Stable chromium isotope fractionation during melt percolation: Implications for chromium isotopic heterogeneity in the mantle

Haibo Ma , Li-Juan Xu , Yu-Wen Su , Chunyang Liu , Sheng-Ao Liu , Jia Liu , Zezhou Wang , Guochun Zhao

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102049

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102049 DOI: 10.1016/j.gsf.2025.102049

Stable chromium isotope fractionation during melt percolation: Implications for chromium isotopic heterogeneity in the mantle

Author information +
History +
PDF

Abstract

To investigate the stable chromium (Cr) isotope variations during melt percolation in the mantle, we analyzed the Cr isotopic compositions of fresh ultramafic rocks from the Balmuccia and Baldissero peridotite massifs located in the Italian Alps. These massifs represent fragments of the subcontinental lithospheric mantle. The samples collected included lherzolites, harzburgites, dunites, and pyroxenites. Lherzolites, formed through 5%-15% fractional melting of a primitive mantle source, exhibited δ53Cr values ranging from -0.13‰ ± 0.03‰ to -0.03‰ ± 0.03‰. These values correlated negatively with Al2O3 content, suggesting that partial melting induces Cr isotopic fractionation between the melts and residual peridotites. Harzburgites and dunites, influenced by the silicate melt percolation, displayed distinct δ53Cr values. Notably, dunites not spatially associated with the pyroxenite veins exhibited slightly elevated δ53Cr values (-0.05‰± 0.03‰ to 0.10‰ ± 0.03‰) relative to lherzolites. This difference likely resulted from pyroxene dissolution and olivine precipitation during melt percolation processes. However, one dunite sample in direct contact with pyroxenite veins showed lower δ53Cr values (-0.26‰ ± 0.03‰), possibly owing to the kinetic effects during silicate melt percolation. Pyroxenites are formed through the interaction of basaltic melts with the surrounding peridotite via a metasomatic reaction or crystallization in a vein. Most of their δ53Cr values (-0.26‰ ± 0.03‰ to -0.13‰ ± 0.03‰) are positively correlated with MgO contents, suggesting that they were influenced by magmatic differentiation. However, two subsamples from a single clinopyroxenite vein exhibit anomalously low δ53Cr values (-0.30‰ ± 0.03‰ and -0.43‰ ± 0.03‰), which are attributed to kinetic isotopic fractionation during melt-percolation processes. Our findings suggest that melt percolation processes in the mantle contribute to the Cr isotopic heterogeneity observed within the Earth's mantle.

Keywords

Cr isotopes / Ultramafic rocks / Peridotite massifs / Melt percolation

Cite this article

Download citation ▾
Haibo Ma, Li-Juan Xu, Yu-Wen Su, Chunyang Liu, Sheng-Ao Liu, Jia Liu, Zezhou Wang, Guochun Zhao. Stable chromium isotope fractionation during melt percolation: Implications for chromium isotopic heterogeneity in the mantle. Geoscience Frontiers, 2025, 16(4): 102049 DOI:10.1016/j.gsf.2025.102049

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Haibo Ma: Writing - original draft, Software, Methodology, Investigation, Formal analysis, Data curation, Conceptualization, Writing - review & editing, Visualization. Li-Juan Xu: Writing - review & editing, Supervision, Funding acquisition, Formal analy-sis, Data curation, Conceptualization, Writing - original draft. Yu-Wen Su: Supervision, Methodology, Investigation, Visualization, Writing - review & editing. Chunyang Liu: Methodology, Formal analysis, Software, Writing - review & editing. Sheng-Ao Liu: Writing - review & editing, Formal analysis, Supervision. Jia Liu: Writing - review & editing, Formal analysis, Conceptualization, Supervision. Zezhou Wang: Writing - review & editing, Formal analysis, Validation. Guochun Zhao: Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We are grateful to Xuanxue Mo (Editor-in-Chief) and Kristoffer Szilas (AE) for handing and constructive comments, and to two anonymous reviewers for their careful comments and suggestions that helped to improve the manuscript. We also thank Prof. Ger-hard Wörner and Yuan-Ru Qu for their valuable suggestions for language editing. We would like to express our gratitude to Wei Jiang for the laboratory analyses. This study was financially sup-ported by National Natural Science Foundation of China (Grant No. 42473017), Hong Kong RGC grants (JLFS/P-702/24 and 17308023), China Geological Survey project (Grant No. DD20242037).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102049.

References

[1]

Bai Y., Su B.X., Xiao Y., Chen C., Cui M.M., He X.Q., Qin L.P., Charlier B., 2019. Diffusion-driven chromium isotope fractionation in ultramafic cumulate minerals: elemental and isotopic evidence from the Stillwater Complex. Geochim. Cosmochim. Acta 263, 167-181. https://doi.org/10.1016/j.gca.2019.07.052.

[2]

Bonnand P., Bruand E., Matzen A.K., Jerram M., Schiavi F., Wood B.J., Boyet M., Halliday A.N., 2020a. Redox control on chromium isotope behavior in silicate melts in contact with magnesiochromite. Geochim. Cosmochim. Acta 288, 282-300. https://doi.org/10.1016/j.gca.2020.07.038.

[3]

Bonnand P., Doucelance R., Boyet M., Bachèlery P., Bosq C., Auclair D., Schiano P., 2020b. The influence of igneous processes on the chromium isotopic compositions of Ocean Island basalts. Earth Planet. Sci. Lett. 532, 116028. https://doi.org/10.1016/j.epsl.2019.116028.

[4]

Bonnand P., Halliday A.N., 2018. Oxidizedconditionsinironmeteoriteparentbodies. Nature Geosci. 11, 401-404. https://doi.org/10.1038/s41561-018-0128-2.

[5]

Bonnand P., Parkinson I.J., Anand M., 2016a. Mass dependent fractionation of stable chromium isotopes in mare basalts: Implications for the formation and the differentiation of the Moon. Geochim. Cosmochim. Acta 175, 208-221. https://doi.org/10.1016/j.gca.2015.11.041.

[6]

Bonnand P., Williams H.M., Parkinson I.J., Wood B.J., Halliday A.N., 2016b. Stable chromium isotopic composition of meteorites and metal-silicate experiments: Implications for fractionation during core formation. Earth Planet. Sci. Lett. 435, 14-21. https://doi.org/10.1016/j.epsl.2015.11.026.

[7]

Chen C., Dai W., Wang Z., Liu Y., Li M., Becker H., Foley S.F., 2019a. Calcium isotope fractionation during magmatic processes in the upper mantle. Geochim. Cosmochim. Acta 249, 121-137. https://doi.org/10.1016/j.gca.2019.01.031.

[8]

Chen C., Liu Y., Foley S.F., Ducea M.N., Geng X., Zhang W., Xu R., Hu Z., Zhou L., Wang Z., 2017. Carbonated sediment recycling and its contribution to lithospheric refertilization under the northern North China Craton. Chem. Geol. 466, 641-653. https://doi.org/10.1016/j.chemgeo.2017.07.016.

[9]

Chen C., Su B.X., Xiao Y., Sakyi P.A., He X.Q., Pang N.K., Uysal I., Avcı E., Qin L.P., 2019b. High-temperature chromium isotope fractionation and its implications: Constraints from the Kızıldağ ophiolite, SE Turkey. Lithos 342-343, 361-369. https://doi.org/10.1016/j.lithos.2019.05.038.

[10]

D'Arcy, J., Babechuk, M.G., Døssing, N.L., Gaucher, C., Frei, R., 2016. Processes controlling the chromium isotopic composition of river water: Constraints from basaltic river catchments. Geochim. Cosmochim. Acta 186, 296-315. https://doi.org/10.1016/j.gca.2016.04.027.

[11]

Economou-Eliopoulos M., Frei R., Mitsis I., 2020. Factors controlling the chromium isotope compositions in podiform chromitites. Minerals 10, 1-22. https://doi.org/10.3390/min10010010.

[12]

Farkaš J., Chrastny´ V., Novák M., čadkova E., Pašava J., Chakrabarti R., Jacobsen S. B., Ackerman L., Bullen T.D., 2013. Chromium isotope variations (d53/52 Cr) in mantle-derived sources and their weathering products: Implications for environmental studies and the evolution of d53/52 Cr in the Earth's mantle over geologic time. Geochim. Cosmochim. Acta 123, 74-92. https://doi.org/10.1016/j.gca.2013.08.016.

[13]

Gale A., Dalton C.A., Langmuir C.H., Su Y., Schilling J.G., 2013. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489-518. https://doi.org/10.1029/2012GC004334.

[14]

Handy M.R., Schmid S.M., Bousquet R., Kissling E., Bernoulli D., 2010. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth-Sci. Rev. 102 (3-4), 121-158. https://doi.org/10.1016/j.earscirev.2010.06.002.

[15]

Hartmann G., Hans Wedepohl K., 1993. The composition of peridotite tectonites from the Ivrea Complex, northern Italy: Residues from melt extraction. Geochim. Cosmochim. Acta 57 (8), 1761-1782. https://doi.org/10.1016/0016-7037(93)90112-A

[16]

Handy M.R., Franz L., Heller F., Janott B., Zurbriggen R., 1999. Multistage accretion and exhumation of the continental crust (Ivrea crustal section, Italy and Switzerland). Tectonics 18 (6), 1154-1177. https://doi.org/10.1029/1999TC900034.

[17]

Herzberg C., 2004. Geodynamic information in peridotite petrology. J. Petrol. 45 (12), 2507-2530. https://doi.org/10.1093/petrology/egh039.

[18]

Huang J., Chen S., Zhang X.C., Huang F., 2018. Effects of melt percolation on Zn isotope heterogeneity in the mantle: Constraints from peridotite massifs in Ivrea-Verbano Zone, Italian Alps. J. Geophys. Res. Solid Earth 123, 2706-2722. https://doi.org/10.1002/2017JB015287.

[19]

Huang J., Huang F., Wang Z., Zhang X., Yu H., 2017. Copper isotope fractionation during partial melting and melt percolation in the upper mantle: Evidence from massif peridotites in Ivrea-Verbano Zone, Italian Alps. Geochim. Cosmochim. Acta 211, 48-63. https://doi.org/10.1016/j.gca.2017.05.007.

[20]

Ito M., Ganguly J., 2006. Diffusion kinetics of Cr in olivine and 53 Mn-53 Cr thermochronology of early solar system objects. Geochim. Cosmochim. Acta 70, 799-809. https://doi.org/10.1016/j.gca.2005.09.020.

[21]

Jerram M., Bonnand P., Harvey J., Ionov D., Halliday A.N., 2022. Stable chromium isotopic variations in peridotite mantle xenoliths: metasomatism versus partial melting. Geochim. Cosmochim. Acta 317, 138-154. https://doi.org/10.1016/j.gca.2021.10.022.

[22]

Jerram M., Bonnand P., Kerr A.C., Nisbet E.G., Puchtel I.S., Halliday A.N., 2020. The d53 Cr isotope composition of komatiite flows and implications for the composition of the bulk silicate Earth. Chem. Geol. 551, 119761. https://doi.org/10.1016/j.chemgeo.2020.119761.

[23]

Kadlag Y., Becker H., Harbott A., 2019. Cr isotopes in physically separated components of the Allende CV 3 and Murchison CM 2 chondrites: Implications for isotopic heterogeneity in the solar nebula and parent body processes. Meteorit. Planet. Sci. 54 (9), 2116-2131. https://doi.org/10.1111/maps.13375.

[24]

Kang J.T., Ionov D.A., Liu F., Zhang C.L., Golovin A.V., Qin L.P., Zhang Z.F., Huang F., 2017. Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca isotope composition of the bulk silicate earth. Earth Planet. Sci. Lett. 474, 128-137. https://doi.org/10.1016/j.epsl.2017.05.035.

[25]

Kelemen P.B., Dick H.J., Quick J.E., 1992. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358 (6388), 635-641. https://doi.org/10.1038/358635a0.

[26]

Lai Y.J., Pogge von Strandmann P.A.E., Dohmen R., Takazawa E., Elliott T., 2015. The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman Peridotite Massif. Geochim. Cosmochim. Acta 164, 318-332. https://doi.org/10.1016/j.gca.2015.05.006.

[27]

Liu C.Y., Xu L.J., Liu C.T., Liu J., Qin L.P., Zhang Z.D., Liu S.A., Li S.G., 2019. High-precision measurement of stable Cr isotopes in geological reference materials by a double-spike TIMS method. Geostand. Geoanal. Res. 43, 647-661. https://doi.org/10.1111/ggr.12283.

[28]

Liu C., Xu L.J., Ma H., Liu S.A., Liu P.P., Wang X., Li S., 2024. Stable chromium isotope fractionation during the alteration of abyssal peridotite: Implications for marine chromium isotope mass balance. J. Geophys. Res.: Solid Earth 129, e2023JB027140. https://doi.org/10.1029/2023JB027140.

[29]

Ma H., Xu L.J., Shen J., Liu S.A., Li S., 2022. Chromium isotope fractionation during magmatic processes: Evidence from mid-ocean ridge basalts. Geochim. Cosmochim. Acta 327, 79-95. https://doi.org/10.1016/j.gca.2022.04.018.

[30]

Mazzucchelli M., Rivalenti G., Brunelli D., Zanetti A., Boari E., 2009. Formation of highly refractory dunite by focused percolation of pyroxenite-derived melt in the Balmuccia Peridotite Massif (Italy). J. Petrol. 50 (7), 1205-1233. https://doi.org/10.1093/petrology/egn053.

[31]

Mazzucchelli M., Zanetti A., Rivalenti G., Vannucci R., Correia C.T., Tassinari C.C., 2010. Age and geochemistry of mantle peridotites and diorite dykes from the Baldissero body: Insights into the Paleozoic-Mesozoic evolution of the Southern Alps. Lithos 119 (3-4), 485-500. https://doi.org/10.1016/j.lithos.2010.08.002.

[32]

Mukasa S.B., Shervais J.W., 1999. Growth of subcontinental lithosphere: Evidence from repeated dike injections in the Balmuccia lherzolite massif, Italian Alps. Lithos 48 (1-4), 287-316. https://doi.org/10.1016/S0024-4937(99)00033-X

[33]

Moynier F., Yin Q.Z., Schauble E., 2011. Isotopic evidence of Cr partitioning into Earth's core. Science 331 (6023), 1417-1420. https://doi.org/10.1126/science.1199597.

[34]

Novak M., Andronikov A., Sebek O., Kotkova J., Kochergina Y., Stepanova M., Strnad L., Kram P., Veselovsky F., Stedra V., Curik J., Chrastny, Prechova, Houskova M., 2022. Chromium isotope systematics in three mantle-derived domains of Central European Variscides: Relationship between d 53 Cr values and progressive weathering of serpentinized ultramafic rocks. Chem. Geol. 604, 120940. https://doi.org/10.1016/j.chemgeo.2022.120940.

[35]

Obermiller W.A., 1994. Chemical and isotopic variations in the Balmuccia, Baldissero and Finero peridotite massifs (Ivrea-Zone, Italy). Ph.D. thesis, Johannes Gutenberg-Universität Mainz, 191 pp.

[36]

Palme H., O'Neill H.S., 2014. 3.1—Cosmochemical estimates of mantle composition A2—Holland, Heinrich D. In: TurekianK.K. (Ed.), Treatise on geochemistry (2nd ed). Oxford: Elsevier, pp. 1-39. doi: 10.1016/B978-0-08-095975-7.00201-1.

[37]

Peressini G., Quick J.E., Sinigoi S., Hofmann A.W., Fanning M., 2007. Duration of a large mafic intrusion and heat transfer in the lower crust: A SHRIMP U-Pb zircon study in the Ivrea-Verbano Zone (western Alps, Italy). J. Petrol. 48 (6), 1185-1218. https://doi.org/10.1093/petrology/egm014.

[38]

Ping X., Wang X., Zheng J., Liu Y., Su Y., Chen H., Wei Y., Dai H., Ai L., 2022. The stable chromium isotope composition of different mantle reservoirs. Geochim. Cosmochim. Acta 338, 24-33. https://doi.org/10.1016/j.gca.2022.09.025.

[39]

Posner E.S., Ganguly J., Hervig R., 2016. Diffusion kinetics of Cr in spinel: Experimental studies and implications for 53 Mn-53 Cr cosmochronology. Geochim. Cosmochim. Acta 175, 20-35. https://doi.org/10.1016/j.gca.2015.11.018.

[40]

Quick J.E., Sinigoi S., Peressini G., Demarchi G., Wooden J.L., Sbisà A., 2009. Magmatic plumbing of a large Permian caldera exposed to a depth of 25 km. Geology 37, 603-606. https://doi.org/10.1130/G30003A.1.

[41]

Richter F.M., Davis A.M., DePaolo D.J., Watson E.B., 2003. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim. Cosmochim. Acta 67 (20), 3905-3923. https://doi.org/10.1016/S0016-7037(03)00174-1

[42]

Rivalenti G., Mazzucchelli M., Vannucci R., Hofmann A.W., Ottolini L., Bottazzi P., Obermiller W., 1995. The relationship between websterite and peridotite in the Balmuccia peridotite massif (NW Italy) as revealed by trace element variations in clinopyroxene. Contrib. Mineral. Petrol. 121 (3), 275-288. https://doi.org/10.1007/BF02688243.

[43]

Rudnick R.L., Ionov D.A., 2007. Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: Product of recent melt/ fluid-rock reaction. Earth Planet Sci. Lett. 256 (1-2), 278-293. https://doi.org/10.1016/j.epsl.2007.01.035.

[44]

Soderman C.R., Shorttle O., Matthews S., Williams H.M., 2022. Global trends in novel stable isotopes in basalts: Theory and observations. Geochim. Cosmochim. Acta 318, 388-414. https://doi.org/10.1016/j.gca.2021.12.008.

[45]

Savage P.S., Moynier F., Chen H., Shofner G., Siebert J., Badro J., Puchtel I.S., 2015. Copper isotope evidence for large-scale sulphide fractionation during Earth's differentiation. Geochem. Perspect. Lett. 1, 53-64. https://doi.org/10.7185/geochemlet.1506.

[46]

Schoenberg R., Zink S., Staubwasser M., Blanckenburg F., 2008. The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS. Chem. Geol. 249, 294-306. https://doi.org/10.1016/j.chemgeo.2008.01.009.

[47]

Schoenberg R., Merdian A., Holmden C., Kleinhanns I.C., Haßler K., Wille M., Reitter E., 2016. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs. Geochim. Cosmochim. Acta 183, 14-30. https://doi.org/10.1016/j.gca.2016.03.013.

[48]

Schmid S.M., 1993. Ivrea Zone and Adjacent Southern Alpine Basement. In: von Raumer, J.F., NeubauerF. (Pre-MesozoicGeology in the Alps.Eds.), Springer, Berlin, Heidelberg, pp. 567-583. https://doi.org/10.1007/978-3-642-84640-3_33.

[49]

Siegesmund S., Layer P., Dunkl I., Vollbrecht A., Steenken A., Wemmer K., Ahrendt H., 2008. Exhumation and deformation history of the lower crustal section of the Valstrona di Omegna in the Ivrea Zone, southern Alps. The Geological Society, London, Special Publications 298, 45-48. https://doi.org/10.1144/SP298.3.

[50]

Shen J., Liu J., Qin L., Wang S.-J., Li S., Xia J., Ke S., Yang J., 2015. Chromium isotope signature during continental crust subduction recorded in metamorphic rocks. Geochem. Geophys. Geosyst. 16, 3840-3854. https://doi.org/10.1002/2015GC005944.

[51]

Shen J., Qin L., Fang Z., Zhang Y., Liu J., Liu W., Wang Y., Xiao Y., Yu H., Wei S., 2018. High-temperature inter-mineral Cr isotope fractionation: A comparison of ionic model predictions and experimental investigations of mantle xenoliths from the North China Craton. Earth Planet Sci. Lett. 499, 278-290. https://doi.org/10.1016/j.epsl.2018.07.041.

[52]

Shen J., Wang S.J., Qin L., Ni H., Li S., Du J., Shen T., Zhang L., Yu H., 2021. Tracing serpentinite dehydration in a subduction channel: Chromium element and isotope evidence from subducted oceanic crust. Geochim. Cosmochim. Acta 313, 1-20. https://doi.org/10.1016/j.gca.2021.06.030.

[53]

Shen J., Xia J., Qin L., Carlson R.W., Huang S., Helz R.T., Mock T.D., 2020. Stable chromium isotope fractionation during magmatic differentiation: Insights from Hawaiian basalts and implications for planetary redox conditions. Geochim. Cosmochim. Acta 278, 289-304. https://doi.org/10.1016/j.gca.2019.10.003.

[54]

Shen J., Zuo Z., Yang B., Ionov D.A., Li W.Y., Qin L., 2023. Chromium isotope variations in garnet-facies mantle rocks and their minerals: Implications for Cr isotope behavior in high-temperature processes. Geochim. Cosmochim. Acta 360, 122-137. https://doi.org/10.1016/j.gca.2023.08.002.

[55]

Shervais J.W., Mukasa S.B., 1991. The Balmuccia orogenic lherzolite massif, Italy. J. Petrol. 2, 155-174. https://doi.org/10.1093/petrology/Special_Volume.2.155.

[56]

Sinigoi S., Cominchiaramonti P., Demarchi G., Siena F., 1983. Differentiation of partial melts in the mantle: Evidence from the Balmuccia peridotite, Italy. Contrib. Mineral. Petrol. 82 (4), 351-359. https://doi.org/10.1007/BF00399712.

[57]

Sills J.D., Tarney J., 1984. Petrogenesis and tectonic significance of amphibolites interlayered with metasedimentary gneisses in the Ivrea Zone, Southern Alps, Northwest Italy. Tectonophysics 107 (3-4), 187-206. https://doi.org/10.1016/0040-1951(84)90251-8

[58]

Sossi P.A., Nebel O., Foden J., 2016. Iron isotope systematics in planetary reservoirs. Earth Planet. Sci. Lett. 452, 295-308. https://doi.org/10.1016/j.epsl.2016.07.032.

[59]

Sossi P.A., Nebel O., O'Neill H.S.C., Moynier F., 2018. Zinc isotope composition of the Earth and its behaviour during planetary accretion. Chem. Geol. 471, 125-135. https://doi.org/10.1016/j.chemgeo.2017.12.006.

[60]

Sun C.G., Dasgupta R., 2019. Slab-mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth Planet. Sci. Lett. 506, 38-52. https://doi.org/10.1016/j.epsl.2018.10.028.

[61]

Wagner L.J., Kleinhanns I.C., Weber N., Babechuk M.G., Hofmann A., Schoenberg R., 2021. Coupled stable chromium and iron isotopic fractionation tracing magmatic mineral crystallization in Archean komatiite-tholeiite suites. Chem. Geol. 576, 120121. https://doi.org/10.1016/j.chemgeo.2021.120121.

[62]

Wagner L.J., Kleinhanns I.C., Varas-Reus M.I., Rosca C., König S., Bach W., Schoenberg R., 2023. Light stable Cr isotope compositions of mid-ocean ridge basalts: Implications for mantle source composition. Geochim. Cosmochim. Acta 353, 76-91. https://doi.org/10.1016/j.gca.2023.04.028.

[63]

Wang Z., Becker H., 2015a. Fractionation of highly siderophile and chalcogen elements during magma transport in the mantle: Constraints from pyroxenites of the Balmuccia peridotite massif. Geochim. Cosmochim. Acta 159, 244-263. https://doi.org/10.1016/j.gca.2015.03.036.

[64]

Wang Z., Becker H., 2015b. Abundances of Ag and Cu in mantle peridotites and the implications for the behavior of chalcophile elements in the mantle. Geochim. Cosmochim. Acta 160, 209-226. https://doi.org/10.1016/j.gca.2015.04.006.

[65]

Wang Z., Becker H., Gawronski T., 2013. Partial re-equilibration of highly siderophile elements and the chalcogens in the mantle: A case study on the Baldissero and Balmuccia peridotite massifs (Ivrea Zone, Italian Alps). Geochim. Cosmochim. Acta 108, 21-44. https://doi.org/10.1016/j.gca.2013.01.021.

[66]

Wang Z., Becker H., 2018. Molybdenum partitioning behavior and content in the depleted mantle: Insights from Balmuccia and Baldissero mantle tectonites (Ivrea Zone, Italian Alps). Chem. Geol. 499, 138-150. https://doi.org/10.1016/j.chemgeo.2018.09.023.

[67]

Wang Z., Becker H., Liu Y., Hoffmann E., Chen C., Zou Z., Li Y., 2018. Constant Cu/ Ag in upper mantle and oceanic crust: Implications for the role of cumulates during the formation of continental crust. Earth Planet. Sci. Lett. 493, 25-35. https://doi.org/10.1016/j.epsl.2018.04.008.

[68]

Weyer S., Ionov D.A., 2007. Partial melting and melt percolation in the mantle: The message from Fe isotopes. Earth Planet. Sci. Lett. 259 (1-2), 119-133. https://doi.org/10.1016/j.epsl.2007.04.033.

[69]

White W.M., 2014. 4.13-composition of the oceanic crust. In: HollandH.D., TurekianK.K. (Treatiseon Geochemistry Second Edition,Eds.), 4(3), 457-496. http://dx.doi.org/10.1016/B978-0-08-095975-7.00315-6.

[70]

Xia J., Qin L., Shen J., Carlson R.W., Ionov D.A., Mock T.D., 2017. Chromium isotope heterogeneity in the mantle. Earth Planet. Sci. Lett. 464, 103-115. https://doi.org/10.1016/j.epsl.2017.01.045.

[71]

Xu L.J., Zhu K., Man Q.R., Lewis J., Ma H., Liu S.A., 2023. Precise and accurate mass-independent chromium isotope measurement by total evaporation mode on thermal ionization mass spectrometry (TE-TIMS) at 200 ng Level. Atomic Spectroscop. 44 (3), 142-152. https://doi.org/10.46770/AS.2023.079.

[72]

Zingg A., 1990. The Ivrea crustal cross-section (northern Italy and southern Switzerland). In: SalisburyM.H., FountainD.M. (Exposed Cross-Sections of the Continental Crust.Eds.), NATO ASI Series. Springer, Dordrecht, pp. 1-19. doi: 10.1007/978-94-009-0675-4_1.

[73]

Zhao X., Zhang Z., Huang S., Liu Y., Li X., Zhang H., 2017. Coupled extremely light Ca and Fe isotopes in peridotites. Geochim. Cosmochim. Acta 208, 368-380. https://doi.org/10.1016/j.gca.2017.03.024.

[74]

Zhu K., Sossi P.A., Siebert J., Moynier F., 2019. Tracking the volatile and magmatic history of Vesta from chromium stable isotope variations in eucrite and diogenite meteorites. Geochim. Cosmochim. Acta 266, 598-610. https://doi.org/10.1016/j.gca.2019.07.043.

[75]

Zhu K., Moynier F., Alexander C.M.O., Davidson J., Schrader D.L., Zhu J.M., Wu G. L., Schiller M., Bizzarro M., Becke H., 2021a. Chromium stable isotope panorama of chondrites and implications for earth early accretion. Astrophys. J. 923, 94. https://doi.org/10.3847/1538-4357/ac2570.

[76]

Zhu K., Moynier F., Schiller M., Alexander C.M.O.D., Barrat J.A., Bischoff A., Bizzao M., 2021b. Mass-independent and mass-dependent Cr isotopic composition of the Rumuruti (R) chondrites: Implications for their origin and planet formation. Geochim. Cosmochim. Acta 293, 598-609. https://doi.org/10.1016/j.gca.2020.10.007.

[77]

Zhu K., Moynier F., Schiller M., Becker H., Barrat J.A., Bizzarro M., 2021c. Tracing the origin and core formation of the enstatite achondrite parent bodies using Cr isotopes. Geochim. Cosmochim. Acta 308, 158-186. https://doi.org/10.1016/j.gca.2021.05.053.

[78]

Zhu J.M., Wu G.L., Wang X., Han G., Zhang L., 2018. An improved method of Cr purification for high precision measurement of Cr isotopes by double spike MC-ICP-MS. J. Anal. Atom. Spectrom. 33, 809-821. https://doi.org/10.1039/C8JA00033F.

[79]

Zou Z., Wang Z., Li M., Becker H., Geng X., Hu Z., Lazarow M., 2019. Copper isotope variations during magmatic migration in the mantle: Insights from mantle pyroxenites in Balmuccia peridotite massif. J. Geophys. Res. Solid Earth 124, 11130-11149. https://doi.org/10.1029/2019JB017990.

AI Summary AI Mindmap
PDF

386

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/