Zinc and cadmium isotope signatures: Insights into ore genesis and exploration strategies at the Xiaohongshilazi Pb-Zn-(Ag) deposit, Northeast China

Huchao Ma , Da Wang , Ryan Mathur , Gaotian Wang , Feng Bai

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102054

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102054 DOI: 10.1016/j.gsf.2025.102054

Zinc and cadmium isotope signatures: Insights into ore genesis and exploration strategies at the Xiaohongshilazi Pb-Zn-(Ag) deposit, Northeast China

Author information +
History +
PDF

Abstract

The Jizhong-Yanbian Cu-Mo-Au-Pb-Zn polymetallic metallogenic belt is a major nonferrous and precious metal resource base in Northeastern China. The genesis of ore deposits in this district has remained controversial. To constrain ore genetic models and provide information for exploration, we conducted precise Zn-Cd isotopic measurements on sphalerite and galena. The δ66ZnAA-ETH values of galena and sphalerite range from -0.07‰ to 0.03‰ and -0.68‰ to -0.12‰, respectively; and their δ114/110CdNIST SRM 3108 values vary from -0.96‰ to 3.83‰ and -0.63‰ to 0.77‰, respectively. Our study suggests that the Xiaohongshilazi Pb-Zn-(Ag) deposit should be classified as a Mississippi Valley Type (MVT)-like deposit, because both its geological, sulfide trace elemental, and S-Pb-Fe-Zn-Cd isotopic characteristics are similar to those of the typical MVT deposit, except for the differences of the wall rocks. Rayleigh fractionation during sphalerite precipitation is identified as the primary mechanism for Zn-Cd isotopic variations, which is validated by the Zn-Cd fractionation models from 100 ℃ to 250 ℃. Finally, we propose an ore prospecting model based on migration pathways of ore-forming fluid and the Zn isotopic fractionation model of sphalerite under 100 ℃. This model indicates potential resources undiscovered at shallow/peripheral and deep zones of current mining level in both the Eastern and Western Ore Block, with parts of the potential resources having been corroborated by recent drilling. Despite the complexity of mineralization, processes, this study provides new insights into the application of Zn-Cd isotopes in understanding ore genesis and guiding mineral exploration in similar contexts.

Keywords

Zn-Cd isotopes / Reyleigh fractionation / MVT-like deposit / Ore genesis and exploration / Xiaohongshilazi Pb-Zn-(Ag) deposit / Northeast China

Cite this article

Download citation ▾
Huchao Ma, Da Wang, Ryan Mathur, Gaotian Wang, Feng Bai. Zinc and cadmium isotope signatures: Insights into ore genesis and exploration strategies at the Xiaohongshilazi Pb-Zn-(Ag) deposit, Northeast China. Geoscience Frontiers, 2025, 16(4): 102054 DOI:10.1016/j.gsf.2025.102054

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Huchao Ma: Writing - review & editing, Writing - original draft, Visualization, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Da Wang: Writing - review & editing, Validation, Supervision, Resources, Methodology, Investi-gation, Formal analysis, Conceptualization. Ryan Mathur: Writing - review & editing, Validation, Resources, Methodology, Data cura-tion. Gaotian Wang: Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Feng Bai: Project administration, Investigation, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to express our gratitude to Dr. Linda Godfrey at the Rutgers University for their assistance in measuring on the instruments. This study was financially supported by the Open Research Project from the Young Elite Scientists Sponsorship Program by BAST (No. BYESS2023411), the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (GPMR202407), and the Enterprise Authorized Item from Jilin Sanhe Mining Development Co. LTD (3-4-2021-120).

References

[1]

Abouchami W., Galer S.J.G., Horner T.J., Rehkämper M., Wombacher F., Xue Z., Lambelet M., Gault-Ringold M., Stirling C.H., Schönbächler M., Shiel A.E., Weis D., Holdship P.F., 2013. A common reference material for cadmium isotope studies. Geostand. Geoanal. Res. 37 (1), 5-17. https://doi.org/10.1111/j.1751-908X.2012.00175.x

[2]

Archer C., Andersen M.B., Cloquet C., Conway T.M., Dong S., Ellwood M., Moore R., Nelson J., Rehkämper M., Rouxel O., Samanta M., Shin K.C., Sohrin Y., Takano S., Wasylenki L., 2017. Inter-calibration of a proposed new primary reference standard AA-ETH Zn for zinc isotopic analysis. J. Anal. At. Spectrom. 32 (2), 415-419. https://doi.org/10.1039/C6JA00282J.

[3]

Archer C., Vance D., Butler I., 2004. Abiotic Zn isotope fractionations associated with ZnS precipitation. Geochim. Cosmochim. Acta 68 (11), A325.

[4]

Argapadmi W., Toth E.R., Fehr M.A., Schönbächler M., Heinrich C.A., 2018. Silver isotopes as a source and transport tracer for gold: a reconnaissance study at the Sheba and New Consort gold mines in the Barberton Greenstone Belt, Kaapvaal Craton, South Africa. Econ. Geol. 113 (7), 7. https://doi.org/10.5382/econgeo.2018.4602.

[5]

Baumgartner R.J., Hu S., Petersen S., Liu S.A., Li D., Kunzmann M., 2023. The geochemistry of zinc and copper stable isotopes in marine hydrothermal brine pools: perspectives from metalliferous sediments of the Atlantis II Deep, Red Sea. Chem. Geol. 619, 121320. https://doi.org/10.1016/j.chemgeo.2023.121320.

[6]

Baumgartner R.J., Kunzmann M., Spinks S., Bian X., John S.G., Blaikie T.N., Hu S., 2021. Zinc isotope composition of the Proterozoic clastic-dominated McArthur River Zn-Pb-Ag deposit, northern Australia. Ore Geol. Rev. 139, 104545. https://doi.org/10.1016/j.oregeorev.2021.104545.

[7]

Bazarkina E.F., Pokrovski G.S., Zotov A.V., Hazemann J.L., 2010. Structure and stability of cadmium chloride complexes in hydrothermal fluids. Chem. Geol. 276 (1-2), 1-17. https://doi.org/10.1016/j.chemgeo.2010.03.006.

[8]

Bazarkina E.F., Zotov A.V., Chareev D.A., Truche L., Tarnopolskaya M.E., 2023. Cadmium behavior in sulfur-bearing aqueous environments: insight from CdS solubility measurements at 25-80 °C. Geol. Ore Deposits 65 (1), 28-43. https://doi.org/10.1134/S1075701523010038.

[9]

Belissont R., Boiron M.C., Luais B., Cathelineau M., 2014. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac - Saint-Salvy deposit (France): insights into incorporation mechanisms and ore deposition processes. Geochim. Cosmochim. Acta 126, 518-540. https://doi.org/10.1016/j.gca.2013.10.052.

[10]

Cai M., Peng Z., Hu Z., Li Y., 2020. Zn, He-Ar and Sr-Nd isotopic compositions of the Tongkeng Tin-polymetallic ore deposit in south China: implication for ore genesis. Ore Geol. Rev. 124, 103605. https://doi.org/10.1016/j.oregeorev.2020.103605.

[11]

Cao J., 2011. Migration mechanisms of gold nanoparticles explored in geogas of the Hetai ore district, southern China. Geochem. J. 45 (3), e9-e13. https://doi.org/10.2343/geochemj.1.0128.

[12]

Cao J., Sun Z., Xue X., 2012. The characteristics and significance of Pb and Zn massive suifide deposit in Xiaohongshilazi deposit, Panshi city, Jilin Province. J. Changchun Inst. Technol. (Nat. Sci. Ed.) 13 (1), 90-94+118 (in Chinese with English abstract).

[13]

Cave B., Lilly R., Barovich K., 2020. Textural and geochemical analysis of chalcopyrite, galena and sphalerite across the Mount Isa Cu to Pb-Zn transition: Implications for a zoned Cu-Pb-Zn system. Ore Geol. Rev. 124, 103647. https://doi.org/10.1016/j.oregeorev.2020.103647

[14]

Chang J., 2016. Study on geological characteristics and genesis of Xiaohongshilazi Lead- Zinc deposit, Panshi, Jilin Province.Jilin University (in Chinese with English abstract).

[15]

Chapman J.B., Mason T.F.D., Weiss D.J., Coles B.J., Wilkinson J.J., 2006. Chemical separation and isotopic variations of Cu and Zn from five geological reference materials. Geostand. Geoanal. Res. 30 (1), 5-16. https://doi.org/10.1111/j.1751-908X.2006.tb00907.x

[16]

Chen J., Zhao Y., Xue C., Brzozowski M.J., Jing G., 2025. Zinc isotopes trace the metal source and fluid flow pathways of the large Caixiashan Pb-Zn deposit, China. Ore Geol. Rev. 176, 106389. https://doi.org/10.1016/j.oregeorev.2024.106389.

[17]

Cloquet C., Carignan J., Lehmann M.F., Vanhaecke F., 2008. Variation in the isotopic composition of zinc in the natural environment and the use of zinc isotopes in biogeosciences: a review. Anal. Bioanal. Chem. 390 (2), 451-463. https://doi.org/10.1007/s00216-007-1635-y.

[18]

Cloquet C., Rouxel O., Carignan J., Libourel G., 2005. Natural cadmium isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, Nod-P-1, Nod-A-1) and anthropogenic samples, measured by MC-ICP-MS. Geostand. Geoanal. Res. 29 (1), 95-106. https://doi.org/10.1111/j.1751-908X.2005.tb00658.x.

[19]

Cook N.J., Ciobanu C.L., Pring A., Skinner W., Shimizu M., Danyushevsky L., Saini-Eidukat B., Melcher F., 2009. Trace and minor elements in sphalerite: a LA-ICPMS study. Geochim. Cosmochim. Acta 73 (16), 4761-4791. https://doi.org/10.1016/j.gca.2009.05.045.

[20]

Cook N.J., Klemd R., Okrusch M., 1994. Sulphide mineralogy, metamorphism and deformation in the Matchless massive sulphide deposit, Namibia. Miner. Deposita 29 (1), 1-15. https://doi.org/10.1007/BF03326392.

[21]

Deng J., Wang C., Bagas L., Selvaraja V., Jeon H., Wu B., Yang L., 2017. Insights into ore genesis of the Jinding Zn-Pb deposit, Yunnan Province, China: evidence from Zn and in-situ S isotopes. Ore Geol. Rev. 90, 943-957. https://doi.org/10.1016/j.oregeorev.2016.10.036.

[22]

Ducher M., Blanchard M., Balan E., 2016. Equilibrium zinc isotope fractionation in Zn-bearing minerals from first-principles calculations. Chem. Geol. 443, 87-96. https://doi.org/10.1016/j.chemgeo.2016.09.016.

[23]

Ducher M., Blanchard M., Balan E., 2018. Equilibrium isotopic fractionation between aqueous Zn and minerals from first-principles calculations. Chem. Geol. 483, 342-350. https://doi.org/10.1016/j.chemgeo.2018.02.040.

[24]

Etschmann B., Liu W., Mayanovic R., Mei Y., Heald S., Gordon R., Brugger J., 2019. Zinc transport in hydrothermal fluids: on the roles of pressure and sulfur vs. chlorine complexing. Am. Mineral. 104 (1), 158-161. https://doi.org/10.2138/am-2019-6719.

[25]

Farsang S., Louvel M., Rosa A.D., Amboage M., Anzellini S., Widmer R.N., Redfern S.A.T., 2021. Effect of salinity, pressure and temperature on the solubility of smithsonite (ZnCO3) and Zn complexation in crustal and upper mantle hydrothermal fluids. Chem. Geol. 578, 120320. https://doi.org/10.1016/j.chemgeo.2021.120320.

[26]

Fujii T., Moynier F., Pons M.L., Albarède F., 2011. The origin of Zn isotope fractionation in sulfides. Geochim. Cosmochim. Acta 75 (23), 7632-7643. https://doi.org/10.1016/j.gca.2011.09.036.

[27]

Gagnevin D., Boyce A.J., Barrie C.D., Menuge J.F., Blakeman R.J., 2012. Zn, Fe and S isotope fractionation in a large hydrothermal system. Geochim. Cosmochim. Acta 88, 183-198. https://doi.org/10.1016/j.gca.2012.04.031.

[28]

Gao Y., Liu J., Li T.G., Zhang D.D., Yang Y.C., Han S.J., Ding Q.F., Zhang S., 2021. Multiple isotope (He-Ar-Zn-Sr-Nd-Pb) constraints on the genesis of the Jiawula Pb-Zn-Ag deposit, NE China. Ore Geol. Rev. 134, 104142. https://doi.org/10.1016/j.oregeorev.2021.104142.

[29]

Gao Z., Zhu X., Sun J., Luo Z., Bao C., Tang C., Ma J., 2018. Spatial evolution of Zn-Fe-Pb isotopes of sphalerite within a single ore body: a case study from the Dongshengmiao ore deposit, Inner Mongolia, China. Miner. Deposita 53 (1), 55-65. https://doi.org/10.1007/s00126-017-0724-x

[30]

Ge W.C., Wu F.Y., Zhou C.Y., Zhang J.H., 2007. Porphyry Cu-Mo deposits in the eastern Xing'an-Mongolian Orogenic Belt: mineralization ages and their geodynamic implications. Chin. Sci. Bull. 52 (24), 3416-3427. https://doi.org/10.1007/s11434-007-0466-8.

[31]

George E., Stirling C.H., Gault-Ringold M., Ellwood M.J., Middag R., 2019. Marine biogeochemical cycling of cadmium and cadmium isotopes in the extreme nutrient-depleted subtropical gyre of the South West Pacific Ocean. Earth Planet. Sci. Lett. 514, 84-95. https://doi.org/10.1016/j.epsl.2019.02.031.

[32]

George L., Cook N.J., Ciobanu C.L., Wade B.P., 2015. Trace and minor elements in galena: a reconnaissance LA-ICP-MS study. Am. Mineral. 100 (2-3), 548-569. https://doi.org/10.2138/am-2015-4862.

[33]

Guinoiseau D., Galer S.J.G., Abouchami W., 2018. Effect of cadmium sulphide precipitation on the partitioning of Cd isotopes: implications for the oceanic Cd cycle. Earth Planet. Sci. Lett. 498, 300-308. https://doi.org/10.1016/j.epsl.2018.06.039.

[34]

Han R., Zhang Y., Ye T., Chen Q., Ren T., Guo Z., Qiu W., 2023. An overview of the metallogeny and geological prospecting model of Mississippi Valley Type (MVT) Lead and Zinc deposits. Geotectonica et Metallogenia 47 (5), 915-932. https://doi.org/10.16539/j.ddgzyckx.2023.05.001.

[35]

He C.Z., Xiao C.Y., Wen H.J., Zhou T., Zhu C.W., Fan H.F., 2016. Zn-S isotopic compositions of the Tianbaoshan carbonate-hosted Pb-Zn deposit in Sichuan, China: implications for source of ore components. Acta Petrol. Sin. 32 (11), 3394-3406 (in Chinese with English abstract).

[36]

He Z., Li Z., Li B., Chen J., Xiang Z., Wang X., Du L., Huang Z., 2021. Ore genesis of the Yadu carbonate-hosted Pb-Zn deposit in Southwest China: evidence from rare earth elements and C, O, S, Pb, and Zn isotopes. Ore Geol. Rev. 131, 104039. https://doi.org/10.1016/j.oregeorev.2021.104039.

[37]

Horner T.J., Rickaby R.E.M., Henderson G.M., 2011. Isotopic fractionation of cadmium into calcite. Earth Planet. Sci. Lett. 312 (1-2), 243-253. https://doi.org/10.1016/j.epsl.2011.10.004.

[38]

Hu Y., Wei C., Ye L., Huang Z., Danyushevsky L., Wang H., 2021. LA-ICP-MS sphalerite and galena trace element chemistry and mineralization-style fingerprinting for carbonate-hosted Pb-Zn deposits: perspective from early Devonian Huodehong deposit in Yunnan, South China. Ore Geol. Rev. 136, 104253. https://doi.org/10.1016/j.oregeorev.2021.104253

[39]

Jahn B.M., Capdevila R., Liu D., Vernon A., Badarch G., 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. J. Asian Earth Sci. 23 (5), 629-653. https://doi.org/10.1016/S1367-9120(03)00125-1

[40]

John S.G., Conway T.M., 2014. A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes. Earth Planet. Sci. Lett. 394, 159-167. https://doi.org/10.1016/j.epsl.2014.02.053.

[41]

John S.G., Helgoe J., Townsend E., 2018. Biogeochemical cycling of Zn and Cd and their stable isotopes in the Eastern Tropical South Pacific. Mar. Chem. 201, 256-262. https://doi.org/10.1016/j.marchem.2017.06.001.

[42]

John S.G., Rouxel O.J., Craddock P.R., Engwall A.M., Boyle E.A., 2008. Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys. Earth Planet. Sci. Lett. 269 (1-2), 17-28. https://doi.org/10.1016/j.epsl.2007.12.011.

[43]

Kafantaris F.C.A., Borrok D.M., 2014. Zinc isotope fractionation during surface adsorption and intracellular incorporation by bacteria. Chem. Geol. 366, 42-51. https://doi.org/10.1016/j.chemgeo.2013.12.007.

[44]

Kelley K.D., Wilkinson J.J., Chapman J.B., Crowther H.L., Weiss D.J., 2009. Zinc isotopes in sphalerite from base metal deposits in the Red Dog district, northern Alaska. Econ. Geol. 104 (6), 767-773. https://doi.org/10.2113/gsecongeo.104.6.767.

[45]

Kim D.-M., Im D.-G., Kwon H.-L., Yun S.-T., Lee K.-R., Park M.-J., Park M.-S., 2025. Assessing seepage sources of a tailings dump and fractionation of Mo and Zn isotopes. Sci. Total Environ. 964, 178555. https://doi.org/10.1016/j.scitotenv.2025.178555.

[46]

Köbberich M., Vance D., 2017. Kinetic control on Zn isotope signatures recorded in marine diatoms. Geochim. Cosmochim. Acta 210, 97-113. https://doi.org/10.1016/j.gca.2017.04.014.

[47]

Köppel V., Schroll E., 1988. Pb-isotope evidence for the origin of lead in strata-bound Pb-Zn deposits in Triassic carbonates of the eastern and southern Alps. Miner. Deposita 23 (2), 96-103. https://doi.org/10.1007/BF00206657.

[48]

Lacan F., Francois R., Ji Y., Sherrell R.M., 2006. Cadmium isotopic composition in the ocean. Geochim. Cosmochim. Acta 70 (20), 5104-5118. https://doi.org/10.1016/j.gca.2006.07.036.

[49]

Leach D.L., Bradley D.C., Huston D., Pisarevsky S.A., Taylor R.D., Gardoll S.J., 2010. Sediment-hosted lead-zinc deposits in earth history. Econ. Geol. 105 (3), 593-625. https://doi.org/10.2113/gsecongeo.105.3.593.

[50]

Leach D.L., Song Y., 2019. Chapter 9 Sediment-hosted zinc-lead and copper deposits in China. In: Chang, Z., Goldfarb, R. J. (Eds.), Mineral Deposits of China. Society of Economic Geologists, pp. 325-409.doi: 10.5382/SP.22.09.

[51]

Le Guen M., Orgeval J.-J., Lancelot J., 1991. Lead isotope behaviour in a polyphased Pb-Zn ore deposit: Les Malines (Cévennes, France). Miner. Deposita 26 (3), 180-188. https://doi.org/10.1007/BF00209256.

[52]

Levinson A.A. 1980. Introduction to Exploration Geochemistry (2nd ed.). Applied Pub.https://www.osti.gov/biblio/7129891.

[53]

Li A., Wang J., Song Y., 2019a. Petrology, mineral chemistry, and geochemistry of Late Triassic Ni-Cu ore-bearing mafic-ultramafic intrusions, Hongqiling, northeastern China: petrogenesis and tectonic implications. Can. J. Earth Sci. 56 (2), 111-128. https://doi.org/10.1139/cjes-2018-0014.

[54]

Li G., Zhao Z., Wei J., Ulrich T., 2022. Trace element compositions of galena in an MVT deposit from the Sichuan-Yunnan-Guizhou metallogenic province, SW China: constraints from LA-ICP-MS spot analysis and elemental mapping. Ore Geol. Rev. 150, 105123. https://doi.org/10.1016/j.oregeorev.2022.105123.

[55]

Li J.Y., 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. J. Asian Earth Sci. 26 (3-4), 207-224. https://doi.org/10.1016/j.jseaes.2005.09.001.

[56]

Li M.L., Liu S.A., Xue C.J., Li D., 2019b. Zinc, cadmium and sulfur isotope fractionation in a supergiant MVT deposit with bacteria. Geochim. Cosmochim. Acta 265, 1-18. https://doi.org/10.1016/j.gca.2019.08.018.

[57]

Li Y., 2017. Ore genesis and tectonic setting of Xiaohongshilazi lead-zinc deposit in Panshi area, Jilin Province. Master thesis. Jilin University (in Chinese with English abstract).

[58]

Li Y., Ren Y.S., Hao Y.J., Yang Q., 2017. Ore-forming fluid characteristics and genesis of vein-type lead-zinc mineralization of Xiaohongshilazi deposit, Jilin Province, China. Glob. Geol. 20 (4), 191-199. https://doi.org/10.3969/j.issn.1673-9736.2017.04.01.

[59]

Liao S., Tao C., Zhu C., Li H., Li X., Liang J., Yang W., Wang Y., 2019. Two episodes of sulfide mineralization at the Yuhuang-1 hydrothermal field on the Southwest Indian Ridge: Insight from Zn isotopes. Chem. Geol. 507, 54-63. https://doi.org/10.1016/j.chemgeo.2018.12.037.

[60]

Liu G., Yuan F., Deng Y., White N.C., Ouyang M., 2024. Cd-Pb isotopic characteristics within the Hehuashan carbonate-hosted Pb-Zn deposit, Middle-Lower Yangtze River Metallogenic Belt: constraints for ore-forming metal sources and implications for exploration. Ore Geol. Rev. 167, 105999. https://doi.org/10.1016/j.oregeorev.2024.105999.

[61]

Liu S., Hu R., Gao S., Feng C., Feng G., Coulson I.M., Li C., Wang T., Qi Y., 2010. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of Permian granodiorite and associated gabbro in the Songliao Block, NE China and implications for growth of juvenile crust. Lithos 114 (3-4), 423-436. https://doi.org/10.1016/j.lithos.2009.10.009.

[62]

Liu Y., Jiang S., Bagas L., 2016. The genesis of metal zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W) deposits in the shallow part of a porphyry Sn-W-Rb system, Inner Mongolia, China. Ore Geol. Rev. 75, 150-173. https://doi.org/10.1016/j.oregeorev.2015.12.006.

[63]

Lodders K., 2003. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591 (2), 1220-1247. https://doi.org/10.1086/375492.

[64]

Ma H.C., Wang D., Bai F., Zhang X.X., Wang G.T., Dong S.N., Wang G.L., 2024a. Mapping exploration targets through multifractal modelling of soil geochemical data in the Xiaohongshilazi Pb-Zn-(Ag) ore district, Jilin Province, NE China. Explor. Environ. Anal. 24 (2), geochem2023-067. https://doi.org/10.1144/geochem2023-067.

[65]

Ma H.C., Wang D., Bai F., Liu M., Gong A., Hu H., 2024b. Geochemical anomalies identified by multifractal modeling: Implications for mineral exploration in the Ziyoutun Cu-Au District, Jilin Province, China. Acta Geol. Sin. -Engl. Ed. 98, 1111-1124. https://doi.org/10.1111/1755-6724.15185.

[66]

Ma Y.B., Xing S.W., Xiao K.Y., Yu C., Tang C., Ding J.H., Zhang Y., Ma L.L., 2016. Geological metallogenic characteristics and mineral resource potential of the Au-Ag-Cu-Mo Metallogenic Belt in eastern Jilin-Heilongjiang provinces. Acta Geol. Sin. 90 (7), 1281-1297. https://doi.org/10.3969/j.issn.0001-5717.2016.07.003.

[67]

Maréchal C.N., Nicolas E., Douchet C., Albarède F., 2000. Abundance of zinc isotopes as a marine biogeochemical tracer. Geochem. Geophys. Geosyst. 1 (5), 1999GC000029. https://doi.org/10.1029/1999GC000029.

[68]

Maréchal C.N., Télouk P., Albarède F., 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem. Geol. 156 (1-4), 251-273. https://doi.org/10.1016/S0009-2541(98)00191-0.

[69]

Maréchal C., Sheppard S., 2002. Isotopic fractionation of Cu and Zn between chloride and nitrate solutions and malachite or smithsonite at 30 degrees and 50 degrees C. Geochim. Cosmochim. Acta 66, A484.

[70]

Mason T.F.D., Weiss D.J., Chapman J.B., Wilkinson J.J., Tessalina S.G., Spiro B., Horstwood M.S.A., Spratt J., Coles B.J., 2005. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chem. Geol. 221 (3-4), 170-187. https://doi.org/10.1016/j.chemgeo.2005.04.011.

[71]

Meng Y.M., Huang X.W., Hu R., Beaudoin G., Zhou M.F., Meng S., 2024. Deposit type discrimination based on trace elements in sphalerite. Ore Geol. Rev. 165, 105887. https://doi.org/10.1016/j.oregeorev.2024.105887.

[72]

Mookherjee A., 1962. Certain aspects of the geochemistry of cadmium. Geochim. Cosmochim. Acta 26 (2), 351-360. https://doi.org/10.1016/0016-7037(62)90021-2

[73]

Moynier F., Vance D., Fujii T., Savage P., 2017. The isotope geochemistry of zinc and copper. Rev. Mineral. Geochem. 82 (1), 543-600. https://doi.org/10.2138/rmg.2017.82.13.

[74]

Palero-Fernández F.J., Martín-Izard A., 2005. Trace element contents in galena and sphalerite from ore deposits of the Alcudia Valley mineral field (Eastern Sierra Morena, Spain). J. Geochem. Explor. 86 (1), 1-25. https://doi.org/10.1016/j.gexplo.2005.03.001.

[75]

Palme H., Larimer J.W., Lipschutz M.E. 1988. Moderately volatile elements. In Meteorites and the early solar system. University of Arizona Press, pp. 436-461. https://ui.adsabs.harvard.edu/abs/1988mess.book. 436P.

[76]

Pašava J., Tornos F., Chrastny´ V., 2014. Zinc and sulfur isotope variation in sphalerite from carbonate-hosted zinc deposits, Cantabria, Spain. Miner. Deposita 49 (7), 797-807. https://doi.org/10.1007/s00126-014-0535-2.

[77]

Peck W.H., Rathkopf C.A., Mathur R.D., Matt P.D., 2022. Stable isotope (C, O, S, and Zn) geochemistry of marble-hosted exhalative zinc deposits in the Central Metasedimentary Belt, Grenville Province, Canada: insights into ore deposition and tectonic setting. Ore Geol. Rev. 148, 105057. https://doi.org/10.1016/j.oregeorev.2022.105057.

[78]

Peel K., Weiss D., Chapman J., Arnold T., Coles B., 2008. A simple combined sample-standard bracketing and inter-element correction procedure for accurate mass bias correction and precise Zn and Cu isotope ratio measurements. J. Anal. At. Spectrom. 23 (1), 103-110. https://doi.org/10.1039/B710977F.

[79]

Pichat S., Douchet C., Albarède F., 2003. Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka. Earth Planet. Sci. Lett. 210 (1), 167-178. https://doi.org/10.1016/S0012-821X(03)00106-7

[80]

Pickard H., Palk E., Schönbächler M., Moore R.E.T., Coles B.J., Kreissig K., Nilsson-Kerr K., Hammond S.J., Takazawa E., Hémond C., Tropper P., Barfod D.N., Rehkämper M., 2022. The cadmium and zinc isotope compositions of the silicate Earth - Implications for terrestrial volatile accretion. Geochim. Cosmochim. Acta 338, 165-180. https://doi.org/10.1016/j.gca.2022.09.041.

[81]

Pons M.-L., Debret B., Bouilhol P., Delacour A., Williams H., 2016. Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones. Nat. Commun. 7 (1), 13794. https://doi.org/10.1038/ncomms13794.

[82]

Qu P., Yang W., Niu H., Li N., Wu D., 2022. Apatite fingerprints on the magmatichydrothermal evolution of the Daheishan giant porphyry Mo deposit, NE China. GSA Bull. 134 (7-8), 1863-1876. https://doi.org/10.1130/B36093.1.

[83]

Rayleigh L., 1902. On the distillation of binary mixtures. Philos. Magaz. Ser. 6 4 (23), 521-537. https://doi.org/10.1080/14786440209462876.

[84]

Safonova I.Y., Santosh M., 2014. Accretionary complexes in the Asia-Pacific region: tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Res. 25 (1), 126-158. https://doi.org/10.1016/j.gr.2012.10.008.

[85]

Schmitt A.D., Galer S.J.G., Abouchami W., 2009. Mass-dependent cadmium isotopic variations in nature with emphasis on the marine environment. Earth Planet. Sci. Lett. 277 (1-2), 262-272. https://doi.org/10.1016/j.epsl.2008.10.025.

[86]

Schwartz M.O., 2000. Cadmium in zinc deposits: economic geology of a polluting element. Int. Geol. Rev. 42 (5), 445-469. https://doi.org/10.1080/00206810009465091.

[87]

Scott S.D., 1983. Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments. Mineral. Magaz. 47 (345), 427-435. https://doi.org/10.1180/minmag.1983.047.345.03.

[88]

Seewald J.S., Seyfried W.E., 1990. The effect of temperature on metal mobility in subseafloor hydrothermal systems: constraints from basalt alteration experiments. Earth Planet. Sci. Lett. 101 (2-4), 388-403. https://doi.org/10.1016/0012-821X(90)90168-W

[89]

Sengör A.M.C., Natal'in B.A., Burtman V.S., 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364 (6435), 299-307. https://doi.org/10.1038/364299a0.

[90]

Sieber M., Conway T.M., De Souza G.F., Obata H., Takano S., Sohrin Y., Vance D., 2019. Physical and biogeochemical controls on the distribution of dissolved cadmium and its isotopes in the Southwest Pacific Ocean. Chem. Geol. 511, 494-509. https://doi.org/10.1016/j.chemgeo.2018.07.021.

[91]

Sillén L.G., Martell A.E., Bjerrum J., Schwarzenbach G.K., 1964. Stability Constants of Metal-Ion Complexes. Second ed. Chemical Society, London.

[92]

Song W., Gao L., Wei C., Wu Y., Wen H., Huang Z., Zhang J., Chen X., Zhang Y., Zhu C., 2023. Cd isotope constraints on metal sources of the Zhugongtang Zn- Pb deposit, NW Guizhou, China. Ore Geol. Rev. 157, 105426. https://doi.org/10.1016/j.oregeorev.2023.105426.

[93]

Song W., Zhu C., Wen H., Huang Z., Wei C., Zhang Y., Zhou Z., Yang Z., Chen X., Luais B., Cloquet C., 2024. Sphalerite records Cd isotopic signatures of the parent rocks in hydrothermal systems: a case study from the Nayongzhi Zn-Pb deposit, Southwest China. Geochem. Geophys. Geosyst. 25 (5), e2023GC011429. https://doi.org/10.1029/2023GC011429.

[94]

Spry P.G., Mathur R.D., Teale G.S., Godfrey L.V., 2022. Zinc, sulfur and cadmium isotopes and Zn/Cd ratios as indicators of the origin of the supergiant Broken Hill Pb-Zn-Ag deposit and other Broken Hill-type deposits, New South Wales, Australia. Geol. Magaz. 159 (10), 1787-1808. https://doi.org/10.1017/S0016756822000590.

[95]

Sun G., Zhou J.-X., Long H.-S., Zhou L., Luo K., 2021. Vertical evolution of Ag-PbZn-(Cu)-Mo in porphyry system: a case study from the Laochang deposit, SW China. Ore Geol. Rev. 139, 104419. https://doi.org/10.1016/j.oregeorev.2021.104419.

[96]

Sverjensky D.A., Shock E.L., Helgeson H.C., 1997. Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb. Geochim. Cosmochim. Acta 61 (7), 1359-1412. https://doi.org/10.1016/S0016-7037(97)00009-4

[97]

Tagirov B.R., Seward T.M., 2010. Hydrosulfide/sulfide complexes of zinc to 250°C and the thermodynamic properties of sphalerite. Chem. Geol. 269 (3-4), 301-311. https://doi.org/10.1016/j.chemgeo.2009.10.005.

[98]

Torremans K., Kyne R., Doyle R., Güven J.F., Walsh J.J., 2018. Controls on metal distributions at the Lisheen and Silvermines Deposits: insights into fluid flow pathways in Irish-Type Zn-Pb deposits. Econ. Geol. 113 (7), 1455-1477. https://doi.org/10.5382/econgeo.2018.4598.

[99]

Toutain J.P., Sonke J., Munoz M., Nonell A., Polvé M., Viers J., Freydier R., Sortino F., Joron J.L., Sumarti S., 2008. Evidence for Zn isotopic fractionation at Merapi volcano. Chem. Geol. 253 (1-2), 74-82. https://doi.org/10.1016/j.chemgeo.2008.04.007.

[100]

Urey H.C., 1947. The thermodynamic properties of isotopic substances. J. Chem. Soc., 562-581 https://doi.org/10.1039/JR9470000562.

[101]

Veeramani H., Eagling J., Jamieson-Hanes J.H., Kong L., Ptacek C.J., Blowes D.W., 2015. Zinc isotope fractionation as an indicator of geochemical attenuation processes. Environ. Sci. Technol. Lett. 2 (11), 314-319. https://doi.org/10.1021/acs.estlett.5b00273.

[102]

Viers J., Oliva P., Nonell A., Gélabert A., Sonke J.E., Freydier R., Gainville R., Dupré B., 2007. Evidence of Zn isotopic fractionation in a soil-plant system of a pristine tropical watershed (Nsimi, Cameroon). Chem. Geol. 239 (1-2), 124-137. https://doi.org/10.1016/j.chemgeo.2007.01.005.

[103]

Wai C.M., Wasson J.T., 1977. Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites. Earth Planet. Sci. Lett. 36 (1), 1-13. https://doi.org/10.1016/0012-821X(77)90182-0.

[104]

Wang C., Deng J., Carranza E.J.M., Lai X., 2014. Nature, diversity and temporal- spatial distributions of sediment-hosted Pb-Zn deposits in China. Ore Geol. Rev. 56, 327-351. https://doi.org/10.1016/j.oregeorev.2013.06.004.

[105]

Wang D., Sun X., Zheng Y.Y., Wu S., Xia S., Chang H., Yu M., 2017a. Two pulses of mineralization and genesis of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet: constraints from Fe-Zn isotopes. Ore Geol. Rev. 84, 347-363. https://doi.org/10.1016/j.oregeorev.2016.12.030.

[106]

Wang D., Zheng Y., Mathur R., Qiu K., Wu H., Ren H., Wang E., Li Y., Yi J., 2021. Zinc and cadmium isotopic constraints on ore formation and mineral 19 exploration in epithermal system: a reconnaissance study at the Keyue and Zhaxikang Sb-Pb-Zn-Ag deposits in southern Tibet. Ore Geol. Rev. 139, 104594. https://doi.org/10.1016/j.oregeorev.2021.104594.

[107]

Wang D., Zheng Y., Mathur R., Yu M., 2020a. Fractionation of cadmium isotope caused by vapour-liquid partitioning in hydrothermal ore-forming system: a case study of the Zhaxikang Sb-Pb-Zn-Ag deposit in Southern Tibet. Ore Geol. Rev. 119, 103400. https://doi.org/10.1016/j.oregeorev.2020.103400.

[108]

Wang D., Zheng Y.Y., Mathur R., Wu S., 2018. The Fe-Zn isotopic characteristics and fractionation models: Implications for the genesis of the Zhaxikang Sb-PbZn-Ag deposit in Southern Tibet. Geofluids 2018, 2197891. https://doi.org/10.1155/2018/2197891.

[109]

Wang G.L., Wang D., Bai F., Xu D.B., Wang G.T., 2024b. The Genesis of the Xiaohongshilazi Pb-Zn (Ag) deposit: evidence from S-Pb isotopes and elemental characteristics. Acta Petrol. Sin. 40 (1), 241-266. https://doi.org/10.18654/1000-0569/2024.01.13.

[110]

Wang G.T., Wang D., Bai F., Xu D.B., Wang G.L., 2024a. Iron isotopic characteristics constraints and indicative significance of the Xiaohongshilazi Pb-Zn (Ag) deposit in Jilin Province. Acta Geol. Sin., in press (in Chinese with English abstract).

[111]

Wang W., Gao J., Wang K., Nong Y., 2020b. Sources of the Laoxiongdong carbonate-hosted Pb-Zn deposit in Southwest China: constraints from S-Pb-Zn isotopic compositions. Acta Geochimica 39 (5), 717-732. https://doi.org/10.1007/s11631-020-00398-3.

[112]

Wang Z.G., Wang K.Y., Wan D., Konare Y., Wang C.Y., 2017b. Genesis of the Tianbaoshan Pb-Zn-Cu-Mo polymetallic deposit in eastern Jilin, NE China: constraints from fluid inclusions and C-H-O-S-Pb isotope systematics. Ore Geol. Rev. 80, 1111-1134. https://doi.org/10.1016/j.oregeorev.2016.08.026.

[113]

Wang Z., Wang K., Wan D., Konare Y., Yang T., Liang Y., 2017c. Metallogenic age and hydrothermal evolution of the Jidetun Mo deposit in central Jilin Province, northeast China: evidence from fluid inclusions, isotope systematics, and geochronology. Ore Geol. Rev. 89, 731-751. https://doi.org/10.1016/j.oregeorev.2017.07.014.

[114]

Wang Z.-X., Wu T., Liu S.-A., 2025. Zinc and iron isotopic compositions of Cenozoic basalts in Inner Mongolia: new insights into deep carbon recycling related to Paleo-Asian slab subduction. Lithos 492-493, 107866. https://doi.org/10.1016/j.lithos.2024.107866.

[115]

Wang Z.Z., Liu S.A., Liu J., Huang J., Xiao Y., Chu Z.Y., Zhao X.M., Tang L., 2017d. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth's upper mantle. Geochim. Cosmochim. Acta 198, 151-167. https://doi.org/10.1016/j.gca.2016.11.014.

[116]

Wasylenki L.E., Swihart J.W., Romaniello S.J., 2014. Cadmium isotope fractionation during adsorption to Mn oxyhydroxide at low and high ionic strength. Geochim. Cosmochim. Acta 140, 212-226. https://doi.org/10.1016/j.gca.2014.05.007.

[117]

Wei B., Wang C.Y., Li C., Sun Y., 2013. Origin of PGE-depleted Ni-Cu sulfide mineralization in the Triassic Hongqiling No. 7 orthopyroxenite intrusion, Central Asian Orogenic Belt, Northeastern China. Econ. Geol. 108 (8), 1813-1831. https://doi.org/10.2113/econgeo.108.8.1813.

[118]

Weiss D.J., Rausch N., Mason T.F.D., Coles B.J., Wilkinson J.J., Ukonmaanaho L., Arnold T., Nieminen T.M., 2007. Atmospheric deposition and isotope biogeochemistry of zinc in ombrotrophic peat. Geochim. Cosmochim. Acta 71 (14), 3498-3517. https://doi.org/10.1016/j.gca.2007.04.026.

[119]

Wen H., Zhu C., Zhang Y., Cloquet C., Fan H., Fu S., 2016. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits. Sci. Rep. 6 (1), 25273. https://doi.org/10.1038/srep25273.

[120]

Wilde S.A., Zhang X., Wu F., 2000. Extension of a newly identified 500 Ma metamorphic terrane in North East China: further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics 328 (1-2), 115-130. https://doi.org/10.1016/S0040-1951(00)00180-3.

[121]

Wilkinson J.J., Weiss D.J., Mason T.F.D., Coles B.J., 2005. Zinc isotope variation in hydrothermal systems: preliminary evidence from the Irish Midlands ore field. Econ. Geol. 100 (3), 583-590. https://doi.org/10.2113/gsecongeo.100.3.583.

[122]

Wombacher F., Rehkämper M., Mezger K., Münker C., 2003. Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS. Geochim. Cosmochim. Acta 67 (23), 4639-4654. https://doi.org/10.1016/S0016-7037(03)00389-2.

[123]

Wu F., Sun D., Li H., Jahn B., Wilde S., 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem. Geol. 187 (1-2), 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9.

[124]

Wu F.Y., Sun D.Y., Ge W.C., Zhang Y.B., Grant M.L., Wilde S.A., Jahn B.M., 2011. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 41 (1), 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014.

[125]

Wu F.Y., Zhao G.C., Sun D.Y., Wilde S.A., Yang J.H., 2007. The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China. J. Asian Earth Sci. 30 (3-4), 542-556. https://doi.org/10.1016/j.jseaes.2007.01.003.

[126]

Wu T., He Y., He Z., Huang Z., Ye L., Wei C., Haifeng F., Hu Y., Du L., Gun M., 2023. Sulfide S-Zn-Cd isotopes and origin of the Liangyan Zn-Pb deposit in the Sichuan-Yunnan-Guizhou metallogenic province, SW China. J. Asian Earth Sci. 256, 105804. https://doi.org/10.1016/j.jseaes.2023.105804.

[127]

Wu T., Huang Z., He Y., Yang M., Fan H., Wei C., Ye L., Hu Y., Xiang Z., Lai C., 2021a. Metal source and ore-forming process of the Maoping carbonate-hosted Pb-Zn deposit in Yunnan, SW China: evidence from deposit geology and sphalerite Pb-Zn-Cd isotopes. Ore Geol. Rev. 135, 104214. https://doi.org/10.1016/j.oregeorev.2021.104214.

[128]

Wu T., Huang Z., Ye L., Wei C., Chen J., Yang M., Yan Z., Sui Z., 2021b. Origin of the carbonate-hosted Danaopo Zn-Pb deposit in western Hunan Province, China: geology and in-situ mineral S-Pb isotope constraints. Ore Geol. Rev. 129, 103941. https://doi.org/10.1016/j.oregeorev.2020.103941.

[129]

Xie X., Yan L., Li J., Guan L., Chi Z., 2021. Cadmium isotope fractionation during Cd-calcite coprecipitation: Insight from batch experiment. Sci. Total Environ. 760, 143330. https://doi.org/10.1016/j.scitotenv.2020.143330.

[130]

Xing K., Shu Q.H., Lentz D.R., 2021. Constraints on the formation of the giant Daheishan porphyry Mo deposit (NE China) from whole-rock and accessory mineral geochemistry. J. Petrol. 62 (4), egab018. https://doi.org/10.1093/petrology/egab018.

[131]

Xu B., Charvet J., Chen Y., Zhao P., Shi G.Z., 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Res. 23 (4), 1342-1364. https://doi.org/10.1016/j.gr.2012.05.015.

[132]

Xu C., Zhong H., Hu R.Z., Wen H.J., Zhu W.G., Bai Z.J., Fan H.F., Li F.F., Zhou T., 2020. Sources and ore-forming fluid pathways of carbonate-hosted Pb-Zn deposits in Southwest China: implications of Pb-Zn-S-Cd isotopic compositions. Miner. Deposita 55 (3), 491-513. https://doi.org/10.1007/s00126-019-00893-5.

[133]

Xu L.J., Liu S.A., Li S., 2021. Zinc isotopic behavior of mafic rocks during continental deep subduction. Geosci. Front. 12 (5), 101182. https://doi.org/10.1016/j.gsf.2021.101182.

[134]

Xu Z.G., Chen Y.C., Wang D.H., Chen Z.H., Li H.M. 2008. Division Scheme about the Metallogenic Zones of China. Geological Publishing House, Beijing (in Chinese).

[135]

Yang J., Li Y., Liu S., Tian H., Chen C., Liu J., Shi Y., 2015. Theoretical calculations of Cd isotope fractionation in hydrothermal fluids. Chem. Geol. 391, 74-82. https://doi.org/10.1016/j.chemgeo.2014.10.029.

[136]

Yang Q., Ren Y.S., Li Y., Hao Y.J., Li J.M., 2020. Age and tectonic setting of mesothermal magmatic hydrothermal vein-type Pb-Zn-(Ag) mineralization in the Xiaohongshilazi Deposit, Central Jilin Province, Northeast China. Resour. Geo. 70 (1), 70-88. https://doi.org/10.1111/rge.12219.

[137]

Yang Q., Shang Q., Ren Y., Yang Z., 2023a. Age and tectonic setting of layered lead- zinc ore bodies in the Xiaohongshilazi Deposit: constraints from geochronology and geochemistry of the volcanic rocks in Central Jilin Province, NE China. Minerals 13 (11), 1371. https://doi.org/10.3390/min13111371.

[138]

Yang Z., Song W., Wen H., Zhang Y., Fan H., Wang F., Li Q., Yang T., Zhou Z., Liao S., Zhu C., 2022. Zinc, cadmium and sulphur isotopic compositions reveal biological activity during formation of a volcanic-hosted massive sulphide deposit. Gondwana Res. 101, 103-113. https://doi.org/10.1016/j.gr.2021.07.024.

[139]

Yang Z., Zhu C., Wen H., Zhang Y., Fan H., Song W., Wu Y., Zhou C., Luais B., 2023b. Cd isotopic constraints on the sources of Zn-Sb deposits: a case study of the Jianzhupo Zn-Sb deposit, Guangxi Province, China. GSA Bull. 136 (3-4), 1086-1096. https://doi.org/10.1130/B36855.1.

[140]

Ye L., Cook N.J., Ciobanu C.L., Yuping L., Qian Z., Tiegeng L., Wei G., Yulong Y., Danyushevskiy L., 2011. Trace and minor elements in sphalerite from base metal deposits in South China: a LA-ICPMS study. Ore Geol. Rev. 39 (4), 188-217. https://doi.org/10.1016/j.oregeorev.2011.03.001.

[141]

Yue L., Liu Y., Song Y., Ma W., Tang B., 2024. Metal sources and fluid pathways of Karst-hosted Mississippi Valley-type Zn-Pb deposits in the fold-thrust belt: a case study of the Changdong deposit in the southeastern Himalayan-Tibetan orogen. Ore Geol. Rev. 164, 105850. https://doi.org/10.1016/j.oregeorev.2023.105850.

[142]

Zeng Q.D., He H.Y., Zhu R.X., Zhang S., Wang Y.B., Su F., 2017. Origin of oreforming fluids of the Haigou gold deposit in the eastern Central Asian Orogenic belt, NE China: constraints from H-O-He-Ar isotopes. J. Asian Earth Sci. 144, 384-397. https://doi.org/10.1016/j.jseaes.2017.01.018.

[143]

Zhang D., Liu J., Wang Z.C., Bayless R., Hu Z., Xie X., Chen S., 2024a. In situ LA-ICPMS trace elements in sphalerite from the Fankou Pb-Zn deposit, South China: implications for ore genesis. Ore Geol. Rev. 164, 105812. https://doi.org/10.1016/j.oregeorev.2023.105812.

[144]

Zhang H., Xiao C., Wen H., Zhu X., Ye L., Huang Z., Zhou J., Fan H., 2019a. Homogeneous Zn isotopic compositions in the Maozu Zn-Pb ore deposit in Yunnan Province, southwestern China. Ore Geol. Rev. 109, 1-10. https://doi.org/10.1016/j.oregeorev.2019.04.004.

[145]

Zhang H., Zhou J.-X., Zhou M.-F., Yue Z.-P., He Y., 2024b. Zinc isotopes revealed the role of ore-hosting carbonate rocks in the formation of MVT deposits: A case study of the Huize Pb Zn deposit, SW China. J. Geochem. Explor. 258, 107396. https://doi.org/10.1016/j.gexplo.2024.107396.

[146]

Zhang H.-H., Wang F., Xu W.-L., Cao H.-H., Pei F.-P., 2016. Petrogenesis of Early- Middle Jurassic intrusive rocks in northern Liaoning and central Jilin provinces, northeast China: implications for the extent of spatial-temporal overprinting of the Mongol-Okhotsk and Paleo-Pacific tectonic regimes. Lithos 256-257, 132-147. https://doi.org/10.1016/j.lithos.2016.04.004.

[147]

Zhang J., Liu Y., 2018. Zinc isotope fractionation under vaporization processes and in aqueous solutions. Acta Geochimica 37 (5), 663-675. https://doi.org/10.1007/s11631-018-0281-8.

[148]

Zhang J., Shi R., 2022. Theoretical calculation of equilibrium cadmium isotope fractionation factors between cadmium-bearing sulfides and aqueous solutions. Geochem. J. 56 (6), 180-196. https://doi.org/10.2343/geochemj.GJ22018.

[149]

Zhang L.S., 2022. Study on metallogenesis of Endogenetic metal deposits in central Jilin. PhD thesis. Jilin University (in Chinese with English abstract).

[150]

Zhang X., Zhai S., Yu Z., Wang S., Cai Z., 2018. Mineralogy and geological significance of hydrothermal deposits from the Okinawa Trough. J. Mar. Sys. 20 180, 124-131. https://doi.org/10.1016/j.jmarsys.2016.11.007.

[151]

Zhang X., Zhai S., Yu Z., Yang Z., Xu J., 2019b. Zinc and lead isotope variation in hydrothermal deposits from the Okinawa Trough. Ore Geol. Rev. 111, 102944. https://doi.org/10.1016/j.oregeorev.2019.102944.

[152]

Zhang Y., Sun J.-G., Chen Y.-J., Zhao K., Gu A., 2013. Re-Os and U-Pb geochronology of porphyry Mo deposits in central Jilin Province: Mo oreforming stages in northeast China. Int. Geol. Rev. 55 (14), 1763-1785. https://doi.org/10.1080/00206814.2013.794915.

[153]

Zhang Y., Xing S., Zhang Z., Ma Y., Wang Y., Ding J., Yu Z., Li C., Zhang B., 2017. Genesis of the Tianbaoshan polymetallic ore district, Yanbian, NE China: constraints from geochronology and isotopic analysis. Resour. Geol. 67 (3), 300-315. https://doi.org/10.1111/rge.12125

[154]

Zhao H.W., Li D.H., Zang X.Y., Peng Y.J., Ma J., 2020. A study of magmatism and ore deposit series of Yanshanian magmatism in the central Jilin-Yanbian area. Acta Geol. Sin. 94 (1), 241-254. https://doi.org/10.19762/j.cnki.dizhixuebao.2020119.

[155]

Zhao P., Faure M., Chen Y., Shi G.Z., Xu B., 2015. A new Triassic shorteningextrusion tectonic model for Central-Eastern Asia: structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China). Earth Planet. Sci. Lett. 426, 46-57. https://doi.org/10.1016/j.epsl.2015.06.011.

[156]

Zhao P., Xu B., Zhang C.H., 2017. A rift system in southeastern Central Asian Orogenic Belt: constraint from sedimentological, geochronological and geochemical investigations of the Late Carboniferous-Early Permian strata in northern Inner Mongolia (China). Gondwana Res. 47, 342-357. https://doi.org/10.1016/j.gr.2016.06.013.

[157]

Zhao Z., Li G., Wei J., Liang S., Gao T., Huang X., Tan J., 2023. Zinc and cadmium isotopic constraints on metal sources of the Xitieshan Pb-Zn deposit, NW China. Ore Geol. Rev. 162, 105723. https://doi.org/10.1016/j.oregeorev.2023.105723.

[158]

Zhong R., Brugger J., Chen Y., Li W., 2015. Contrasting regimes of Cu, Zn and Pb transport in ore-forming hydrothermal fluids. Chem. Geol. 395, 154-164. https://doi.org/10.1016/j.chemgeo.2014.12.008.

[159]

Zhou J.B., Wilde S.A., 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Res. 23 (4), 1365-1377. https://doi.org/10.1016/j.gr.2012.05.012.

[160]

Zhou J.B., Wilde S.A., Zhang X.Z., Zhao G.C., Zheng C.Q., Wang Y.J., Zhang X.H., 2009. The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics 478 (3-4), 230-246. https://doi.org/10.1016/j.tecto.2009.08.009.

[161]

Zhou J.B., Wilde S.A., Zhao G.C., Zhang X.Z., Wang H., Zeng W.S., 2010. Was the easternmost segment of the Central Asian Orogenic Belt derived from Gondwana or Siberia: an intriguing dilemma? J. Geodyn. 50 (3-4), 300-317. https://doi.org/10.1016/j.jog.2010.02.004.

[162]

Zhou J., Huang Z., Zhou G., Li X., Ding W., Bao G., 2011. Trace elements and rare earth elements of sulfide minerals in the Tianqiao Pb-Zn ore deposit, Guizhou Province, China. Acta Geol. Sin. -Engl. Ed. 85 (1), 189-199. https://doi.org/10.1111/j.1755-6724.2011.00389.x

[163]

Zhou J.-X., Huang Z.-L., Lv Z.-C., Zhu X.-K., Gao J.-G., Mirnejad H., 2014a. Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb- Zn deposit, southwest China. Ore Geol. Rev. 63, 209-225. https://doi.org/10.1016/j.oregeorev.2014.05.012.

[164]

Zhou J.-X., Huang Z.-L., Zhou M.-F., Zhu X.-K., Muchez P., 2014b. Zinc, sulfur and lead isotopic variations in carbonate-hosted Pb-Zn sulfide deposits, southwest China. Ore Geol. Rev. 58, 41-54. https://doi.org/10.1016/j.oregeorev.2013.10.009.

[165]

Zhou J.-X., Luo K., Li B., Huang Z.-L., Yan Z.-F., 2016. Geological and isotopic constraints on the origin of the Anle carbonate-hosted Zn-Pb deposit in northwestern Yunnan Province, SW China. Ore Geol. Rev. 74, 88-100. https://doi.org/10.1016/j.oregeorev.2015.11.019.

[166]

Zhou L., Zeng Q., Liu J., Zhang Z., Duan X., 2018. What triggers fertile porphyritic Mo magmas in subduction setting: a case study from the giant Daheishan Mo deposit, NE China. Lithos 316-317, 212-231. https://doi.org/10.1016/j.lithos.2018.07.017.

[167]

Zhou Z.B., Pei F.P., Wang Z.W., Cao H.H., Xu W.L., Wang Z.J., Zhang Y., 2017. Using detrital zircons from late Permian to Triassic sedimentary rocks in the southeastern Central Asian Orogenic Belt (NE China) to constrain the timing of the final closure of the Paleo-Asian Ocean. J. Asian Earth Sci. 144, 82-109. https://doi.org/10.1016/j.jseaes.2016.12.007.

[168]

Zhu C., Liao S., Wang W., Zhang Y., Yang T., Fan H., Wen H., 2018a. Variations in Zn and S isotope chemistry of sedimentary sphalerite, Wusihe Zn-Pb deposit, Sichuan Province, China. Ore Geol. Rev. 95, 639-648. https://doi.org/10.1016/j.oregeorev.2018.03.018.

[169]

Zhu C., Wang J., Zhang J., Chen X., Fan H., Zhang Y., Yang T., Wen H., 2020. Isotope geochemistry of Zn, Pb and S in the Ediacaran strata hosted Zn-Pb deposits in Southwest China. Ore Geol. Rev. 117, 103274. https://doi.org/10.1016/j.oregeorev.2019.103274.

[170]

Zhu C., Wen H., Zhang Y., Fan H., 2016. Cadmium and sulfur isotopic compositions of the Tianbaoshan Zn-Pb-Cd deposit, Sichuan Province, China. Ore Geol. Rev. 76, 152-162. https://doi.org/10.1016/j.oregeorev.2016.01.010.

[171]

Zhu C., Wen H., Zhang Y., Fan H., Fu S., Xu J., Qin T., 2013. Characteristics of Cd isotopic compositions and their genetic significance in the lead-zinc deposits of SW China. Sci. China Earth Sci. 56 (12), 2056-2065. https://doi.org/10.1007/s11430-013-4668-4.

AI Summary AI Mindmap
PDF

651

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/