Formation of the rare Xiaoqinling Au-Mo province: Timings and geodynamic triggers

Panfei Sun , Zhao Liu , Lin Yang , Qingfei Wang , David I. Groves , Chao Li , Huajian Li , Chaoyi Dong , Zhiqiang Xue , Zhongming Li , Jun Deng

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102052

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102052 DOI: 10.1016/j.gsf.2025.102052

Formation of the rare Xiaoqinling Au-Mo province: Timings and geodynamic triggers

Author information +
History +
PDF

Abstract

The timings and geodynamic controls of Mo, Au, and Au-Mo deposits in the Xiaoqinling Orogen (> 630 t Au and 115, 000 t Mo), a rare Au-Mo province globally, are addressed by a combination of mineral parageneses, crystalline mineralogy, geochemistry, and Re-Os and U-Pb geochronology in the Dahu, Qinnan, and Yangzhaiyu deposits. The Xiaoqinling Orogen comprises an E-W-trending fold and thrust system with repeated structural reactivation and the Mo or Au orebodies in these deposits are dominantly controlled by E-W-trending and NW-SE-trending shear zones. Molybdenum mineralization related to K-feldspar alteration comprises early molybdenite, pyrite, rutile, and monazite within gray quartz veins plus late molybdenite and pyrite within white quartz veins in the Dahu and Qinnan Au-Mo deposits. Early and late Au mineralization events have similar mineral assemblages of pyrite, native gold ± Au-Ag-Te minerals, rutile, and monazite associated with quartz-sericite alteration at Yangzhaiyu. The early disseminated molybdenite is characterized by rhombohedral polytype and oscillatory Re zoning, in contrast to the late molybdenite with a coexistence of rhombohedral and hexagonal polytypes and irregularly distributed Re. The early molybdenite has a Re-Os isochron age of 222.5 ± 1.3 Ma, compatible with a monazite U-Pb age of 224 ± 6.1 Ma, whereas late molybdenite provides a Re-Os isochron age of 185.0 ± 12 Ma, with the implication that the 3R-polytype molybdenite with oscillatory Re zoning is more suitable for high-precision dating. The early and late Au mineralization have a pyrite Re-Os age of 202.0 ± 5.9 Ma and U-Pb age of 124.0 ± 1.3 Ma, respectively. In accordance with its complex geodynamic setting, geological and geochronological studies record a complicated 100-million-year mineralization history with multiple magmatic-hydrothermal Mo and orogenic Au mineralization events that formed within a structural framework of multiply reactivated shear zones.

Keywords

Xiaoqinling Orogen / Multiple Au-Mo mineralization events / U-Pb and Re-Os dating / S-O-He-Ar isotopes / Reactivated structures

Cite this article

Download citation ▾
Panfei Sun, Zhao Liu, Lin Yang, Qingfei Wang, David I. Groves, Chao Li, Huajian Li, Chaoyi Dong, Zhiqiang Xue, Zhongming Li, Jun Deng. Formation of the rare Xiaoqinling Au-Mo province: Timings and geodynamic triggers. Geoscience Frontiers, 2025, 16(4): 102052 DOI:10.1016/j.gsf.2025.102052

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Panfei Sun: Writing - review & editing, Writing - original draft, Visualization, Resources, Methodology, Investigation, Formal anal-ysis, Data curation, Conceptualization. Zhao Liu: Writing - review & editing, Writing - original draft, Visualization, Resources, Methodology, Investigation, Formal analysis, Data curation, Con-ceptualization. Lin Yang: Writing - review & editing, Writing - original draft, Visualization, Supervision, Resources, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Qingfei Wang: Writing - review & editing, Writing - original draft, Visualization, Supervision, Resources, Methodology, Funding acquisition, Formal analysis, Data curation, Conceptualization. David I. Groves: Writing - review & editing, Visualization, Supervision, Conceptualization. Chao Li: Methodol-ogy, Formal analysis, Data curation. Huajian Li: Resources, Investi-gation. Chaoyi Dong: Resources, Investigation. Zhiqiang Xue: Investigation. Zhongming Li: Investigation. Jun Deng: Writing - review & editing, Writing - original draft, Supervision, Resources, Investigation, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Qingfei Wang is an Associate Editor for this journal and was not involved in the editorial review or the decision to publish this article.

Acknowledgements

We appreciate Editor Federico Lucci for handling, as well as the constructive comments and suggestions he and the anonymous reviewers put forward regarding the manuscript. We thank mine geologists in the Dahu, Qinnan, and Yangzhaiyu Gold deposits for their kind help during our fieldwork. We thank Dr. Liang Li from Nanjing FocuMS Technology Co. Ltd for his assistance in monazite and rutile U-Pb dating measurements. This research was jointly supported by the National Key Research and Development Project of China (2020YFA0714802), the National Natural Science Founda-tion of China (42330809), and the 111 Project of the Ministry of Science and Technology (BP0719021).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102052.

References

[1]

Agangi A., Reddy S.M., Plavsa D., Fougerouse D., Clark C., Roberts M., Johnson T. E., 2019. Antimony in rutile as a pathfinder for orogenic gold deposits. Ore Geol. Rev. 106, 1-11.

[2]

Aleinikoff J.N., Hayes T.S., Evans K.V., Mazdab F.K., Pillers R.M., Fanning C.M., 2012. SHRIMP U-Pb ages of xenotime and monazite from the Spar Lake red bed-associated Cu-Ag deposit, western Montana: Implications for ore genesis. Econ. Geol. 107, 1251-1274.

[3]

Bai Y., Zhu M.T., Zhang L.C., Huang K., Li W.J., Gao B.Y., 2019. Auriferous pyrite Re-Os geochronology and He-Ar isotopic compositions of the Jinchangyu Au deposit in the northern margin of the North China Craton. Ore Geol. Rev. 111, 102948.

[4]

Ballentine C., Burnard P., 2002. Production, release and transport of noble gases in the continental crust. Rev. Mineral Geochem. 47, 481-538.

[5]

Bao X.W., Song X.D., Xu M.J., Wang L.S., Sun X.X., Mi N., Yu D.Y., Li H., 2013. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications. Earth Planet. Sc. Lett. 369-370, 129-137.

[6]

Bartolini A., Larson R.L., 2001. Pacific microplate and the Pangea supercontinent in the Early to Middle Jurassic. Geology 29, 735-738.

[7]

Bea F., Montero P., 1999. Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim. Cosmochim. Acta 63, 1133-1153.

[8]

Bierlein F.P., Crowe D.E., 2000. Phanerozoic orogenic lode gold deposits. Rev. Econ. Geol. 13, 103-139.

[9]

Burnard P.G., Hu R., Turner G., Bi X.W., 1999. Mantle, crustal and atmospheric noble gases in Ailaoshan gold deposits, Yunnan Province, China. Geochim. Cosmochim. Acta 63 (10), 1595-1604.

[10]

Cabral R.A., 2014. A window Into the mantle: Analyzing the geochemistry of melt inclusions from the volcanic island of mangaia. M.S. thesis, Boston University.

[11]

Chang M., Liu J.J., Carranza E.J.M., Yin C., Zhai D.G., Wu T., 2020a. Newly discovered scheelite in quartz vein-type gold deposits, Xiaoqinling gold district and its geological significance. Acta Geol. Sin. 94, 1305-1307.

[12]

Chang M., Liu J.J., Carranza E.J.M., Yin C., Zhai D.G., Wu T., Wang D.Z., 2020b. Gold-telluride-sulfide association in the Jinqu Au deposit, Xiaoqinling region, central China: Implications for ore-forming conditions and processes. Ore Geol. Rev. 125, 103687.

[13]

Chang M., Liu J.J., Santosh M., Yin C., Zhai D.G., Wang D.Z., Wu T., 2022. Fluid evolution characteristics and ore genesis in the Jinqu Au deposit, Qinling Orogen, China: Implications for ore genesis. Ore Geol. Rev. 147, 1-22.

[14]

Chaussidon M., Albarède F., Sheppard S.M.F., 1989. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth Planet. Sc. Lett. 92 (2), 144-156.

[15]

Chaussidon M., Lorand J.P., 1990. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study. Geochim. Cosmochim. Acta 54 (10), 2835-2846.

[16]

Chen L., Tao W., Zhao L., Zheng T.Y., 2008. Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton. Earth Planet. Sc. Lett. 267 (1), 56-68.

[17]

Chen Y.J., Fu S.G., 1992. Gold mineralization in West Henan, China. Seismological Press, Beijing, p. 234 (in Chinese with English abstract).

[18]

Chen Y.J., Santosh M., 2014. Triassic tectonics and mineral systems in the Qinling Orogen, central China. Geol. J. 49, 338-358.

[19]

Deng J., Liu X.F., Wang Q.F., Dilek Y., Liang Y.Y., 2017a. Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking—Lithospheric extension in the North China craton, eastern Asia. Geol. Soc. Am. Bull. 129, 1379-1407.

[20]

Deng J., Liu X.F., Wang Q.F., Pan R.G., 2015. Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China: Constraints from fluid inclusion and C-D-O-S-Sr isotope compositions. Ore Geol. Rev. 65, 674-686.

[21]

Deng J., Qiu K.F., Wang Q.F., Goldfarb R., Yang L.Q., Zi J.W., Geng J.Z., Ma Y., 2020a. In situ dating of hydrothermal monazite and implications for the geodynamic controls on ore formation in the Jiaodong gold province, Eastern China. Econ. Geol. 115, 671-685.

[22]

Deng J., Wang Q.F., 2016. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res. 36, 219-274.

[23]

Deng J., Wang Q.F., Li G.J., 2017b. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China. Gondwana Res. 50, 216-266.

[24]

Deng J., Wang Q.F., Santosh M., Liu X.F., Liang Y.Y., Yang L.Q., Zhao R., Yang L., 2020b. Remobilization of metasomatized mantle lithosphere: a new model for the Jiaodong gold province, eastern China. Miner. Depos. 55, 257-274.

[25]

Deng J., Wang Q.F., Zhang L., Xue S.C., Liu X.F., Yang L., Yang L.Q., Qiu K.F., Liang Y.Y., 2023. Metallogenetic model of Jiaodong-type gold deposits, eastern China. Sci. China Earth Sci. 66 (10), 2287-2310 (in Chinese).

[26]

Deng J., Yang L.Q., Groves D.I., Zhang L., Qiu K.F., Wang Q.F., 2020c. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China. Earth-Sci. Rev. 208, 103274.

[27]

Deng J., Zhai Y.S., Mo X.X., Wang Q.F., 2019. Temporal-Spatial Distribution of Metallic Ore Deposits in China. SEG Special Publication, pp. 103-132.

[28]

Deng X.D., Li J.W., Luo T., Wang H.Q., 2017c. Dating magmatic and hydrothermal processes using andradite-rich garnet U-Pb geochronometry. Contrib. Mineral. Petrol. 172, 71.

[29]

Deng X.H., Chen Y.J., Santosh M., Yao J.M., Sun Y.L., 2016a. Re-Os and Sr-Nd-Pb isotope constraints on source of fluids in the Zhifang Mo deposit, Qinling Orogen, China. Gondwana Res. 30, 132-143.

[30]

Deng X.Q., Peng T.P., Zhao T.P., 2016b. Geochronology and geochemistry of the late Paleoproterozoic aluminous A-type granite in the Xiaoqinling area along the southern margin of the North China Craton: Petrogenesis and tectonic implications. Precambrian Res. 285, 127-146.

[31]

Dong Y., Zhang G., Neubauer F., Liu X., Genser J., Hauzenberger C., 2011. Tectonic evolution of the Qinling orogen, China: review and synthesis. J. Asian Earth Sci. 41 (3), 213-237.

[32]

Dong Y.P., Santosh M., 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Res. 29, 1-40.

[33]

Fan G.H., Li J.W., Deng X.D., Gao W.S., Li S.Y., 2021. Age and origin of the Dongping Au-Te Deposit in the North China Craton revisited: Evidence from paragenesis, geochemistry, and in situ U-Pb geochronology of garnet. Econ. Geol. 4, 963-985.

[34]

Fan H.R., Feng K., Li X.H., Hu F.F., Yang K.F., 2016. Mesozoic gold mineralization in the Jiaodong and Korean peninsulas. Acta Petrol. Sin. 23 (9), 3225-3528 (in Chinese with English abstract).

[35]

Fan S.L., He M.C., Yao S.Z., Ding Z.J., 2012. Fluid inclusions and stable isotope geochemistry of Dongchuang gold deposit in western Henan: Implications for genesis. Miner. Deposita 31 (1), 27-40 (in Chinese with English abstract).

[36]

Feng H.X., Shen P., Zhu R.X., Ma G., Li C.H., Li J.P., 2020. SIMS U-Pb dating of vein-hosted hydrothermal rutile and carbon isotope of fluids in the Wulong lode gold deposit, NE China: Linking gold mineralization with craton destruction. Ore Geol. Rev. 127, 103838.

[37]

Feng H.X., Shen P., Zhu R.X., Zi J.W., Groves D.I., Li C.H., Wu Y., Ma G., Li T.Y., 2021. Precise ages of gold mineralization and pre-gold hydrothermal activity in the Baiyun gold deposit, northeastern China: in situ U-Pb dating of hydrothermal xenotime and rutile. Miner. Depos. 57, 1001-1022.

[38]

Gao W., Hu R.Z., Hofstra A.H., Li Q.L., Zhu J.J., Peng K.Q., Mu L., Huang Y., Ma J.W., Zhao Q., 2021. U-Pb dating on hydrothermal rutile and monazite from the Badu gold deposit supports an early Cretaceous age for Carlin-Type gold mineralization in the Youjiang basin, Southwestern China. Econ. Geol. 116, 1355-1385.

[39]

Goldfarb R.J., Baker T., Dube B., Groves D.I., Hart C.J.R., Robert F., Gosselin P., 2005. Distribution, character, and genesis of gold deposits in metamorphic terranes. Econ. Geol. 100th Anniversary Volume, 407-450.

[40]

Goldfarb R.J., Groves D.I., 2015. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos 233, 2-26.

[41]

Goldfarb R.J., Hart C., Davis G., Groves D.I., 2007. East Asian gold: Deciphering the anomaly of Phanerozoic gold in Precambrian cratons. Econ. Geol. 102, 341-345.

[42]

Goldfarb R.J., Mao J.W., Qiu K.F., Goryachev N., 2021. The great Yanshanian metallogenic event of eastern Asia: Consequences from one hundred million years of plate margin geodynamics. Gondwana Res. 100, 223-250.

[43]

Goldfarb R.J., Qiu K.F., Deng J., Chen Y.J., 2019. Orogenic gold deposits of China. SEG Special Publication 22, 263-324.

[44]

Groves D.I., Goldfarb R.J., Gebre-Mariam M., Hagemann S.G., Robert F., 1998. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 13, 7-27.

[45]

Groves D.I., Goldfarb R.J., Robert F., Hart C.J., 2003. Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. Econ. Geol. 98, 1-29.

[46]

Groves D.I., Santosh M., 2015. Province-scale commonalities of some world-class gold deposits: Implications for mineral exploration. Geosci. Front. 6, 389-399.

[47]

Groves D.I., Santosh M., 2021. Craton and thick lithosphere margins: The sites of giant mineral deposits and mineral provinces. Gondwana Res. 100, 195-222.

[48]

Guo J., Dai L.Q., Zheng Y.F., Zhao Z.F., 2021. Mesozoic reworking of the Paleozoic subducted continental crust beneath the south-central margin of the North China Block: Geochemical evidence from granites in the Xiaoqinling-Xiong'ershan region. Lithos 402-403, 105886.

[49]

Guo L.N., Goldfarb R.J., Wang Z.L., Li R.H., Chen B.H., Li J.L., 2017. A comparison of Jiaojia-and Linglong-type gold deposit ore-forming fluids: Do they differ? Ore Geol. Rev. 88, 511-533.

[50]

Hacker B.R., Ritzwoller M.H., Xie J., 2014. Partially melted, mica-bearing crust in central Tibet. Tectonics 33, 1408-1424.

[51]

Hao H.D., Cao Y., Sheng T., Zong Z.J., 2020. Geochronology, petrogenesis and oxidation state of the Wenyu igneous suite in the Xiaoqinling district, North China Craton: Implications for lithospheric thinning and magma fertility. Lithos 370-371, 105646.

[52]

He C.G., Li J.W., Kontak D.J., Jin X.Y., Wu Y.F., Hu H., Zu B., Yu X.L., Zhao S.R., Du S.G., Zhu Y.L., Tao H., 2023. An Early Cretaceous gold mineralization event in the Triassic West Qinling orogen revealed from U-Pb titanite dating of the Ma'anqiao gold deposit. Sci. China Earth Sci. 2, 316-333.

[53]

Hong D., Niu Y.L., Xiao Y.Y., Sun P., Kong J.J., Guo P.Y., Shao F.L., Wang X.H., Duan M., Xue Q.Q., Gong H.M., Chen S., 2018. Origin of the Jurassic-Cretaceous intraplate granitoids in Eastern China as a consequence of paleo-Pacific plate subduction. Lithos 322, 405-419.

[54]

Hou Z.Q., Wang Q.F., Zhang H.J., Xu B., Yu N., Wang R., Groves D.I., Zheng Y.C., Han S.C., Gao L., Yang L., 2022. Lithosphere architecture characterized by crust-mantle decoupling controls the formation of orogenic gold deposits. Natl. Sci. Rev. 10, 2095-5137.

[55]

Hu J., Jiang S.Y., Zhao H.X., Shao Y., Zhang Z.Z., Xiao E., Wang Y.F., Dai B.Z., Li H. Y., 2012. Geochemistry and petrogenesis of the Huashan granites and their implications for the Mesozoic tectonic settings in the Xiaoqinling gold mineralization belt, NW China. J. Asian Earth Sci. 56, 276-289.

[56]

Hu R.Z., Burnard P.G., Bi X.W., Zhou M.F., Peng J.T., Su W.C., Zhao J.H., 2009. Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi province, China: evidence from He, Ar and C Isotopes. Chem. Geol. 266 (1-2), 86-95.

[57]

Hu Z.G., Qian Z.Z., 1994. A new idea of geological tectonics in the Xiaoqinling region. Geol. Rev. 40 (4), 289-295 (in Chinese with English abstract).

[58]

Huang X.L., Wilde S.A., Zhong J.W., 2013. Episodic crustal growth in the southern segment of the Trans-North China Orogen across the Archean-Proterozoic boundary. Precambr. Res. 233 (3), 337-357.

[59]

Janots E., Berger A., Gnos E., Whitehouse M., Lewin E., Pettke T., 2012. Constraints on fluid evolution during metamorphism from U-Th-Pb systematics in Alpine hydrothermal monazite. Chem. Geol. 326, 61-71.

[60]

Jia X.L., Zhai M.G., Xiao W.J., Sun Y., Ratheesh-Kumar R.T., Yang H., Zhou K.F., Wu J.L., 2019. Late Neoarchean to early Paleoproterozoic tectonic evolution of the southern North China Craton: Evidence from geochemistry, zircon geochronology and Hf isotopes of felsic gneisses from the Taihua complex. Precambrian Res. 326, 222-239.

[61]

Jian W., Lehmann B., Mao J.W., Ye H.S., Li Z.Y., He H.J., Zhang J.G., Zhang H., Feng J.W., 2015. Mineralogy, fluid characteristics, and Re-Os age of the late Triassic Dahu Au-Mo deposit, Xiaoqinling region, central China: Evidence for a magmatic-hydrothermal origin. Econ. Geol. 110, 119-145.

[62]

Jian W., Mao J., Lehmann B., Chen L., Song S., Liu J., Wang P., Rösel D., 2022. Late Triassic Au-Mo mineralization in the Xiaoqinling region and a genetic connection to carbonatitic magmatism. Ore Geol. Rev. 145, 104921.

[63]

Jian W., Mao J., Lehmann B., Cook N.J., Xie G., Liu P., Duan C., Alles J., Niu Z., 2021. Au-Ag-Te-rich melt inclusions in hydrothermal gold-quartz veins, Xiaoqinling lode gold district, central China. Econ. Geol. 116 (5), 1239-1248.

[64]

Jian W., Mao J., Lehmann B., Wu S., Chen L., Song S., Xu J., Wang P., Liu J., 2024. Two discrete gold mineralization events recorded by hydrothermal xenotime and monazite, Xiaoqinling gold district, central China. Am. Mineral. 109 (1), 73-86.

[65]

Jiao J.G., Yuan H.C., He K., Sun T., Xu G., Liu R.P., 2009. Zircon U-Pb and molybdenite Re-Os dating for the Balipo porphyry Mo deposit in East Qinling, China, and its geological implication. Acta Geol. Sin. 83, 1159-1166 (in Chinese with English abstract).

[66]

Kerrich R., Ludden J., 2000. The role of fluids during formation and evolution of the southern Superior Province lithosphere: an overview. Canadian J. Earth Sci. 37, 135-164.

[67]

Kim K.H., Lee S., Nagao K., Sumino H., Yang K., Lee J.I., 2012. He-Ar-H-O isotopic signatures in Au-Ag bearing ore fluids of the Sunshin epithermal gold-silver ore deposits, South Korea. Chem. Geol. 320, 128-139.

[68]

Korolev N.M., Melnik A.E., Li X.H., Skublov S.G., 2018. The oxygen isotope composition of mantle eclogites as a proxy of their origin and evolution. Earth-Sci. Rev. 185, 288-300.

[69]

Labidi J., Cartigny P., Jackson M.G., 2015. Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope 'mantle array' in chemical geodynamics. Earth Planet. Sci. Lett. 417, 28-39.

[70]

Lawley C., Selby D., Imber J., 2013. Re-Os molybdenite, pyrite, and chalcopyrite geochronology, Lupa goldfield, southwestern Tanzania: tracing metallogenic time scales at midcrustal shear zones hosting orogenic Au deposits. Econ. Geol. 108, 1591-1613.

[71]

Li C., Li L., Li S.R., Santosh M., Shen J.F., 2021a. Mesozoic mafic dykes in the North China Craton: magmatic evolution and implications for gold mineralization. Int. Geol. Rev. 64(2), 254-274. https://doi.org/10.1080/00206814.2020.1846143.

[72]

Li H., Schwarcz H.P., Shaw D.M., 1991. Deep crustal oxygen isotope variations: the Wawa-Kapuskasing crustal transect, Ontario. Contrib. Mineral. Petrol. 107, 448-458.

[73]

Li H.M., Ye H.S., Mao J.W., Wang D.H., Chen Y.C., Qu W.J., Du A.D., 2007. Re-Os dating of molybdenites from Au(Mo) deposits in Xiaoqinling gold ore district and its geological significance. Miner. Deposita 26, 417-424 (in Chinese with English abstract).

[74]

Li J.W., Bi S.J., Selby D., Chen L., Vasconcelos P., Thiede D., Zhou M.F., Zhao X.F., Li Z.K., Qiu H.N., 2012a. Giant Mesozoic gold provinces related to the destruction of the North China craton. Earth Planet. Sci. Lett. 349-350, 26-37.

[75]

Li J.W., Li Z.K., Zhou M.F., Chen L., Bi S.J., Deng X.D., Qiu H.N., Benjamin C., David S., Zhao X.F., 2012b. The early Cretaceous Yangzhaiyu lode gold deposit, North China Craton: a link between craton reactivation and gold veining. Econ. Geol. 107, 43-79.

[76]

Li J.Y., Wang Z.Q., Zhao M., 1999. 40 Ar/39 Ar thermochronological constraints on the timing of collisional orogeny in the Mian-Lüe Collision Belt, Southern Qinling Mountains. Acta Geol. Sin. 73 (2), 208-215.

[77]

Li L., Santosh M., Li S.R., 2015. The 'Jiaodong type' gold deposits: Characteristics, origin and prospecting. Ore Geol. Rev. 65, 589-611.

[78]

Li M.K., Li J.W., Wei Y., 2021b. Lithospheric structure beneath the Qinling Orogenic Belt and its surrounding regions: Implications for regional lithosphere deformation. Terra Nova 34, 91-101.

[79]

Li N., Chen Y.J., Fletcher I.R., Zeng Q.T., 2011. Triassic mineralization with Cretaceous overprint in the Dahu Au-Mo deposit, Xiaoqinling gold province: Constraints from SHRIMP monazite U-Th-Pb geochronology. Gondwana Res. 20, 543-552.

[80]

Li N., Chen Y.J., Pirajno F., Gong H.J., Mao S.D., Ni Z.Y., 2012c. LA-ICP-MS zircon U- Pb dating, trace element and Hf isotope geochemistry of the Heyu granite batholith, eastern Qinling, central China: implications for Mesozoic tectono-magmatic evolution. Lithos 142, 34-47.

[81]

Li N., Sun Y.L., Li J., Xue L.W., Li W.B., 2008. Molybdenite Re-Os isotope age of the Dahu Au-Mo deposit, Xiaoqinling and the indosinian mineralization. Acta Petrol. Sin. 24, 810-816 (in Chinese with English abstract).

[82]

Li Q.Z., Chen Y.J., Zhong Z.Q., Li W.L., Li S.R., Guo X.D., Jin B.Y., 2002. 40 Ar-39 Ar ages of the ore-forming processes of the Dongchuang gold deposit in Xiaoqinling district, China. Geol. Rev. 48, 122-126 (in Chinese with English abstract).

[83]

Li S.M., Qu L.Q., Su Z.B., Huang J.J., Wang X.S., Yue Z.S., 1996. The Geology and Metallogenic Prediction of the Gold Deposit in Xiaoqinling. Geological Publishing House, Beijing, p. 250 (in Chinese with English abstract).

[84]

Li S.R., Santosh M., 2017. Geodynamics of heterogeneous gold mineralization in the North China Craton and its relationship to lithospheric destruction. Gondwana Res. 50, 267-292.

[85]

Li S.S., Li L., Li S.R., Santosh M., Alam M., 2022. Age and mineralization processes of decratonic lode gold deposits in the southern North China Craton: Constraints from trace elements, in-situ S-Pb isotopes and Rb-Sr geochronology of pyrite from the Chen'er gold deposit. Ore Geol. Rev. 145, 104888.

[86]

Li S.Z., Jahn B.M., Zhao S.J., Dai L.M., Li X.Y., Suo Y.H., Guo L.L., Wang Y.M., Liu X. C., Lan H.Y., Zhou Z.Z., Zheng Q.L., Wang P.C., 2017. Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data. Earth-Sci. Rev. 166, 270-285.

[87]

Li S.Z., Zhao S.J., Liu X., Cao H.H., Yu S., Li X.Y., Somerville I., Yu S.Y., Suo Y.H., 2018a. Closure of the Proto-Tethys Ocean and early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Sci. Rev. 186, 37-75.

[88]

Li W.T., Jiang S.Y., 2024. Unveiling the connection between lode gold mineralization and the metamorphic core complex evolution from the large Yangzhaiyu gold deposit, North China Craton. Geol. Soc. Am. Bull. 136, 4947-4964.

[89]

Li Y.J., Zhu G., Gu C.C., Su N., Xiao S., Zhang S.Y., Liu C., Xie C.L., 2018b. Structural evolution of the Paleoproterozoic Trans-North China Orogen: evidence from the Xiaoqinling region, central China. Precambrian Res. 316, 244-274.

[90]

Li Y.J., Zhu G., Liu J., Sun K.K., Gu C.C., Dong M.L., Yan J.H., Li C., Xue F., Liu C., Zhang S., 2024. Polyphase deformation history and its structural controls on auriferous quartz vein stockwork in the Xiaoqinling district, southern margin of the North China Craton. Ore Geol. Rev. 175, 106379.

[91]

Li Y.J., Zhu G., Su N., Xiao S.Y., Zhang S., Liu C., Xie C.L., Yin H., Wu X.D., 2019. The Xiaoqinling metamorphic core complex: A record of early Cretaceous backarc extension along the southern part of the North China Craton. Geol. Soc. Am. Bull. 132, 617-637.

[92]

Liu J., Li W., Zhu X., Li C., Zhou Q., Yang F., 2020a. Origin and evolution of ore-forming fluids of the Larong W-(Mo) deposit, eastern Tibet: Constraints from fluid inclusions, H-O isotopes, and scheelite geochemistry. Ore Geol. Rev. 124, 103620.

[93]

Liu J.C., Wang Y.T., Hu Q.Q., Wei R., Huang S.K., Sun Z.H., Hao J.L., 2020b. Ore genesis of the Fancha gold deposit, Xiaoqinling goldfield, southern margin of the North China Craton: Constraints from pyrite Re-Os geochronology and He-Ar, in-situ S-Pb isotopes. Ore Geol. Rev. 119, 103373.

[94]

Liu J.C., Wang Y.T., Mao J.W., Jian W., Hu Q.Q., Wei R., Zhang X.W., Hao J.L., Wang J.M., 2022. Episodic Au-Mo mineralization events in the Xiaoqinling district, southern margin of the North China Craton. Ore Geol. Rev. 149, 1-13.

[95]

Liu J.C., Wang Y.T., Mao J.W., Jian W., Huang S.K., Hu Q.Q., Wei R., Hao J.L., 2021. Precise ages for lode gold mineralization in the Xiaoqinling gold field, Southern margin of the North China Craton: New constraints from in situ U-Pb dating of hydrothermal monazite and rutile. Econ. Geol. 116, 773-786.

[96]

Liu Z., Yang L., Sun P.F., Li H.J., Dong C.Y., Liu Z.W., 2023. Similarities and differences in geological characteristics and sulfur isotope composition and their controlling factors of the Dahu, Linghu and Jinqu Au(Mo) deposits in the Xiaoqinling gold province. Acta Perol. Sin. 39 (2), 484-498 (in Chinese with English abstract).

[97]

Mamyrin B., Tolstikhin I., 1984. Helium Isotopes in Nature. Elsevier Scientific Publishing Company, Amsterdam.

[98]

Mao J.W., Goldfarb R., Zhang Z.W., Xu W.Y., Qiu Y.M., Deng J., 2002. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling Mountains, central China. Miner. Depos. 37, 306-325.

[99]

Mao J.W., Liu P., Goldfarb R.J., Goryachev N.A., Pirajno F., Zheng W., Zhou M., Zhao C., Xie G.Q., Yuan S.D., Liu M., 2021a. Cretaceous large-scale metal accumulation triggered by post-subductional large-scale extension, East Asia. Ore Geol. Rev. 136, 104270.

[100]

Mao J.W., Xie G.Q., Bierlein F., W.J., Du A.D., Ye H.S., Yang Z.Q., 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochim. Cosmochim. Acta 72 (18), 4607-4626.

[101]

Mao J.W., Xie G.Q., Pirajno F., Ye H.S., Wang Y.B., Li Y.F., Xiang J.F., Zhao H.J., 2010. Late Jurassic-Early Cretaceous granitoid magmatism in eastern Qinling, central-eastern China: SHRIMP zircon U-Pb ages and tectonic implications. Aust. J. Earth Sci. 57, 51-78.

[102]

Mao J.W., Zheng W., Xie G.Q., Lehmann B., Goldfarb R., 2021b. Recognition of a Middle-Late Jurassic arc-related porphyry copper belt along the southeast China coast: Geological characteristics and metallogenic implications. Geology 49, 592-596.

[103]

Marcantonio F., Higgins S., Anderson R.F., Stute M., Schlosser P., Rasbury E.T., 1998. Terrigenous helium in deep-sea sediments. Geochim. Cosmochim. Acta 62 (9), 1535-1543.

[104]

Mathur R., Ruiz J., Tornos F., 1999. Age and sources of the ore at Tharsis and Rio Tinto, Iberian pyrite belt, from Re-Os isotopes. Miner. Depos. 34, 790-793.

[105]

Meldruma A., Abdel-Rahmanb A.F.M., Martina R.F., Wodickac N., 1997. The nature, age and petrogenesis of the Cartier Batholith, northern flank of the Sudbury Structure, Ontario, Canada. Precambr. Res. 82, 265-285.

[106]

Morelli R.M., Creaser R.A., Selby D., Kelley K.D., Leach D.L., King A.R., 2004. Re-Os sulfide geochronology of the Red Dog sediment-hosted Zn-Pb-Ag deposit, Brooks Range, Alaska. Econ. Geol. 99, 1569-1576.

[107]

Morgan J.W., Stein H.J., Hannah J.L., Markey R.J., Wiszniewska J., 2000. Re-Os study of Fe-Ti-V oxide and Fe-Cu-Ni sulfide deposits, Suwałki Anorthosite Massif, northeast Poland. Miner. Depos. 35, 391-401.

[108]

Nakai S.I., Wakita H., Nuccio M.P., Italiano F., 1997. MORB-type neon in an enriched mantle beneath Etna, Sicily. Earth Planet. Sci. Lett. 153 (1-2), 57-66.

[109]

Ni Z.Y., Chen Y.J., Li N., Zhang H., 2012. Pb-Sr-Nd isotope constraints on the fluid source of the Dahu Au-Mo deposit in Qinling Orogen, central China, and implication for Triassic tectonic setting. Ore Geol. Rev. 46, 60-67.

[110]

Nie F.J., Jiang S.H., Zhao Y.M., 2001. Lead and Sulfur isotopic studies of the Wenyu and the Dongchuang quartzvein type gold deposits in the Xiaoqinling Area, Henan and Shaanxi Provinces, Central China. Miner. Deposita 20 (2), 163-173 (in Chinese with English abstract).

[111]

Ohmoto H., 1972. Systematics of sulfur and carbon isotope in hydrothermal ore deposits. Econ. Geol. 67 (5), 551-579.

[112]

Ozima M., Podosek F.A., 2002. Noble Gas Geochemistry. Cambridge University Press, Cambridge.

[113]

Parrish R.R., 1990. U-Pb dating of monazite and its application to geological problems. Can. J. Earth Sci. 27, 1431-1450.

[114]

Pei F.P., Xu W.L., Yang D.B., Yu Y., Wang W., Zhao Q.G., 2011. Geochronology and geochemistry of Mesozoic mafic-ultramafic complexes in the southern Liaoning and southern Jilin provinces, NE China: constraints on the spatial extent of destruction of the North China Craton. J. Asian Earth Sci. 40 (2), 636-650.

[115]

Pi Q.H., Hu R.Z., Xiong B., Li Q.L., Zhong R.C., 2017. In situ SIMS U-Pb dating of hydrothermal rutile: reliable age for the Zhesang Carlin-type gold deposit in the golden triangle region, SW China. Miner. Depos. 52, 1179-1190.

[116]

Plavsa D., Reddy S.M., Agangi A., Clark C., Kylander-Clark A., Tiddy C.J., 2018. Microstructural, trace element and geochronological characterisation of TiO 2 polymorphs and implications for mineral exploration. Chem. Geol. 476, 130-149.

[117]

Poitrasson F., Chenery S., Shepherd T.J., 2000. Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration. Geochim. Cosmochim. Acta 64, 3283-3297.

[118]

Pyle J.M., 2006. Temperature-time paths from phosphate accessory phase paragenesis in the Honey Brook Upland and associated cover sequence, SE Pennsylvania, USA. Lithos 88, 201-232.

[119]

Qiang S.F., Bi S.J., Deng X.D., Guo L.Q., Li J.W., 2013. Monazite U-Th-Pb ages of Qinnan gold deposit, Xiaoqinling district: Implications for regional metallogenesis and tectonic setting. Earth Sci. J. China Univ. Geosci. 38, 43-56 (in Chinese with English abstract).

[120]

Qiu K.F., Yu H.C., Deng J., McIntire D., Gou Z.Y., Geng J.Z., Chang Z.S., Zhu R., Li K. N., Goldfarb R., 2020. The giant Zaozigou Au-Sb deposit in West Qinling, China: magmatic-or metamorphic-hydrothermal origin? Miner. Depos. 55, 345-362.

[121]

Qu Y., Xie Y., Yu C., Xia J., Xu D., Li X., 2021. Geology, geochronology and tectonic setting of the Chaihulanzi gold deposit in Inner Mongolia, China. Ore Geol. Rev. 134, 104152.

[122]

Rao G., Lin A.M., Yan B., Jia D., Wu X.J., 2014. Tectonic activity and structural features of active intracontinental normal faults in the Weihe Graben, central China. Tectonophysics 636, 270-285.

[123]

Rasmussen B., Fletcher I.R., Muhling J.R., Mueller A.G., Hall G.C., 2007. Bushveld-aged fluid flow, peak metamorphism, and gold mobilization in the Witwatersrand basin, South Africa: Constraints from in situ SHRIMP U-Pb dating of monazite and xenotime. Geology 35, 931-934.

[124]

Rasmussen B., Fletcher I.R., Muhling J.R., Wilde S.A., 2010. In situ U-Th-Pb geochronology of monazite and xenotime from the Jack Hills belt: Implications for the age of deposition and metamorphism of Hadean zircons. Precambrian Res. 180, 26-46.

[125]

Ren Z.Y., 2012. Mineralization characteristic and genesis of the Fancha and Yisishan gold deposit in the Eastern Xiaoqinling district. M.S. thesis, The University of Geosciences Wuhan, China, pp. 1-106 (in Chinese with English abstract).

[126]

Rielli A., Tomkins A.G., Nebel O., Raveggi M., Jeon H., Martin L., Ávila J.N., 2018. Sulfur isotope and PGE systematics of metasomatised mantle wedge. Earth Planet. Sci. Lett. 497, 181-192.

[127]

Rye R.O., Ohmoto H., 1974. Sulfur and carbon isotopes and ore genesis: A review. Econ. Geol. 69 (6), 826-842.

[128]

Santos M.M., Lana C., Scholz R., Buick I.S., Kamo S.L., Corfu F., Queiroga G., 2020. LA-ICP-MS U-Pb dating of rutiles associated with hydrothermal mineralization along the southern Araçuaí Belt, SE Brazil. J. S. Am. Earth Sci. 99, 102502.

[129]

Schaefer B.F., Pearson D.G., Rogers N.W., Barnicoat A.C., 2010. Re-Os isotope and PGE constraints on the timing and origin of gold mineralisation in the Witwatersrand Basin. Chem. Geol. 276, 88-94.

[130]

Schandl E.S., Gorton M.P., 2004. A textural and geochemical guide to the identification of hydrothermal monazite: criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Econ. Geol. 99, 1027-1035.

[131]

Selby D., Creaser R.A., 2001a. Late and mid-cretaceous mineralization in the Northern Candian Cordillera: Constraints from Re-Os molybdenite dates. Econ. Geol. 96, 1461-1467.

[132]

Selby D., Creaser R.A., 2001b. Re-Os Geochronology and systematics in molybdenite from the Endako porphyry molybdenite deposit, British Columbia, Canada. Econ. Geol. 96, 197-204.

[133]

Selby D., Creaser R.A., 2004. Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: Testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochim. Cosmochim. Acta 68, 3897-3908.

[134]

Selby D., Creaser R.A., Hart C.J.R., Rombach C.S., Thompson J.F.H., Smith M.T., Bakke A.A., Goldfarb R.J., 2002. Absolute timing of sulfide and gold mineralization: A comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina gold belt, Alaska. Geology 30, 791-794.

[135]

Shen W.S., Ritzwoller M.H., Kang D., Kim Y.H., Lin F.C., Ning J.Y., Wang W.T., Zheng Y., Zhou L.Q., 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophy. J. Int. 206, 954-979.

[136]

Shimizu A., Sumino H., Nagao K., Notsu K., Mitropoulos P., 2005. Variation in noble gas isotopic composition of gas samples from the Aegean arc, Greece. J. Volcanol. Geoth. Res. 140 (4), 321-339.

[137]

Shirey S.B., Walker R.J., 1998. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annu. Rev. Earth Pl. Sc. 26, 423-500.

[138]

Shu Q.H., Chang Z.S., Lai Y., Zhou Y.T., Sun Y., Yan C., 2016. Regional metallogeny of Mo-bearing deposits in northeastern China, with new Re-Os dates of porphyry Mo deposits in the northern Xilamulun district. Econ. Geol. 111, 1783-1798.

[139]

Simon L., Lécuyer C., 2005. Continental recycling: the oxygen isotope point of view. Geochem. Geophy. Geosy. 6 (8), 1-10.

[140]

Song P., Teng J., Zhang X., Liu Y., Si X., Ma X., Qiao Y., Dong X., 2018. Flyover crustal structures beneath the Qinling orogenic belt and its tectonic implications. J. Geophy. Res. Solid Earth 123, 6703-6718.

[141]

Spear F.S., Pyle J.M., 2002. Apatite, monazite, and xenotime in metamorphic rocks. Rev. Miner. and Geoch. 48, 293-335.

[142]

Stein H.J., Markey R.J., Morgan J.W., Hannah J.L., Schersten A., 2001. The remarkable Re-Os chronometer in molybdenite: How and why it works. Terra Nova 13, 479-486.

[143]

Stein H.J., Morgan J.W., Schersten A., 2000. Re-Os dating of low-level highly radiogenic (LLHR) sulfides: The Harnas gold deposit, southwest Sweden, records continental-scale tectonic events. Econ. Geol. 95, 1657-1671.

[144]

Stein H.J., Sundblad K., Markey R.J., Morgan J.W., Motuza G., 1998. Re-Os ages for Archean molybdenite and pyrite, Kuittila-Kivisuo, Finland and Proterozoic molybdenite, Kabeliai, Lithuania: Testing the chronometer in a metamorphic and metasomatic setting. Miner. Depos. 33, 329-345.

[145]

Sun P.F., Wang Q.F., Li H.J., Dong C.Y., Deng J., 2020. Geology and pyrite sulfur isotopes of the Suoluogou gold deposit: Implication for crustal continuum model of orogenic gold deposit in northwestern margin of Yangtze Craton, SW China. Ore Geol. Rev. 122, 103487.

[146]

Sun W.D., Ding X., Hu Y.H., Li X.H., 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet Sci. Lett. 262, 533-542.

[147]

Sun Y., Ying J.F., Su B.X., Zhou X.H., Shao J.A., 2015. Contribution of crustal materials to the mantle sources of Xiaogulihe ultrapotassic volcanic rocks, Northeast China: New constraints from mineral chemistry and oxygen isotopes of olivine. Chem. Geol. 405, 10-18.

[148]

Tan J., Wei J., He H., Su F., Li Y., Fu L., Zhu R., 2018. Noble gases in pyrites from the Guocheng-Liaoshang gold belt in the Jiaodong province: Evidence for a mantle source of gold. Chem. Geol. 480, 105-115.

[149]

Tan J., Wei J., Li Y., Fu L., Li H., Shi W., Tian N., 2015. Origin and geodynamic significance of fault-hosted massive sulfide gold deposits from the Guocheng- Liaoshang metallogenic belt, eastern Jiaodong Peninsula: Rb-Sr dating, and H- O-S-Pb isotopic constraints. Ore Geol. Rev. 65, 687-700.

[150]

Tang K.F., Li J.W., Selby D., Zhou M.F., Bi S.J., Deng X.D., 2013. Geology, mineralization, and geochronology of the Qianhe gold deposit, Xiong'ershan area, southern North China Craton. Miner. Depos. 48, 729-747.

[151]

Taylor R.D., Goldfarb R.J., Monecke T., Fletcher I.R., Cosca M.A., Kelly N.M., 2015. Application of U-Th-Pb phosphate geochronology to young orogenic gold deposits: New age constraints on the formation of the Grass Valley gold district, Sierra Nevada foothills province, California. Econ. Geol. 110, 1313-1337.

[152]

Torrealday H.I., Hitzman M.W., Stein H.J., Markley R.J., Armstrong R., Broughton D., 2000. Re-Os and U-Pb dating of the vein-hosted mineralization at the Kansanshi copper deposit, northern Zambia. Econ. Geol. 95, 1165-1170.

[153]

Tsai H.M., Shieh Y.N., Meyer H.O., 1977. Mineralogy and S 34 /S32 ratios of sulfides associated with kimberlite, xenoliths and diamonds. In: BoydF.R., MeyerH.O. A. (The Mantle Sample: 16. American Geophysical Union, Washington DC,Eds.), Inclusions in Kimberlites and Other Volcanics (geophysical Monograph Series), Vol. pp. 87-103.

[154]

Wang F., Lu X.X., Lo C.H., Wu F.Y., He H.Y., Yang L.K., Zhu R.X., 2007. Post-collisional, potassic monzonite-minette complex (Shahewan) in the Qinling Mountains (central China): 40 Ar/39 Ar thermochronology, petrogenesis, and implications for the dynamic setting of the Qinling orogeny. J. Asian Earth Sci. 31, 153-166.

[155]

Wang F.Y., Ge C., Ning S.Y., Nie L.Q., Zhong G.X., White N.C., 2017. A new approach to LA-ICP-MS mapping and application in geology. Acta Petrol. Sin. 33, 3422-3436 (in Chinese with English abstract).

[156]

Wang G.D., Wang H., Chen H.X., Lu J.S., Wu C.M., 2014. Metamorphic evolution and zircon U-Pb geochronology of the Mts. Huashan amphibolites: insights into the Palaeoproterozoic amalgamation of the North China Craton. Precambr. Res. 245 (1), 100-114.

[157]

Wang J.M., 1984. A study on the tectonics of the Weihe River Graben. Geol. Rev. 30 (3), 217-223 (in Chinese with English abstract).

[158]

Wang Q.F., Deng J., Yang L.Q., Santosh M., 2022a. Subduction-related metallogenesis in China: Preface. Ore Geol. Rev. 145, 104872.

[159]

Wang Q.F., Deng J., Zhao H.S., Yang L., Ma Q.Y., Li H.J., 2019. Review on orogenic gold deposits. Earth Sci. 44, 2155-2186 (in Chinese with English abstract).

[160]

Wang Q.F., Groves D.I., Deng J., Li H.J., Yang L., Dong C.Y., 2020a. Evolution of the Miocene Ailaoshan orogenic gold deposits, southeastern Tibet, during a complex tectonic history of lithosphere-crust interaction. Mineral. Depos. 55 (6), 1085-1104.

[161]

Wang Q.F., Liu X.F., Yin R.S., Weng W.J., Zhao H.S., Yang L., Zhai D.G., Li D.P., Ma Y., Groves D.I., Deng J., 2024. Metasomatized mantle sources for orogenic gold deposits hosted in high-grade metamorphic rocks: Evidence from Hg isotopes. Geology 52 (2), 115-119.

[162]

Wang Q.F., Yang L., Zhao H.S., Groves D.I., Weng W.J., Xue S.C., Li H.J., Dong C., Yang L.Q., Li D.P., Deng J., 2022b. Towards a universal model for orogenic gold systems: A perspective based on Chinese examples with geodynamic, temporal, and deposit-scale structural and geochemical diversity. Earth-Sci. Rev. 224, 103861.

[163]

Wang Q.F., Zhao H.S., Groves D.I., Deng J., Zhang Q.W., Xue S.C., 2020b. The Jurassic Danba hypozonal orogenic gold deposit, western China: indirect derivation from fertile mantle lithosphere metasomatized during Neoproterozoic subduction. Mineral. Depos. 55 (2), 309-324.

[164]

Wang Q.F., Zhao H.S., Yang L., Groves D.I., Han J.L., Qiu K.F., Li D.P., Liu Z., Zhao R., Deng J., 2025. Formation of the giant Cretaceous Jiaodong-type orogenic gold province of the North China Craton: A consequence of lithospheric multi-layer reworking. Geosci. Front. 16 (3), 102047.

[165]

Wang T., Guo L., Zheng Y.D., Donskaya T., Gladkochub D., Zeng L.S., Li J.B., Wang Y.B., Mazukabzov A., 2012. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes. Lithos 154, 315-345.

[166]

Wang X., Huang X.L., Yang F., 2021a. Geochronology and geochemistry of the Xiaoqinling Taihua Complex in the southern Trans-North China Orogen: Implications for magmatism during the early Paleoproterozoic global tectono-magmatic shutdown. Lithos 402-403, 106248.

[167]

Wang X.X., Wang T., Castro A., Pedreira R., Lu X.X., Xiao Q.H., 2011. Triassic granitoids of the Qinling orogen, central China: Genetic relationship of enclaves and rapakivi-textured rocks. Lithos 126, 369-387.

[168]

Wang Y.T., Mao J.W., Ye A.W., Ye H.S., Li Y.F., Lu X.X., Li Y.G., 2005. Isotope geochemical characteristics of auriferous quartz veins from medium and great depths of Xiaoqinling area, central China and their significance. Miner. Deposita 24 (3), 270-279 (in Chinese with English abstract).

[169]

Wang Y.T., Ye H.S., Liu J.C., Hao J.R., Zhang X.W., Hao J.L., Ye A.W., 2021b. Extensional tectonic setting of the Triassic metallogenic event in the Xiaoqinling goldfield: Evidence from 40 Ar-39 Ar chronology of the tectonite. Acta Petrol. Sin. 37, 2419-2430 (in Chinese with English abstract).

[170]

Wang Y.T., Ye H.S., Ye A.W., Li Y.G., Shuai Y., Zhang C.Q., Dai J.Z., 2010. Re-Os age of molybdenite from the Majiawa Au-Mo deposit of quartz vein type in the north margin of the Xiaoqinling gold area and its implication for metallogeny. Earth Sci. Front. 17, 140-145 (in Chinese with English abstract).

[171]

Watanabe Y., 2000. Re-Os ages for the Erdenet and Tsagaan Suvarga porphyry Cu-Mo deposits, Mongolia, and tectonic implications. Econ. Geol. 95, 1537-1542.

[172]

Wen Z.H., Li L., Li S.R., Santosh M., Alam M., Yuan M.W., Li S.S., Zhi Z.Y., Liu J.W., Yang C.X., 2019. Gold-forming potential of the granitic plutons in the Xiaoqinling gold province, southern margin of the North China Craton: Perspectives from zircon U-Pb isotopes and geochemistry. Geol. J. 55, 5725-5744.

[173]

Whitney D.L., Evans B.W., 2010. Abbreviations for names of rock-forming minerals. Amer. Miner. 95, 185-187.

[174]

Williams M.L., Jercinovic M.J., Hetherington C.J., 2007. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology. Annu. Rev. Earth Pl. Sci. 35, 137-175.

[175]

Wintsch R.P., Yeh M.W., 2013. Oscillating brittle and viscous behavior through the earthquake cycle in the Red River Shear Zone: monitoring flips between reaction and textural softening and hardening. Tectonophysics 587, 46-62.

[176]

Wu F.Y., Yang J.H., Xu Y.G., Wilde S.A., Walker R.J., 2019a. Destruction of the North China Craton in the Mesozoic. Annu. Rev. Earth Pl. Sci. 47, 173-195.

[177]

Wu Y.B., Zheng Y.F., Zhao Z.F., Cong B., Liu X.M., Wu F.Y., 2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochim. Cosmochim. Acta 70, 3743-3761.

[178]

Wu Y.F., Li J.W., Evans K., Vasconcelos P.M., Thiede D.S., Fougerouse D., Rempel K., 2019b. Late Jurassic to Early Cretaceous age of the Daqiao gold deposit, West Qinling Orogen, China: implications for regional metallogeny. Miner. Depos. 54, 631-644.

[179]

Xu J.H., He Z.L., Shen S.L., Yang Z.L., Du J.F., 1993. Stable isotope geology of the Dongchuang and the Wenyu gold deposits and the source of ore-forming fluid and materials. Contrib. Geol. Miner. Resour. Res. 8 (2), 87-100 (in Chinese with English abstract).

[180]

Xu J.W., Cao Y., Du Y.S., Wang G.W., Pang Z.S., 2021. Generation and redox state of two episodes of early Cretaceous granitoid in the Xiaoqinling area, North China Craton: Implications for lithosphere thinning and metallogenic potential. Lithos 406-407, 106538.

[181]

Xu W., Li Y., Zhou L.M., Ke T.T., Cheng L.Y., 2020. Lithospheric thermal regime under the Qinling Orogenic Belt and the Weihe Basin: A transect across the Yangtze and the North China cratons in central. Tectonophysics 789, 228514.

[182]

Xu Q.D., Zhong Z.Q., Zhou H.W., Yang F.C., Tang X.C., 1998. 40 Ar-39 Ar dating of the Xiaoqingling gold area in Henan Province. Geol. Rev. 44, 323-327 (in Chinese with English abstract).

[183]

Xu X.S., Griffin W.L., Ma X., O'Reilly S.Y., He Z.Y., Zhang C.L., 2009. The Taihua group on the southern margin of the North China Craton: Further insights from U-Pb ages and Hf isotope compositions of zircons. Miner. Petrol. 97, 43-59.

[184]

Yamamoto J., Nishimura K., Sugimoto T., Takemura K., Takahata N., Sano Y., 2009. Diffusive fractionation of noble gases in mantle with magma channels: origin of low He/Ar in mantle-derived rocks. Earth Planet. Sci. Lett. 280 (1-4), 167-174.

[185]

Yan J.S., Pang Z.S., Yue Z.S., Zhang Z.H., 2005. Structural Characteristics and Gold Mineralization Research of Machaoying Fault Zone. The Yellow River Water Conservancy Press, Zhengzhou (in Chinese with English abstract).

[186]

Yang J.H., Wu F.Y., Wilde S.A., 2003. A review of the geodynamic setting of large-scale late Mesozoic gold mineralization in the North China Craton: an association with lithospheric thinning. Ore Geol. Rev. 23, 125-152.

[187]

Yang L., Wang Q.F., Large R.R., Fougerouse D., Mukherjee I., Zhang Q.Z., Deng J., 2022. Texture and geochemistry of pyrite from the Jinya, Nakuang and Gaolong gold deposits in the Youjiang Basin: implications for basin-scale gold mineralization. Mineral. Depos. 57, 1367-1390.

[188]

Yang L., Zhao R., Wang Q.F., Liu X.F., Carranza E.J.M., 2018. Fault geometry and fluid-rock reaction: Combined controls on mineralization in the Xinli gold deposit, Jiaodong Peninsula, China. J. Struct. Geol. 111, 14-26.

[189]

Yang L.Q., Deng J., Li N., Zhang C., Ji X.Z., Yu J.Y., 2016. Isotopic characteristics of gold deposits in the Yangshan Gold Belt, West Qinling, central China: Implications for fluid and metal sources and ore genesis. J. Geochem. Explor. 168, 103-118.

[190]

Yang T., Zhu L.M., Wang F., Gong H.J., Lu R.K., 2012. Geochemistry, petrogenesis and tectonic implications of granitic plutons at the Liziyuan orogenic goldfield in the Western Qinling Orogen, central China. Geol. Mag. 150, 50-71.

[191]

Yin C., Liu J.J., Carranza E.J.M., Zhai D.G., Guo C.Y., 2019. Mineralogical constraints on the genesis of the Dahu quartz vein-style Au-Mo deposit, Xiaoqinling gold district, China: Implications for phase relationships and physicochemical conditions. Ore Geol. Rev. 113, 103107.

[192]

Yu X.Q., Liu J.L., Zhang D.H., Zheng Y., Li C.L., Chen S.Q., Li T., 2013. Uprising period and elevation of the Wenyu granitic pluton in the Xiaoqinling District, Central China. Chin. Sci. Bull. 58, 4459-4471.

[193]

Zeng Q.T., McCuaig T.C., Hart C.J.R., Jourdan F., Muhling J., Bagas L., 2012. Structural and geochronological studies on the Liba goldfield of the West Qinling Orogen, Central China. Miner. Depos. 47, 799-819.

[194]

Zeng W., Wang Z.G., Wan D., Sun F.Y., Li C.D., Yu R.A., Xu J.C., 2020. Genesis of the Linghu Au deposit in Xiaoqinling Region, Henan province, China: Constraints from fluid inclusions and isotope systematics. Arab. J. Geosci. 13, 1-18.

[195]

Zhang C.L., Wang T., Wang X.X., 2008. Origin and tectonic setting of the Early Mesozoic granitoids in Qinling orogenic belt. Geol. J. China Univ. 14 (3), 304- 316 (in Chinese with English abstract).

[196]

Zhang G.W., Meng Q.R., Lai S.C., 1995. Tectonic structure of Qinling Orogenic. Sci. China Ser. D. 38 (11), 1379-1394.

[197]

Zhang J.J., Zheng Y.D., 1999. Multistage extension and age dating of the Xiaoqinling metamorphic core complex, central China. Acta Geol. Sin. 73 (2), 139-147.

[198]

Zhang J.J., Zheng Y.D., Liu S.W., 2000. Application of general shear theory to the study of formation mechanism of the metamorphic core complex: A case study of Xiaoqinling, central China. Acta Geol. Sin. 74 (1), 19-28.

[199]

Zhang S.H., Zhao Y., Davis G.A., Ye H., Wu F., 2014. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization. Earth-Sci. Rev. 131, 49-87.

[200]

Zhang Y., Dong S., Wang H., Feng M., Thybo H., Li J., et al., 2022. Coupled lithospheric deformation in the Qinling orogen, central China: Insights from seismic reflection and surface-wave tomography. Geophy. Res. Lett. 49, 1-7.

[201]

Zhang Y.H., Liu J.W., Wen B., Du S.Z., Qu W.J., 2020. Mineralization types, Re-Os dating of Dahu-Qinnan molybdenum deposit and exploration in Xiaoqinling Mt, Central China. J. Jilin Univ. (Earth Sci. Ed.) 50, 815-824 (in Chinese with English abstract).

[202]

Zhang Z.Q., Zhang G.W., Liu D.Y., Wang Z.Q., Tan S.H., Wang J.H., 2006. Isotopic Geochoronology and Geochemistry of Ophiolites, Granites and Clast Sedimentary Rocks in the Qinling-Dabie Orogenic Belt. Geological Publishing House, Beijing (in Chinese).

[203]

Zhao G.C., Cawood P.A., 2012. Precambrian geology of China. Precambr. Res. 222-223, 13-54.

[204]

Zhao G.C., Sun M., Wilde S.A., Li S.Z., 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res. 136, 177-202.

[205]

Zhao H.S., Wang Q.F., Kendrick M.A., Groves D.I., Fan T., Deng J., 2022a. Metasomatized mantle lithosphere and altered ocean crust as a fluid source for orogenic gold deposits. Geochim. Cosmochim. Acta 334, 316-337.

[206]

Zhao H.X., Frimmel H.E., Jiang S.Y., Dai B.Z., 2011. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: implications for ore genesis. Ore Geol. Rev. 43 (1), 142-153.

[207]

Zhao H.X., Jiang S.Y., Frimmel H.E., Dai B.Z., Ma L., 2012. Geochemistry, geochronology and Sr-Nd-Hf isotopes of two Mesozoic granitoids in the Xiaoqinling gold district: Implication for large-scale lithospheric thinning in the North China Craton. Chem. Geol. 294-295, 173-189.

[208]

Zhao S.R., Li J.W., Lentz D., Bi S.J., Zhao X.F., Tang K.F., 2019. Discrete mineralization events at the Hongtuling Au-(Mo) vein deposit in the Xiaoqinling district, southern North China Craton: Evidence from monazite U-Pb and molybdenite Re-Os dating. Ore Geol. Rev. 109, 413-425.

[209]

Zhao S.R., Li Z.K., Li J.W., Zhao X.F., Jiang S.Y., Lin H.T., Du S.G., 2022b. Trace element and S-Pb isotopic compositions of pyrite from the Precambrian metamorphic rocks and their derivative pegmatites in the Xiaoqinling district, southern North China Craton: Implications for possible gold source of the Early Cretaceous gold deposits. Precambrian Res. 377, 106739.

[210]

Zhao S.R., Li Z.K., Zhao X.F., Li J.W., 2021. Genesis of the Hongtuling Au-Mo deposit in the southern North China Craton revealed from pyrite trace element compositions and S-Pb isotopes. Ore Geol. Rev. 131, 104017.

[211]

Zhao S.R., Li Z.K., Zhao X.F., Lin H.T., Duan Z., Wu X.J., 2022c. New constraints on genesis of the Qiangma gold deposit, southern North China Craton: Evidence from rutile U-Pb dating, pyrite trace element composition and S-Pb isotopes. Ore Geol. Rev. 141, 104647.

[212]

Zhao X.B., Xue C.J., Zu B., Seltmann R., Chi G.X., Dolgopolova A., Andersen J.C.Ø., Pak N., Ivleva E., 2022d. Geology and genesis of the Unkurtash intrusion-related gold deposit, Tien Shan, Kyrgyzstan. Econ. Geol. 117, 1073-1103.

[213]

Zhao Y., Chen B., Zhang S.H., Liu J.M., Hu J.M., Liu J., Pei J.L., 2010. Pre-Yanshanian geological events in the northern margin of the North China Craton and its adjacent areas. Geol. China 37, 900-915 (in Chinese with English abstract).

[214]

Zheng J.H., Chen B., Liu S.J., Chuang B., 2022. A Triassic orogenic gold mineralization event in the Paleoproterozoic metamorphic rocks: evidence from two types of rutile in the Baiyun gold deposit, Liaodong Peninsula, North China Craton. Econ. Geol. 7, 1657-1673.

[215]

Zheng X.G., Lu L., Liu H.Y., Liu X.L., Xu K., Zhang Z.L., 2020. The preliminary understanding of deep structure exploration in the orefield of Xiaoqinling area. Geophy. Geochem. Explor. 44 (4), 894-904 (in Chinese with English abstract).

[216]

Zhou Z.J., Chen Y.J., Jiang S.Y., Hu C.J., Qin Y., Zhao H.X., 2015. Isotope and fluid inclusion geochemistry and genesis of the Qiangma gold deposit, Xiaoqinling gold field, Qinling Orogen, China. Ore Geol. Rev. 66, 47-64.

[217]

Zhou Z.J., Chen Y.J., Jiang S.Y., Zhao H.X., Qin Y., Hu C.J., 2014. Geology, geochemistry and ore genesis of the Wenyu gold deposit, Xiaoqinling gold field, Qinling Orogen, southern margin of North China Craton. Ore Geol. Rev. 59, 1-20.

[218]

Zhu G., Jiang D.Z., Zhang B.L., Chen Y., 2012. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Res. 22, 86-103.

[219]

Zhu R.X., Chen L., Wu F.Y., Liu J.L., 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci. China Ser. D Earth Sci. 54, 789-797.

[220]

Zhu R.X., Fan H.R., Li J.W., Meng Q.R., Li S.R., Zeng Q.D., 2015. Decratonic gold deposits. Sci. China Ser. D Earth Sci. 58, 1523-1537.

[221]

Zhu X.K., O'Nions R.K., 1999. Monazite chemical composition: some implications for monazite geochronology. Contrib. Mineral. Petrol. 137, 351-363.

[222]

Zi J.W., Rasmussen B., Muhling J.R., Fletcher I.R., Thorne A.M., Johnson S.P., Cutten H.N., Dunkley D.J., Korhonen F.J., 2015. In situ U-Pb geochronology of xenotime and monazite from the Abra polymetallic deposit in the Capricorn Orogen, Australia: Dating hydrothermal mineralization and fluid flow in a long-lived crustal structure. Precambrian Res. 260, 91-112.

[223]

Zou S.H., Xu D.R., Deng T., Huang Q.Y., Yu D.S., Zhao Z.X., Ye T.W., 2019. Geochemical variations of the late Mesozoic granitoids in the southern margin of North China Craton: A possible link to the tectonic transformation from compression to extension. Gondwana Res. 75, 118-133.

AI Summary AI Mindmap
PDF

450

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/