO2 sequestration. Geochim. Cosmochim. Acta 148, 477-495. https://doi.org/10.1016/j.gca.2014.10.020.

[10]

Harshini R.D.G.F., Ranjith P.G., Kumari W.G.P., Zhang D.C., 2024. Innovative applications of carbon dioxide foam in geothermal energy recovery: Challenges and perspectives-A review. Geoenergy Sci. Eng. 241, 213091. https://doi.org/10.1016/j.geoen.2024.213091.

[11]

Huijgen W.J.J., Witkamp G.-J., Comans R.N.J., 2005. Mineral CO2 sequestration by steel slag carbonation. Environ. Sci. Technol. 39, 9676-9682. https://doi.org/10.1021/es050795f

[12]

Isaka B.L.A., Ranjith P.G., 2020. Investigation of temperature-and pressure-dependent flow characteristics of supercritical carbon dioxide-induced fractures in harcourt granite: Application to CO2-based enhanced geothermal systems. Int. J. Heat Mass Transf. 158, 119931. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119931.

[13]

Jarvis K., Carpenter R.W., Windman T., Kim Y., Nunez R., Alawneh F., 2009. Reaction mechanisms for enhancing mineral sequestration of CO2. Environ. Sci. Technol. 43, 6314-6319. https://doi.org/10.1021/es8033507.

[14]

Kelemen P.B., Matter J., 2008. In situ carbonation of peridotite for CO 2 storage. Proc. Natl. Acad. Sci. 105, 17295-17300.

[15]

Kikuchi S., Wang J., Dandar O., Uno M., Watanabe N., Hirano N., Tsuchiya N., 2023. NaHCO 3 as a carrier of CO2 and its enhancement effect on mineralization during hydrothermal alteration of basalt. Front. Environ. Sci. 11. https://doi.org/10.3389/fenvs.2023.1138007.

[16]

Krevor S.C., Lackner K.S., 2009. Enhancing process kinetics for mineral carbon sequestration. Energy Procedia 1 (1), 4867-4871. https://doi.org/10.1016/j.egypro.2009.02.315.

[17]

Li C., Zhao X., Jiang Y., Xing G., Yu M., Duan Z., 2022. The discovery and geochemical characteristics of an eocene peridotite xenolith-bearing mafic volcanic neck in coastal southeast China. Front. Earth Sci. 10. https://doi.org/10.3389/feart.2022.950626.

[18]

Li Z., Guo J., Dong Z., Chen J., 2018. Insight into interactions of olivine-scCO2-water system at 140 °C and 15 MPa during CO2 mineral sequestration. Geosci. Front. 9, 1945-1955. https://doi.org/10.1016/j.gsf.2017.12.008.

[19]

Maroto-Valer M.M., Fauth D.J., Kuchta M.E., Zhang Y., Andrésen J.M., 2005. Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Process. Technol. 86, 1627-1645. https://doi.org/10.1016/j.fuproc.2005.01.017.

[20]

Matter J.M., Kelemen P.B., 2009. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat. Geosci. 2, 837-841. https://doi.org/10.1038/ngeo683.

[21]

McGrail B.P., Schaef H.T., Ho A.M., Chien Y.-J., Dooley J.J., Davidson C.L., 2006. Potential for carbon dioxide sequestration in flood basalts. J. Geophys. Res. Solid Earth 111, n/a-n/a. https://doi.org/10.1029/2005jb004169.

[22]

Metz B., Davidson O., De Coninck H.C., Loos M., Meyer L., 2005. IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge.

[23]

Min Y., Li Q., Voltolini M., Kneafsey T., Jun Y.-S., 2017. Wollastonite carbonation in water-bearing supercritical CO2: Effects of particle size. Environ. Sci. Technol. 51, 13044-13053. https://doi.org/10.1021/acs.est.7b04475.

[24]

Montes-Hernandez G., Renard F., 2016. Time-resolved in situ raman spectroscopy of the nucleation and growth of siderite, magnesite, and calcite and their precursors. Cryst. Growth Des. 16, 7218-7230. https://doi.org/10.1021/acs.cgd.6b01406.

[25]

Oelkers E.H., Gislason S.R., Matter J., 2008. Mineral carbonation of CO2. Elements 4, 333-337. https://doi.org/10.2113/gselements.4.5.333.

[26]

Olajire A.A., 2013. A review of mineral carbonation technology in sequestration of CO2. J. Pet. Sci. Eng. 109, 364-392. https://doi.org/10.1016/j.petrol.2013.03.013.

[27]

Parisio F., Vilarrasa V., 2020. Sinking CO2 in supercritical reservoirs. Geophys. Res. Lett. 47, e2020GL090456. https://doi.org/10.1029/2020GL090456.

[28]

Pasquier L.-C., Mercier G., Blais J.-F., Cecchi E., Kentish S., 2014. Reaction mechanism for the aqueous-phase mineral carbonation of heat-activated serpentine at low temperatures and pressures in flue gas conditions. Environ. Sci. Technol. 48, 5163-5170. https://doi.org/10.1021/es405449v

[29]

Phukan M., Vu H.P., Haese R.R., 2021. Mineral dissolution and precipitation reactions and their net balance controlled by mineral surface area: An experimental study on the interactions between continental flood basalts and CO2-saturated water at 80 bars and 60 °C. Chem. Geol. 559, 119909. https://doi.org/10.1016/j.chemgeo.2020.119909.

[30]

Polettini A., Pomi R., Stramazzo A., 2016. Carbon sequestration through accelerated carbonation of BOF slag: Influence of particle size characteristics. Chem. Eng. J. 298, 26-35. https://doi.org/10.1016/j.cej.2016.04.015.

[31]

Renard F., Røyne A., Putnis C.V., 2019. Timescales of interface-coupled dissolution-precipitation reactions on carbonates. Geosci. Front. 10, 17-27. https://doi.org/10.1016/j.gsf.2018.02.013.

[32]

Sanna A., Uibu M., Caramanna G., Kuusik R., Maroto-Valer M.M., 2014. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 43, 8049-8080. https://doi.org/10.1039/C4CS00035H.

[33]

Santos R.M., François D., Mertens G., Elsen J., Van Gerven T., 2013. Ultrasound-intensified mineral carbonation. Appl. Therm. Eng. 57, 154-163. https://doi.org/10.1016/j.applthermaleng.2012.03.035.

[34]

Serno S., Flude S., Johnson G., Mayer B., Karolyte˙ R., Haszeldine R.S., Gilfillan S.M. V., 2017. Oxygen isotopes as a tool to quantify reservoir-scale CO2 pore-space saturation. Int. J. Greenh. Gas Control 63, 370-385. https://doi.org/10.1016/j.ijggc.2017.06.009.

[35]

Snæbjörnsdóttir S.Ó., Gislason S.R., Galeczka I.M., Oelkers E.H., 2018. Reaction path modelling of in-situ mineralisation of CO2 at the CarbFix site at hellisheidi, SW-Iceland. Geochim. Cosmochim. Acta 220, 348-366. https://doi.org/10.1016/j.gca.2017.09.053.

[36]

Snæbjörnsdóttir S.Ó., Sigfússon B., Marieni C., Goldberg D., Gislason S.R., Oelkers E.H., 2020. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 1, 90-102. https://doi.org/10.1038/s43017-019-0011-8.

[37]

Voigt M., Marieni C., Baldermann A., Galeczka I.M., Wolff-Boenisch D., Oelkers E. H., Gislason S.R., 2021. An experimental study of basalt-seawater-CO2 interaction at 130 °C. Geochim. Cosmochim. Acta 308, 21-41. https://doi.org/10.1016/j.gca.2021.05.056.

[38]

Wang F., Dreisinger D., Jarvis M., Hitchins T., 2019. Kinetics and mechanism of mineral carbonation of olivine for CO2 sequestration. Miner. Eng. 131, 185-197. https://doi.org/10.1016/j.mineng.2018.11.024.

[39]

Wuensch B.J., Vasilos T., 1962. Diffusion of transition metal ions in single-crystal MgO. J. Chem. Phys. 36, 2917-2922. https://doi.org/10.1063/1.1732402.

[40]

Xiong W., Wells R.K., Giammar D.E., 2017. Carbon sequestration in olivine and basalt powder packed beds. Environ. Sci. Technol. 51, 2105-2112. https://doi.org/10.1021/acs.est.6b05011.

AI Summary AI Mindmap
2 sequestration' title="Share on Weibo" target="_blank">
PDF

557

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/