Formation of late-stage passive-roof duplexes in fold-and-thrust belts: Thrusting sequence and thermochronologic constraints from the Northern Apennines (Italy)

Marco Bonini , Daniele Maestrelli , Domenico Montanari , Federico Sani , Maria Laura Balestrieri

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102048

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102048 DOI: 10.1016/j.gsf.2025.102048

Formation of late-stage passive-roof duplexes in fold-and-thrust belts: Thrusting sequence and thermochronologic constraints from the Northern Apennines (Italy)

Author information +
History +
PDF

Abstract

Passive-roof duplexes accommodate shortening at the mountain front of many fold-and-thrust belts worldwide. These structures typically manifest at the surface by hinterland-verging backthrusts that decouple thin-skinned thrust sheets from underlying foreland-verging duplexes. Although the main factors controlling the development of passive-roof duplexes have mostly been identified, some of their intrinsic characteristics are still poorly defined. These relate to their spatio-temporal relationships to thrust faults located further inland in orogens, and their ability to transport younger rocks over older ones. This study explores these issues in the Casentino-Romagna axial sector of the Northern Apennines, which expose regional forethrusts and backthrusts. Detailed field mapping and analysis of superposed tectonic structures were integrated with apatite fission-track dating for constraining the timing of rock exhumation and correlated tectonic events. Collectively, the results have allowed us to interpret the evolution of the study area in terms of two main deformation stages. Specifically, a first, long phase (D1) progressed from NE-directed, in-sequence thrusting (~18 to ~10-9 Ma) to late out-of-sequence thrusting (~8-5 Ma). A successive deformation phase, that we refer to as D2 (~4-2 Ma), consisted of backthrusts and associated folds that were ubiquitous and systematically overprinted onto the foreland-verging D1 structures. Such retrovergent structures identify a late deformation phase dominated by the development of passive-roof duplexes that propagated hinterlandward into the orogen up to beyond the primary watershed ridge. Orogen-scale processes controlled the evolution of forelandward D1-phase thrusts, although late erosion could have played a major role by bringing the Apennine thrust wedge toward an undercritical state. The latter conditions could have contributed to keeping the out-of-sequence thrusts active, and eventually promoted the development of the D2 passive-roof duplexes.

Keywords

Passive-roof duplexes / Structural analysis / Apatite fission-track dating / Northern Apennines / Critical wedge stability

Cite this article

Download citation ▾
Marco Bonini, Daniele Maestrelli, Domenico Montanari, Federico Sani, Maria Laura Balestrieri. Formation of late-stage passive-roof duplexes in fold-and-thrust belts: Thrusting sequence and thermochronologic constraints from the Northern Apennines (Italy). Geoscience Frontiers, 2025, 16(4): 102048 DOI:10.1016/j.gsf.2025.102048

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Marco Bonini: Writing - review & editing, Writing - original draft, Visualization, Validation, Supervision, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization. Daniele Maestrelli: Writing - review & editing, Visualization, Validation, Investigation, Conceptualization. Dome-nico Montanari: Writing - review & editing, Validation, Investiga-tion, Conceptualization. Federico Sani: Writing - review & editing, Validation, Supervision, Investigation, Conceptualization. Maria Laura Balestrieri: Writing - review & editing, Writing - original draft, Validation, Supervision, Methodology, Investigation, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Thoughtful comments from two reviewers greatly helped to clarify several points and improve the quality of the manuscript. This research has been supported by ISPRA-Servizio Geologico d'Italia (Rome) through the funds of the CARG Project-Geological Map of Italy 1:50,000 scale. AFT data analysis was partly supported by the European Plate Observing System (EPOS), by the Joint Research Unit (JRU) EPOS Italia, and by the 'Monitoring Earth's Evo-lution and Tectonics' (MEET) project. Additional information about AFT data are available in the in-text citation Balestrieri et al. (2024), free to download from the GFZ data service repository at the link https://doi.org/10.5880/fidgeo.2024.047 under Creative Commons Attribution 4.0 International License.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102048.

References

[1]

Albanese C., Sulli A., 2012. Backthrusts and passive roof duplexes in fold-and-thrust belts: The case of Central-Western Sicily based on seismic reflection data. Tectonophysics 514-517, 180-198. https://doi.org/10.1016/j.tecto.2011.11.002.

[2]

Almendral A., Robles W., Parra M., Mora A., Ketcham R.A., Raghib M., 2015. FetKin: Coupling kinematic restorations and temperature to predict thrusting, exhumation histories, and thermochronometric ages. AAPG Bull. 99 (8), 1557-1573.

[3]

Armstrong F.C., Oriel S.S., 1965. Tectonic development of Idaho-Wyoming thrust belt. Bull. Am. Assoc. Pet. Geol. 49, 1847-1866.

[4]

Anelli L., Gorza M., Pieri M., Riva M., 1994. Subsurface well data in the Northern Apennines. Mem. Soc. Geol. It. 48, 461-471.

[5]

Angelier J., Mechler P., 1977. Sur une méthode graphique de recherche des contraintes principales également utilisable en tectonique et en séismologie: La méthode des dièdres droits. Bull. Soc. Géol. De France 19, 1309-1318 (in French).

[6]

Baby P., Hérail G., Salinas R., Sempere T., 1992. Geometry and kinematic evolution of passive roof duplexes deduced from cross section balancing: Example from the foreland thrust system of the southern Bolivian Subandean Zone. Tectonics 11, 523-536. https://doi.org/10.1029/91TC03090.

[7]

Baldacci F., Elter P., Giannini E., Giglia G., Lazzarotto A., Nardi R., Tongiorgi M., 1967. Nuove osservazioni sul problema della falda toscana e sulla interpretazione dei flysch arenacei tipo "Macigno" dell'Appennino settentrionale. Mem. Soc. Geol. It. 6 (2), 213-244.

[8]

Balestrieri M.L., Pandeli E., Bigazzi G., Carosi R., Montomoli C., 2011. Age and temperature constraints on metamorphism and exhumation of the syn-orogenic metamorphic complexes of Northern Apennines, Italy. Tectonophysics 509, 254-271.

[9]

Balestrieri M.L., Bonini M., Maestrelli D., Montanari D., Sani F., 2024. Apatite fission-track data from the watershed area of the Northern Apennines (Italy). [Dataset] GFZ Data Services. https://doi.org/10.5880/fidgeo.2024.047.

[10]

Bally A.W., Gordy P.L., Sewart G.A., 1966. Structure, seismic data and orogenic evolution of Southern Canadian Rocky Mountains. Bull. Can. Petrol. Geol. 14, 337-381.

[11]

Bally A.W., Burbi L., Cooper C., Ghelardoni R., 1986. Balanced sections and seismic reflection profiles across the central Apennines. Mem. Soc. Geol. It. 35, 257-310.

[12]

Banks C.J., Warburton J., 1986. "Passive-roof" duplex geometry in the frontal structures of the Kirthar and Sulaiman mountain belts, Pakistan. J. Struct. Geol. 8, 229-237.

[13]

Bello M., Franchino A., Merlini S., 2000. Structural model of Eastern Sicily. Mem. Soc. Geol. It. 55, 61-70.

[14]

Bendkik A.M., Boccaletti M., Bonini M., Poccianti C., Sani F., 1994. Structural evolution of the outer Apennine Chain (Firenzuola-Città di Castello sector and Montefeltro area, Tuscan-Romagnan and Umbro-Marchean Apennine). Mem. Soc. Geol. It. 48, 515-522.

[15]

Bernard M., van der Beek P., Braun J., Robert X., Colleps C., Gallagher K., Guenthner W., Amalberti J., Wapenhans I., 2023. PecubeGUI-beta (1.0.0-beta). Zenodo. https://doi.org/10.5281/zenodo.8362722.

[16]

Bettelli G., Boccaletti M., Cibin U., Panini F., Poccianti C., Rosselli S., Sani F., 2002. Geological Map of Italy, Sheet n. 252 'Barberino di Mugello', 1: 50,000 scale, with explanatory notes. Servizio Geologico D'italia-Regione Emilia-Romagna, 130.

[17]

Bhandari N., Bhat S.G., Lal D., Rajagopalan G., Tamhane A.S., Venkatavaradan V.S., 1971. Fission fragment tracks in apatite: recordable track lengths. Earth Planet. Sci. Lett. 13, 191-199.

[18]

Boccaletti M., Sani F., 1998. Cover thrust reactivations related to internal basement involvement during Neogene-Quaternary evolution of the northern Apennines. Tectonics 17, 112-130. https://doi.org/10.1029/97TC02067

[19]

Boccaletti M., Elter P., Guazzone G., 1971. Plate tectonic models for the development of the Western Alps and Northern Apennines. Nat. Phys. Sci. 234, 108-111. https://doi.org/10.1038/physci234108a0.

[20]

Boccaletti M., Ciaranfi N., Cosentino D., Deiana G., Gelati R., Lentini F., Massari F., Moratti G., Pescatore T., Ricci Lucchi F., Tortorici L., 1990. Palinspastic restoration and paleogeographic reconstruction of the peri-Tyrrhenian area during the Neogene. Palaeogeog. Palaeoclimatol. Palaeoecol. 77, 41-50. https://doi.org/10.1016/0031-0182(90)90097-Q

[21]

Bonini M., 1999. Basement-controlled Neogene polyphase cover thrusting and basin development along the Chianti Mountains ridge (Northern Apennines, Italy). Geol. Mag. 136, 133-152. https://doi.org/10.1017/S0016756899002277.

[22]

Bonini M., 2001. Passive roof thrusting and forelandward fold propagation in scaled brittle-ductile physical models of thrust wedges. J. Geophys. Res. 106, 2291-2311. https://doi.org/10.1029/2000JB900310.

[23]

Bonini M., 2006. Detachment folding-related Miocene submarine slope instability in the Romagna Apennines (Italy). J. Geophys. Res. Solid Earth 111, B01404. https://doi.org/10.1029/2004JB003552.

[24]

Bonini M., 2018. Orogen-parallel variation in exhumation and its influence on critical taper evolution: The case of the Emilia-Romagna Apennine (Italy). Tectonophysics 727, 41-55. https://doi.org/10.1016/j.tecto.2018.01.029.

[25]

Bonini M., Tanini C., 2009. Tectonics and Quaternary evolution of the Northern Apennines watershed area (upper course of Arno and Tiber rivers, Italy). Geol. J. 44, 2-29. https://doi.org/10.1002/gj.1122.

[26]

Bonini M., Sokoutis D., Mulugeta G., Katrivanos E., 2000. Modelling hanging wall accommodation above rigid thrust ramps. J. Struct. Geol. 22, 1165-1179. https://doi.org/10.1016/S0191-8141(00)00033-X

[27]

Bonini M., Sani F., Stucchi E.M., Moratti G., Benvenuti M., Menanno G., Tanini C., 2014. Late Miocene shortening of the Northern Apennines back-arc. J. Geodyn. 74, 1-31. https://doi.org/10.1016/j.jog.2013.11.002.

[28]

Bonini M., Benvenuti M., Maestrelli D., Montanari D., Sani F., Silvestri S., Balestrieri M.L., Catanzariti R., Chiari M., Lanari R., Brilli M., Del Ventisette C., Avanzinelli R., Cortese G., 2025. Explanatory Notes of Sheet 277 Bibbiena. ISPRA-Servizio Geologico d'Italia, Rome, 221 pp. https://doi.org/10.15161/oar.it/212105

[29]

Bortolotti V., Mannori G., Principi G., Sani F., Catanzariti R., Reale V., Di Giulio A.,Vannucci G., 2008. Explanatory notes of the Sheet n. 278 Pieve Santo Stefano, 1:50.000 scale. ISPRA-Servizio Geologico d'Italia, 96 pp. https://www.isprambiente.gov.it/Media/carg/note_illustrative/278_Pieve_SStefano.pdf.

[30]

Bortolotti V., Poccianti C., Principi G., Sani F., Benvenuti M., Catanzariti R., Moretti S., Reale V., 2010. Explanatory notes of the Sheet n. 264 Borgo San Lorenzo, 1:50.000 scale. ISPRA-Servizio Geologico d'Italia, 104 pp. https://www.isprambiente.gov.it/Media/carg/note_illustrative/264_Borgo_SLorenzo. pdf.

[31]

Botti F., Daniele G., Baldacci F., Palandri S., Ribollini A, Ungari A., Molli G., 2011. Geological Map of Italy, Sheet n. 251 'Porretta Terme', 1: 50,000 scale, with explanatory notes. Servizio Geologico d'Italia-Regione Emilia-Romagna, 194 pp.

[32]

Boyer S.E., Elliott D., 1982. Thrust systems. Am. Assoc. Petrol. Geol. Bull. 66, 1196-1230.

[33]

Braun J., 2003. Pecube: A new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Comput. Geosci. 29 (6), 787-794.

[34]

Butler R.W.H., 1982. A structural analysis of the Moine thrust zone between Loch Eriboll and Foinaven, NW Scotland. J. Struct. Geol. 4, 19-29.

[35]

Butler R.W.H., 1987. Thrust sequences. J. Geol. Soc. London 144, 619-634.

[36]

Catanzariti R., Ottria G., Cerrina Feroni A., Martelli L., 2002. Tavole stratigrafiche. In: Cerrina FeroniA., OttriaG., MartinelliP., MartelliL., CatanzaritiR. (CartaGeologico-strutturale dell'Appennino emiliano-romagnolo,Eds.) 1:250,000 scale, S.EL.CA, Firenze.

[37]

Cello G., Nur A., 1988. Emplacement of foreland thrust systems. Tectonics 7, 261-271.

[38]

Cerrina Feroni A., Leoni L., Martelli L., Martinelli P., Ottria G., Sarti G., 2001. The Romagna Apennines, Italy: an eroded duplex. Geol. J. 36 (1), 39-54. https://doi.org/10.1002/gj.874.

[39]

Cerrina Feroni A., Levi N., Ottria G., 2008. Duplex architecture and late-orogenic backthrusting in Foredeep Units of the Northern Apennines (Italy). Geol. J. 43, 447-462. https://doi.org/10.1002/gj.1116.

[40]

Cibin U., Di Giulio A., Martelli L., Catanzariti R., Poccianti C., Rosselli S., Sani F., 2004. Factors controlling foredeep turbidite deposition:The case of northern Apennines (Oligocene-Miocene, Italy). In: LomasS.A. and JosephP. (Confinedturbidite systems. Soc.Eds.) Geol. London Spec. Publ. 222, 115-134.

[41]

Coli M., Sani F., 1990. Vein distribution in a thrust zone: a case history from the Northern Apennines, Italy. In: KnipeR.J., RutterE.H. (DeformationMechanisms, Soc.Eds.), Rheology and Tectonics. Geol. London Spec. Pubbl. 54, 475-482.

[42]

Couzens B.A., Wiltschko D.V., 1996. The control of mechanical stratigraphy on the formation of triangle zones. Bull. Can. Pet. Geol. 44, 165-179.

[43]

Couzens-Schultz B.A., Vendeville B.C., Wiltschko D.V., 2003. Duplex style and triangle zone formation: insights from physical modeling. J. Struct. Geol. 25, 1623-1644.

[44]

Dahlen F.A., 1990. Critical taper model of fold-and-thrust belts and accretionary wedges. Annu. Rev. Earth Planet. Sci. 18, 55-99. https://doi.org/10.1146/annurev.ea.18.050190.000415.

[45]

Dahlen F.A., Suppe J., Davis D., 1984. Mechanics of fold-and-thrust belts and accretionary wedges: cohesive Coulomb theory. J. Geophys. Res. Solid Earth 89, 10087-10101.

[46]

Dahlstrom C.D.A., 1969. Balanced cross-sections. Can. J. Earth Sci. 6, 743-751.

[47]

Davis D., Suppe J., Dahlen F.A., 1983. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. Solid Earth 88, 1153-1172.

[48]

DeCelles P.G., Mitra G., 1995. History of the Sevier orogenic wedge in terms of critical taper models, northeast Utah and southwest Wyoming. Geol. Soc. Am. Bull. 107 (454), 462. https://doi.org/10.1130/0016-7606.

[49]

Delvaux D., 1993. The TENSOR program for paleostress reconstruction: examples from the east African and the Baikal rift zones. EUG VII Strasbourg, France, 4-8 April 1993. Abstract supplement N°1 to Terra Nova 5, 216.

[50]

Delvaux D., Sperner B., 2003. Stress tensor inversion from fault kinematic indicators and focal mechanism data:the TENSOR program. In: NieuwlandD. (Ed.), New Insights into Structural Interpretation and Modelling. Geological Society, London, Special Publications 212, 75-100.

[51]

Delvaux D., Moeys R., Stapel G., Petit C., Levi K., Miroshnichenko A., Ruzhich V., San'kov V., 1997. Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic Rifting. Tectonophysics 282 (1-4), 1-38.

[52]

Dewey J.F., Pitman W.C., Ryan W.B.F., Bonnin J., 1973. Plate tectonics and the evolution of the Alpine System. Geol. Soc. Am. Bull. 84, 3137-3180. https://doi.org/10.1130/0016-7606(1973)84%3C3137:PTATEO%3E2.0.CO;2.

[53]

Di Giulio A., Mancin N., Martelli L., Sani F., 2013. Foredeep palaeobathymetry and subsidence trends during advancing then retreating subduction: The Northern Apennine case (Oligocene-Miocene, Italy). Basin Res. 25, 260-284. https://doi.org/10.1111/bre.12002.

[54]

Doblas M., 1998. Slickenside kinematic indicators. Tectonophysics 295, 187-197. https://doi.org/10.1016/S0040-1951(98)00120-6

[55]

Doglioni C., Mongelli F., Pialli G.P., 1998. Boudinage of the Alpine belt in the Apenninic back-arc. Mem. Soc. Geol. It. 52, 457-468.

[56]

Donelick R.A., O'Sullivan P.B., Ketcham R.A., 2005. Apatite fission-track analysis. Rev. Mineral. Geochem. 58, 49-94.

[57]

Dunkl I., 2002. TRACKKEY: a Windows program for calculation and graphical presentation of fission track data. Comput. Geosci. 28, 3-12.

[58]

Ehlers T.A., 2005. Crustal thermal processes and the interpretation of thermochronometer data. Rev. Mineral. Geochem. 58 (1), 315-350.

[59]

Eichelberger N., McQuarrie N., Ehlers T.A., Enkelmann E., Barnes J.B., Lease R.O., 2013. New constraints on the chronology, magnitude, and distribution of deformation within the central Andean orocline. Tectonics 32, 1432-1453. https://doi.org/10.1002/tect.20073.

[60]

Erickson S.G., 1995. Mechanics of triangle zones and passive-roof duplexes: implications of finite element models. Tectonophysics 245, 1-11.

[61]

Erickson S.G., Strayer L.M., Suppe J., 2001. Initiation and reactivation of faults during movement over a thrust-fault ramp: numerical mechanical models. J. Struct. Geol. 23, 11-23.

[62]

Erlanger E.D., Fellin M.G., Willett S.D., 2022. Exhumation and erosion of the Northern Apennines, Italy: new insights from low-temperature thermochronometers. Solid Earth 13, 347-365. https://doi.org/10.5194/se-13-347-2022

[63]

Fazzini P., 1964. Geologia dell'Appennino Tosco-Emiliano tra il Passo dei Mandrioli e il Passo della Calla. Boll. Soc. Geol. It. 83 (2), 219-258.

[64]

Finetti I.R., Boccaletti M., Bonini M., Del Ben A., Pipan M., Prizzon A., Sani F., 2005. Lithospheric tectono-stratigraphic setting of the Ligurian Sea-Northern Apennines-Adriatic Foreland from Integrated CROP Seismic Data. In FinettiI. (Ed.): CROP Project-Deep seismic exploration of the Central Mediterranean and Italy. Atlases in Geoscience, 1, Elsevier B.V., pp. 119-158.

[65]

Galbraith R.F., 1981. On statistical models for fission track counts. J. Int. Assoc. Math. Geol. 13, 471-478.

[66]

Galbraith R.F., Laslett G.M., 1993. Statistical models for mixed fission track ages. Nucl. Tracks Radiat. Meas. 21, 459-470.

[67]

Gilmore M.E., McQuarrie N., Eizenhöfer P.R., Ehlers T.A., 2018. Testing the effects of topography, geometry, and kinematics on modelled thermochronometer cooling ages in the eastern Bhutan Himalaya. Solid Earth 9 (3), 599-627.

[68]

Gordy P.L., Frey F.R., Norris D.K., 1977. Geological Guide for the C.S.P.G. and 1977 Waterton-Glacier Park Field Conference, Canadian Society of Petroleum Geology, Calgary, Alberta, pp. 1-93.

[69]

Green P.F., Duddy I.R., 1989. Some comments on paleotemperature estimation from apatite fission track analysis. J. Pet. Geol. 12, 111-114.

[70]

Harrison J.C., 1995. Tectonics and kinematics of a foreland folded belt influenced by salt, Arctic Canada. AAPG Mem. 65, 379-412.

[71]

Huerta A.D., Rodgers D.W., 2006. Constraining rates of thrusting and erosion: Insights from kinematic thermal modeling. Geology 34, 541-544.

[72]

Hurford A.J., 1990. Standardization of fission track dating calibration: recommendation by the Fission Track Working Group of the I.U.G.S. Subcommission on Geochronol. Chem. Geol. 80, 171-178.

[73]

Hurford A.J., Green P.F., 1983. The zeta age calibration of fission-track dating. Chem. Geol. 41, 285-317. https://doi.org/10.1016/S0009-2541(83)80026-6

[74]

Jamison W.R., 1996. Mechanical models of triangle zone evolution. Bull. Can. Pet. Geol. 44, 180-194.

[75]

Jardin A., Chaker R., Krzywiec P., 2007. Understanding seismic propagation through triangle zones. In: LacombeO., RoureF., LavéJ., VergésJ. (ThrustBelts and Foreland Basins.Eds.), Frontiers in Earth Sciences. Springer, Berlin, Heidelberg, pp. 61-72. https://doi.org/10.1007/978-3-540-69426-7_3.

[76]

Jolivet L., Faccenna C., D'Agostino N., Fournier M., Worrall D., 1999. The kinematics of back-arc basins, examples from the Tyrrhenian, Aegean and Japan Seas. Geol. Soc. Spec. Pub. 164 (1), 21-53. https://doi.org/10.1144/GSL.SP.1999.164.01.04.

[77]

Jones P.B., 1996. Triangle zone geometry, terminology and kinematics. Bull. Can. Pet. Geol. 2, 139-152. https://doi.org/10.35767/gscpgbull.44.2.139.

[78]

Ketcham R.A., 2005. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data. Rev. Mineral. Geochem. 58, 275-314.

[79]

Lock J., Willett S., 2008. Low-temperature thermochronometric ages in fold-and-thrust belts. Tectonophysics 456, 147-162.

[80]

López C., Martínez F., Del Ventisette C., Bonini M., Montanari D., Muñoz B., Riquelme R., 2020. East-vergent thrusts and inversion structures: An updated tectonic model to understand the Domeyko Cordillera and the Salar de Atacama Basin transition in the western Central Andes. J. South Am. Earth. Sci. 103, 102741. https://doi.org/10.1016/j.jsames.2020.102741.

[81]

Maestrelli D., Benvenuti M., Bonini M., Carnicelli S., Piccardi L., Sani F., 2018. The structural hinge of a chain-foreland basin: Quaternary activity of the Pede-Apennine Thrust front (Northern Italy). Tectonophysics 723, 117-135. https://doi.org/10.1016/j.tecto.2017.12.006.

[82]

Marroni M., Meneghini F., Pandolfi L., 2010. Anatomy of the Ligure-Piemontese subduction system: evidence from Late Cretaceous-middle Eocene convergent margin deposits in the Northern Apennines, Italy. Int. Geol. Rev. 52, 1160-1192. https://doi.org/10.1080/00206810903545493.

[83]

Marroni M., Meneghini F., Pandolfi L., 2017. A revised subduction inception model to explain the Late Cretaceous, double-vergent orogen in the precollisional western Tethys: Evidence from the Northern Apennines. Tectonics 36, 2227-2249. https://doi.org/10.1002/2017TC004627.

[84]

Martelli L., Camassi R., Catanzariti R., Fornaciari E., Peruzza L.,Spadafora E., 2002. Geological Map (1:50,000 scale) and Explanatory Notes of Sheet 265 Bagno di Romagna. Servizio Geologico d'Italia-Regione Emilia-Romagna, 106 pp.https://www.isprambiente.gov.it/Media/carg/emilia.html.

[85]

Martelli L., Bonini M., Calabrese L., Corti G., Ercolessi G., Molinari F.C., Piccardi L., Pondrelli S., Sani F., Severi P., 2017. Seismotectonic Map of the Emilia-Romagna Region and Surrounding Areas, Scale 1:250,000, 2nd edition, with explanatory notes. D.R.E.AM, Firenze.

[86]

Martini I.P., Sagri M., 1993. Tectono-sedimentary characteristics of late Miocene-Quaternary extensional basins of the Northern Apennines. Italy. Earth-Sci. Rev. 34, 197-233. https://doi.org/10.1016/0012-8252(93)90034-5

[87]

McClay K.R., 1992. Glossary of thrust tectonics terms. In: McClayK.R. (Ed.), ThrustTectonics, London, Chapman & Hallp.419-433. 10.1007/978-94-011-3066-0.

[88]

Mongelli F., Loddo M., Tramacere A., Zito G., Perusini P., Squarci P., Taffi L., 1981. Contributo alla mappa del flusso geotermico in Italia: misure sulla fascia pre-appenninica marchigiana. In: Proceedings 1St GNGTS Meeting, pp. 427-452.

[89]

Montanari D., Del Ventisette C., Bonini M., Sani F., 2007. Passive-roof thrusting in the Messinian Vena del Gesso Basin (Northern Apennines, Italy): constraints from field data and analogue models. Geol. J. 42, 455-476. https://doi.org/10.1002/gj.1085.

[90]

Mora A., Ketcham R.A., Higuera-Díaz C., Bookhagen B., Jimenez L., Rubiano J., 2014. Formation of passive-roof duplexes in the Colombian Subandes and Perú. Lithosphere 6 (6), 456-472. https://doi.org/10.1130/L340.1.

[91]

Morley C.K., 1986. A classification of thrust fronts. AAPG Bull. 70, 12-25.

[92]

Morley C.K., 1988. Out-of sequence thrusts. Tectonics 7, 539-561. https://doi.org/10.1029/TC007i003p00539.

[93]

Mugnier J.L., Baby P., Colletta B., Vinour P., Bale P., Leturmy P., 1997. Thrust geometry controlled by erosion and sedimentation: A view from analogue models. Geology 25, 427-430.

[94]

Mulugeta G., Koyi H., 1987. Three-dimensional geometry and kinematics of experimental piggyback thrusting. Geology 15 (11), 1052-1056.

[95]

Papeschi S., Musumeci G., Mazzarini F., 2017. Heterogeneous brittle-ductile deformation at shallow crustal levels under high thermal conditions: The case of a synkinematic contact aureole in the inner northern Apennines, southeastern Elba Island, Italy. Tectonophysics 717, 547-564.

[96]

Petit J.P., Proust F., Tapponnier P., 1983. Critéres de sens de mouvement sur les miroirs de failles en roches non calcaires. Bull. Soc. Geol. France S7-XXV (4), 589-608. https://doi.org/10.2113/gssgfbull.S7-XXV.4.589 (in French).

[97]

Petit J.P., 1987. Criteria for the sense of movement on fault surfaces in brittle rocks. J. Struct. Geol. 9 (5-6), 597-608.

[98]

Pieri M., Groppi G., 1981. Subsurface geological structure of the Po plain, Italy. In: Publication, 414. Consiglio Nazionale delle Ricerche, AGIP, Rome.

[99]

Price R.A., 1981. The Cordilleran foreland thrust and fold belt in the southern Canadian Rocky Mountains. In: McClayK.R., PriceN.J. (Thrustand Nappe Tectonics.Eds.), Spec. Publ. Geol. Soc. London 9, 427-448.

[100]

Price R.A., 1986. The southeastern Canadian Cordillera: thrust faulting, tectonic wedging and delamination of the lithosphere. J. Struct. Geol. 8, 239-254.

[101]

Ramsay J.G., 1962. Interference patterns produced by the superposition of folds of similar types. J. Geol. 70, 466-481.

[102]

Ramsay J.G., 1967. Folding and Fracturing of Rocks. McGraw-Hill, New York, p. 568.

[103]

Regione Emilia-Romagna. 1994. Geological Map of the Emilia-Romagna Apennines, Sheet 265-S. Piero in Bagno (1:50,000 scale) and Explanatory Notes. S.EL.CA., Firenze.

[104]

Ricci Lucchi F., 1986. The Oligocene to recent foreland basins of the northern Apennines. Special Publications of the International Association of Sedimentologist 8,105-139.

[105]

Royden L., Patacca E., Scandone P., 1987. Segmentation and configuration of subducted lithosphere in Italy: An important control on thrust-belt and foredeep-basin evolution. Geology 15 (8), 714-717. https://doi.org/10.1130/0091-7613(1987)15<714:SACOSL>2.0.CO;2.

[106]

Ryan E., Papeschi S., Viola G., Musumeci G., Mazzarini F., Torgersen E., Sørensen B.E., Ganerød M., 2021. Syn-orogenic exhumation of high-P units by upward extrusion in an accretionary wedge: Insights from the Eastern Elba nappe stack (Northern Apennines, Italy). Tectonics 40, e2020TC006348. https://doi.org/10.1029/2020TC006348.

[107]

Sani F., 1991. Rilevamento strutturale della catena appenninica nel settore Firenzuola-Bocca Trabaria. Mem. Descr. Carta Geol. D'it. 46, 327-337.

[108]

Sani F., Bonini M., Piccardi L., Vannucci D., Delle Donne D., Benvenuti M., Moratti G., Corti G., Montanari D., Sedda L., Tanini C., 2009. Late Pliocene-Quaternary evolution of outermost hinterland basins of the Northern Apennines (Italy), and their relevance to active tectonics. Tectonophysics 476, 336-356. https://doi.org/10.1016/j.tecto.2008.12.012.

[109]

Sans M., Munoz J.A., Vergés J., 1996. Triangle zone and thrust wedge geometries related to evaporitic horizons (southern Pyrenees). Bull. Can. Petrol. Geol. 44, 375-384.

[110]

Searle M.P., 1985. Sequence of thrusting and origin of culminations in the northern and central Oman Mountains. J. Struct. Geol. 7 (2), 129-143.

[111]

Serra S., 1977. Styles of deformation in the ramp regions of overthrust faults. Twenty-Ninth Annual Field Conference-1977-Wyoming Geological Association Guidebook, pp. 487-498.

[112]

Serri G., Innocenti F., Manetti P., 1993. Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. Tectonophysics 223, 117-147. https://doi.org/10.1016/0040-1951(93)90161-C

[113]

Servizio Geologico d'Italia, 2025. Geological map of Italy at 1:50,000 scale, Sheet n. 277 Bibbiena. ISPRA, Roma. DOI: 10.15161/oar.it/212103.

[114]

Signorini R., 1936. Osservazioni geologiche sul bordo settentrionale del Casentino. Boll. Soc. Geol. It. 55 (2), 283-294.

[115]

Sobornov K., 1996. Lateral variations in structural styles of tectonic wedging in the northeastern Caucasus, Russia. Bull. Can. Petrol. Geol. 44, 385-399.

[116]

Stockli D.F., 2005. Application of low-temperature thermochronometry to extensional tectonic settings. Rev. Mineral. Geochem. 58 (1), 411-448.

[117]

Suppe J., 1983. Geometry and kinematics of fault-bend folding. Am. J. Sci. 283, 684-721.

[118]

Ten Haaf E., Van Wamel W.A., 1979. Nappes of the Alta Romagna. Geol. Mijnb. 58 (2), 145-152.

[119]

Thomson S.N., Brandon M.T., Reiners P.W., Zattin M., Isaacson P.J., Balestrieri M. L., 2010. Thermochronologic evidence for orogen-parallel variability in wedge kinematicsduring extending convergent orogenesis of the northern Apennines, Italy. GSA Bull. 122, 1160-1179. https://doi.org/10.1130/B26573.1.

[120]

Vai G.B., 1987. Migrazione complessa del sistema fronte deformativo-avanfossa-cercine periferico: il caso dell'Appennino Settentrionale. Mem. Soc. Geol. Ital. 38, 95-105.

[121]

Vann I.R., Graham R.H., Hayward A.B., 1986. The structure of mountain fronts. J. Struct. Geol. 8, 215-227.

[122]

Vermeesch P., 2009. Radial Plotter: A Java application for fission track, luminescence and other radial plots. Radiat. Meas. 44, 409-410.

[123]

Viola G., Torgersen E., Mazzarini F., Musumeci G., van der Lelij R., Schönenberger J., Garofalo P.S., 2018. New constraints on the evolution of the inner Northern Apennines by K-Ar dating of Late Miocene-Early Pliocene compression on the Island of Elba, Italy. Tectonics 37 (9), 3229-3243.

[124]

von Hagke C., Malz A., 2018. Triangle zones - Geometry, kinematics, mechanics, and the need for appreciation of uncertainties. Earth-Sci. Rev. 177, 24-42. https://doi.org/10.1016/j.earscirev.2017.11.003.

[125]

Zattin M., Picotti V., Zuffa G.G., 2002. Fission-track reconstruction of the front of the northern Apennine thrust wedge and overlying Ligurian Unit. Am. J. Sci. 302, 346-379.

AI Summary AI Mindmap
PDF

491

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/