Complex cross-regional landslide susceptibility mapping by multi-source domain transfer learning

Yan Su , Jiayuan Fu , Xiaohe Lai , Chuan Lin , Lvyun Zhu , Xiudong Xie , Jun Jiang , Yaoxin Chen , Jingyu Huang , Wenhong Huang

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102053

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102053 DOI: 10.1016/j.gsf.2025.102053

Complex cross-regional landslide susceptibility mapping by multi-source domain transfer learning

Author information +
History +
PDF

Abstract

Landslide susceptibility evaluation plays an important role in disaster prevention and reduction. Feature-based transfer learning (TL) is an effective method for solving landslide susceptibility mapping (LSM) in target regions with no available samples. However, as the study area expands, the distribution of landslide types and triggering mechanisms becomes more diverse, leading to performance degradation in models relying on landslide evaluation knowledge from a single source domain due to domain feature shift. To address this, this study proposes a Multi-source Domain Adaptation Convolutional Neural Network (MDACNN), which combines the landslide prediction knowledge learned from two source domains to perform cross-regional LSM in complex large-scale areas. The method is validated through case studies in three regions located in southeastern coastal China and compared with single-source domain TL models (TCA-based models). The results demonstrate that MDACNN effectively integrates transfer knowledge from multiple source domains to learn diverse landslide-triggering mechanisms, thereby significantly reducing prediction bias inherent to single-source domain TL models, achieving an average improvement of 16.58% across all metrics. Moreover, the landslide susceptibility maps generated by MDACNN accurately quantify the spatial distribution of landslide risks in the target area, providing a powerful scientific and technological tool for landslide disaster management and prevention.

Keywords

Landslide susceptibility / Deep learning / MDACNN / Feature domain adaptation / Data scarcity

Cite this article

Download citation ▾
Yan Su, Jiayuan Fu, Xiaohe Lai, Chuan Lin, Lvyun Zhu, Xiudong Xie, Jun Jiang, Yaoxin Chen, Jingyu Huang, Wenhong Huang. Complex cross-regional landslide susceptibility mapping by multi-source domain transfer learning. Geoscience Frontiers, 2025, 16(4): 102053 DOI:10.1016/j.gsf.2025.102053

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yan Su: Writing - review & editing, Writing - original draft, Visualization, Validation, Resources, Project administration, Methodology, Investigation, Formal analysis, Data curation, Con-ceptualization. Jiayuan Fu: Writing - original draft, Software, Methodology, Investigation, Formal analysis, Data curation. Xiaohe Lai: Writing - review & editing, Writing - original draft, Software, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualiza-tion. Chuan Lin: Writing - review & editing, Methodology, Funding acquisition, Formal analysis, Conceptualization. Lvyun Zhu: Writ-ing - review & editing, Investigation, Funding acquisition, Concep-tualization. Xiudong Xie: Writing - review & editing, Resources, Investigation. Jun Jiang: Writing - review & editing, Resources, Investigation, Data curation. Yaoxin Chen: Writing - review & editing, Software, Methodology, Conceptualization. Jingyu Huang: Writing - review & editing, Methodology, Formal analysis. Wen-hong Huang: Writing - review & editing, Methodology, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The author acknowledges the technical and financial support provided by the National Natural Science Foundation of China (Grant No. 42301002, and 52109118), Fujian Provincial Water Resources Science and Technology Project (Grant No. MSK202524), and Guidance fund for Science and Technology Pro-gram, Fujian province (Grant No. 2024Y0002).

References

[1]

Abdullah D.M., Abdulazeez A.M., 2021. Machine learning applications based on SVM classification a review. Qubahan Acad. J. 1 (2), 81-90.

[2]

Basha S.S., Dubey S.R., Pulabaigari V., Mukherjee S., 2020. Impact of fully connected layers on performance of convolutional neural networks for image classification. Neurocomputing 378, 112-119.

[3]

Hu X., Wu S., Zhang G., Zheng W., Liu C., He C., Liu Z., Guo X., Zhang H., 2021. Landslide displacement prediction using kinematics-based random forests method: a case study in Jinping Reservoir Area, China. Eng. Geol. 283, 105975.

[4]

Biau G., Scornet E., 2016. A random forest guided tour. TEST 25, 197-227.

[5]

Wang H., Zhang L., Luo H., He J., Cheung R.W.M., 2021. AI-powered landslide susceptibility assessment in Hong Kong. Eng. Geol. 288, 106103.

[6]

Castro H.M., Ferreira J.C., 2022. Linear and logistic regression models: when to use and how to interpret them? Braz. J. Pulmonol. 48 (6), e20220439. https://doi.org/10.36416/1806-3756/e20220439.

[7]

Dai F.C., Lee C.F., Ngai Y.Y., 2002. Landslide risk assessment and management: an overview. Eng. Geol. 64 (1), 65-87.

[8]

Erener A., Mutlu A., Düzgün H.S., 2016. A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Eng. Geol. 203, 45-55.

[9]

Fu Z.Y., Li C.D., Yao W.M., 2023. Landslide susceptibility assessment through TrAdaBoost transfer learning models using two landslide inventories. Catena 222, 106799.

[10]

Gao R., Wang C., Han S., Liu H., Liu X., Wu D., 2022. A research on cross-regional debris flow susceptibility mapping based on transfer learning. Remote Sens. 14 (19), 4829.

[11]

Hong H., Miao Y., Liu J., Zhu A.X., 2019. Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping. Catena 176, 45-64.

[12]

Hosmer Jr., D.W., Lemeshow S., Sturdivant R.X., 2013. Applied Logistic Regression. John Wiley & Sons.

[13]

Hu Q., Zhou Y., Wang S., Wang F., Wang H., 2019. Improving the accuracy of landslide detection in "off-site" area by machine learning model portability comparison: a case study of Jiuzhaigou earthquake, China. Remote Sens. 11 (21), 2530.

[14]

Khaire U.M., Dhanalakshmi R., 2022. Stability of feature selection algorithm: a review. J. King Saud Univ. -Comput. Inf. Sci. 34 (4), 1060-1073.

[15]

Kiranyaz S., Avci O., Abdeljaber O., Ince T., Gabbouj M., Inman D.J., 2021. 1D convolutional neural networks and applications: A survey. Mech. Syst. Sig. Process. 151, 107398.

[16]

Jin J., Chen G., Meng X., Zhang Y., Shi W., Li Y., Yang Y., Jiang W., 2022. Prediction of river damming susceptibility by landslides based on a logistic regression model and InSAR techniques: a case study of the Bailong River Basin, China. Eng. Geol. 299, 106562.

[17]

Le X.H., Eu S., Choi C., Nguyen D.H., Yeon M., Lee G., 2023. Machine learning for high-resolution landslide susceptibility mapping: case study in Inje County, South Korea. Front. Earth Sci. 11, 1268501.

[18]

Li P., Wang Y., Si T., Ullah K., Han W., Wang L., 2023. DSFA: cross-scene domain style and feature adaptation for landslide detection from high spatial resolution images. Int. J. Digital Earth 16 (1), 2426-2447.

[19]

Liu S., Wang L., Zhang W., He Y., Pijush S., 2023. A comprehensive review of machine learning-based methods in landslide susceptibility mapping. Geol. J. 58 (6), 2283-2301.

[20]

Lv L., Chen T., Dou J., Plaza A., 2022. A hybrid ensemble-based deep-learning framework for landslide susceptibility mapping. Int. J. Appl. Earth Obs. Geoinf. 108, 102713.

[21]

Mansour Y., Mohri M., Rostamizadeh A., 2008. Domain adaptation with multiple sources. Adv. Neural Inf. Proces. Syst. 21, 1041-1048.

[22]

Matasci G., Volpi M., Kanevski M., Bruzzone L., Tuia D., 2015. Semisupervised transfer component analysis for domain adaptation in remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 53 (7), 3550-3564.

[23]

Micheletti N., Foresti L., Robert S., Leuenberger M., Pedrazzini A., Jaboyedoff M., Kanevski M., 2014. Machine learning feature selection methods for landslide susceptibility mapping. Math. Geosci. 46, 33-57.

[24]

Misiakiewicz T., Mei S., 2022. Learning with convolution and pooling operations in kernel methods. Adv. Neural Inf. Proces. Syst. 35, 29014-29025.

[25]

Nava L., Carraro E., Reyes-Carmona C., Puliero S., Bhuyan K., Rosi A., Monserrat O., Floris M., Raj Meena S., Galve J.P., Catani F., 2023. Landslide displacement forecasting using deep learning and monitoring data across selected sites. Landslides 20 (10), 2111-2129.

[26]

Pampel F.C., 2020. Logistic Regression: A Primer (No. 132). SAGE Publications.

[27]

Parmar A., Katariya R., Patel V., 2019. A review on random forest: an ensemble classifier. In:International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI) 2018. Springer International Publishing, pp. 758-763.

[28]

Huang F., Yin K., Huang J., Gui L., Wang P., 2017. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng. Geol. 223, 11-22.

[29]

Rawal V., Prajapati P., Darji A., 2023. Hardware implementation of 1D-CNN architecture for ECG arrhythmia classification. Biomed. Signal Process. Control 85, 104865.

[30]

Ren H., Liu W., Shan M., Wang X., 2019. A new wind turbine health condition monitoring method based on VMD-MPE and feature-based transfer learning. Measurement 148, 106906.

[31]

Sha'Abani M.N.A.H., Fuad N., Jamal N., Ismail M. F., 2020. kNN and SVM classification for EEG:a review. In: InECCE2019:Proceedings of the 5th International Conference on Electrical, Control & Computer Engineering, Kuantan, Pahang, Malaysia, 29th July 2019. Springer Singapore, pp. 555-565.

[32]

Singhal P., Walambe R., Ramanna S., Kotecha K., 2023. Domain adaptation: challenges, methods, datasets, and applications. IEEE Access 11, 6973-7020.

[33]

Su Y., Chen Y., Lai X., Huang S., Lin C., Xie X., 2024. Feature adaptation for landslide susceptibility assessment in "no sample" areas. Gondw. Res. 131, 1-17.

[34]

Sun D., Shi S., Wen H., Xu J., Zhou X., Wu J., 2021. A hybrid optimization method of factor screening predicated on GeoDetector and Random Forest for Landslide Susceptibility Mapping. Geomorphology 379, 107623.

[35]

Tian J., Han D., Li M., Shi P., 2022. A multi-source information transfer learning method with subdomain adaptation for cross-domain fault diagnosis. Knowl.-Based Syst. 243, 108466.

[36]

Tornyeviadzi H.M., Seidu R., 2023. Leakage detection in water distribution networks via 1D CNN deep autoencoder for multivariate SCADA data. Eng. Appl. Artif. Intel. 122, 106062.

[37]

Usman T.M., Saheed Y.K., Ignace D., Nsang A., 2023. Diabetic retinopathy detection using principal component analysis multi-label feature extraction and classification. Int. J. Cogn. Comput. Eng. 4, 78-88.

[38]

Van der Maaten, L., Hinton G., 2008. Visualizing data using t-SNE. J. Mach. Learn. Res. 9 (11), 2579-2605.

[39]

Van Westen C.J., Castellanos E., Kuriakose S.L., 2008. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng. Geol. 102 (3-4), 112-131.

[40]

Wang H., Wang L., Zhang L., 2023. Transfer learning improves landslide susceptibility assessment. Gondw. Res. 123, 238-254.

[41]

Wang M., Lu S., Zhu D., Lin J., Wang Z., 2018. A high-speed and low-complexity architecture for softmax function in deep learning. In: 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). IEEE, pp. 223-226.

[42]

Wei X., Gardoni P., Zhang L., Tan L., Liu D., Du C., Li H., 2024. Improving pixel-based regional landslide susceptibility mapping. Geosci. Front. 15 (4), 101782.

[43]

Wu L., Liu R., Ju N., Zhang A., Gou J., He G., Lei Y., 2024. Landslide mapping based on a hybrid CNN-transformer network and deep transfer learning using remote sensing images with topographic and spectral features. Int. J. Appl. Earth Obs. Geoinf. 126, 103612.

[44]

Yang C., Liu L.L., Huang F., Huang L., Wang X.M., 2023. Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples. Gondw. Res. 123, 198-216.

[45]

Youssef K., Shao K., Moon S., Bouchard L.S., 2023. Landslide susceptibility modeling by interpretable neural network. Commun. Earth Environ. 4 (1), 162.

[46]

Yu L., Wang Y., Pradhan B., 2024a. Enhancing landslide susceptibility mapping incorporating landslide typology via stacking ensemble machine learning in Three Gorges Reservoir, China. Geosci. Front. 15 (4), 101802.

[47]

Yu Y., Karimi H.R., Shi P., Peng R., Zhao S., 2024b. A new multi-source information domain adaption network based on domain attributes and features transfer for cross-domain fault diagnosis. Mech. Syst. Sig. Process. 211, 111194.

[48]

Yue S., Li P., Hao P., 2003. SVM classification: its contents and challenges. Appl. Math.-A J. Chin. Univ. 18, 332-342.

[49]

Zabin M., Choi H.J., Uddin J., 2023. Hybrid deep transfer learning architecture for industrial fault diagnosis using Hilbert transform and DCNN-LSTM. J. Supercomput. 79 (5), 5181-5200.

[50]

Zafar A., Aamir M., Mohd Nawi N., Arshad A., Riaz S., Alruban A., Dutta A.K., Almotairi S., 2022. A comparison of pooling methods for convolutional neural networks. Appl. Sci. 12 (17), 8643.

[51]

Zhang W., Wu C., Zhong H., Li Y., Wang L., 2021. Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci. Front. 12 (1), 469-477.

[52]

Zhang W., Li H., Han L., Chen L., Wang L., 2022. Slope stability prediction using ensemble learning techniques: A case study in Yunyang County, Chongqing, China. J. Rock Mech. Geotech. Eng. 14 (4), 1089-1099.

[53]

Zhang W., Zhang X., Lan L., Luo Z., 2020. Maximum mean and covariance discrepancy for unsupervised domain adaptation. Neural Process. Lett. 51, 347-366.

[54]

Zhou X., Wen H., Zhang Y., Xu J., Zhang W., 2021. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geosci. Front. 12 (5), 101211.

[55]

Zhu Y., Zhuang F., Wang D., 2019. Aligning domain-specific distribution and classifier for cross-domain classification from multiple sources. Proceedings of the AAAI Conference on Artificial Intelligence 33 (1), 5989-5996.

[56]

Zhuang F., Qi Z., Duan K., Xi D., Zhu Y., Zhu H., Xiong H., He Q., 2020. A comprehensive survey on transfer learning. Proc. IEEE 109 (1), 43-76.

AI Summary AI Mindmap
PDF

680

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/