Genetic Factors in Nonsyndromic Orofacial Clefts

Mahamad Irfanulla Khan, Prashanth CS, Narasimha Murthy Srinath

PDF(277 KB)
PDF(277 KB)
Global Medical Genetics ›› 2021, Vol. 7 ›› Issue (04) : 101-108. DOI: 10.1055/s-0041-1722951
Review Article
Review Article

Genetic Factors in Nonsyndromic Orofacial Clefts

Author information +
History +

Abstract

Orofacial clefts (OFCs) are the most common congenital birth defects in humans and immediately recognized at birth. The etiology remains complex and poorly understood and seems to result from multiple genetic and environmental factors along with gene-environment interactions. It can be classified into syndromic (30%) and nonsyndromic (70%) clefts. Nonsyndromic OFCs include clefts without any additional physical or cognitive deficits. Recently, various genetic approaches, such as genome-wide association studies (GWAS), candidate gene association studies, and linkage analysis, have identified multiple genes involved in the etiology of OFCs.
This article provides an insight into the multiple genes involved in the etiology of OFCs. Identification of specific genetic causes of clefts helps in a better understanding of the molecular pathogenesis of OFC. In the near future, it helps to provide a more accurate diagnosis, genetic counseling, personalized medicine for better clinical care, and prevention of OFCs.

Keywords

orofacial clefts / nonsyndromic / genetics / gene mutation / genome-wide association study / linkage analysis

Cite this article

Download citation ▾
Mahamad Irfanulla Khan, Prashanth CS, Narasimha Murthy Srinath. Genetic Factors in Nonsyndromic Orofacial Clefts. Global Medical Genetics, 2021, 7(04): 101‒108 https://doi.org/10.1055/s-0041-1722951

References

[1]
Wong FK, Hagg U. An update on the aetiology of orofacial clefts. Hong Kong Med J 2004; 10(05): 331-336
[2]
Mossey P. Epidemiology underpinning research in the aetiology of orofacial clefts. Orthod Craniofac Res 2007; 10(03): 114-120
[3]
Rahimov F, Jugessur A, Murray JC. Genetics of nonsyndromic orofacial clefts. Cleft Palate Craniofac J 2012; 49(01): 73-91
[4]
Worley ML, Patel KG, Kilpatrick LA. Cleft lip and palate. Clin Perinatol 2018; 45(04): 661-678
[5]
Huang L, Jia Z, Shi Y, et al. Genetic factors define CPO and CLO subtypes of nonsyndromicorofacial cleft. PLoS Genet 2019; 15(10): e1008357
[6]
Yang CW, Shi JY, Yin B, Shi B, Jia ZL. Mutation at paired box gene 9 is associated with non-syndromic cleft lip only from Western Han Chinese population. Arch Oral Biol 2020; 117: 104829
[7]
Martinelli M, Palmieri A, Carinci F, Scapoli L. Non-syndromic cleft palate: an overview on human genetic and environmental risk factors. Front Cell Dev Biol 2020; 8: 592271
[8]
Jugessur A, Farlie PG, Kilpatrick N. The genetics of isolated orofacial clefts: from genotypes to subphenotypes. Oral Dis 2009; 15(07): 437-453
[9]
do Rego Borges A, Sá J, Hoshi R, et al. Genetic risk factors for nonsyndromic cleft lip with or without cleft palate in a Brazilian population with high African ancestry. Am J Med Genet A 2015; 167A(10): 2344-2349
[10]
Saad AN, Parina RP, Tokin C, Chang DC, Gosman A. Incidence of oral clefts among different ethnicities in the state of California. Ann Plast Surg 2014; 72(Suppl. 01): S81-S83
[11]
Ghazali N, Rahman NA, Kannan TP, Jaafar S. Screening of transforming growth factor Beta 3 and Jagged2 genes in the Malay population with nonsyndromic cleft lip with or without cleft palate. Cleft Palate Craniofac J 2015; 52(04): e88-e94
[12]
Hoffman-Andrews L, Tarnowski JM, Lee S, et al. Characteristics of orofacial clefting in Hawai'i. Hawaii J Health Soc Welf 2019; 78(08): 258-261
[13]
Dixon MJ, Marazita ML, Beaty TH, Murray JC. Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet 2011; 12(03): 167-178
[14]
Leslie EJ, Marazita ML. Genetics of cleft lip and cleft palate. Am J Med Genet C Semin Med Genet 2013; 163C(04): 246-258
[15]
Neela PK, Gosla SR, Husain A, Mohan V. CRISPLD2 gene polymorphisms with nonsyndromic cleft lip palate in Indian population. Glob Med Genet 2020; 7(01): 22-25
[16]
Hagberg C, Larson O, Milerad J. Incidence of cleft lip and palate and risks of additional malformations. Cleft Palate Craniofac J 1998; 35(01): 40-45
[17]
Ogle OE. Incidence of cleft lip and palate in a newborn Zairian sample. Cleft Palate Craniofac J 1993; 30(02): 250-251
[18]
Wyszynski DF, Wu T. Use of US birth certificate data to estimate the risk of maternal cigarette smoking for oral clefting. Cleft Palate Craniofac J 2002; 39(02): 188-192
[19]
Yang J, Carmichael SL, Canfield M, Song J, Shaw GM. National Birth Defects Prevention Study. Socioeconomic status in relation to selected birth defects in a large multicentered US case-control study. Am J Epidemiol 2008; 167(02): 145-154
[20]
Croen LA, Shaw GM, Wasserman CR, Tolarová MM. Racial and ethnic variations in the prevalence of orofacial clefts in California, 1983-1992. Am J Med Genet 1998; 79(01): 42-47
[21]
Mossey PA, Little J, Munger RG, Dixon MJ, Shaw WC. Cleft lip and palate. Lancet 2009; 374(9703): 1773-1785
[22]
Parker SE, Mai CT, Canfield MA, et al; National Birth Defects Prevention Network. Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004-2006. Birth Defects Res A Clin Mol Teratol 2010; 88(12): 1008-1016
[23]
Neela PK, Gosla SR, Husain A, Mohan V, Thumoju S, Rajeshwari BV. Analysis of single nucleotide polymorphisms on locus 13q33.1-34 in multigenerational families of cleft lip palate using mass array. Indones Biomed J.2020; In press
[24]
Bender PL. Genetics of cleft lip and palate. J Pediatr Nurs 2000; 15(04): 242-249
[25]
Neela PK, Gosla SR, Husain A, Mohan V, Thumoju S, Bv R. Association of MAPK4 and SOX1-OT gene polymorphisms with cleft lip palate in multiplex families: a genetic study. J Dent Res Dent Clin Dent Prospect 2020; 14(02): 93-96
[26]
Wyszynski DF, Wu T. Prenatal and perinatal factors associated with isolated oral clefting. Cleft Palate Craniofac J 2002; 39(03): 370-375
[27]
Cobourne MT. Cleft Lip and Palate. Epidemiology, Aetiology and Treatment. Front Oral Biol. London: Karger; 2012: 60-70
[28]
Singh I, Pal GP. Human Embryology. 7th ed. Delhi: Macmillan India Ltd; 2001: 130-131
[29]
Jiang R, Bush JO, Lidral AC. Development of the upper lip: morphogenetic and molecular mechanisms. Dev Dyn 2006; 235(05): 1152-1166
[30]
Stanier P, Moore GE. Genetics of cleft lip and palate: syndromic genes contribute to the incidence of non-syndromic clefts. Hum Mol Genet 2004; 13(Spec No 1): R73-R81
[31]
Gritli-Linde A. Molecular control of secondary palate development. Dev Biol 2007; 301(02): 309-326
[32]
Bush JO, Jiang R. Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development. Development 2012; 139(02): 231-243
[33]
Fogh Andersen P. Inheritance of harelip and cleft palate. Copenhagen: Busck; 1942
[34]
Fraser FC, Baxter H. The familial distribution of congenital clefts of the lip and palate; a preliminary report. Am J Surg 1954; 87(05): 656-659
[35]
Fraser FC. The genetics of cleft lip and cleft palate. Am J Hum Genet 1970; 22(03): 336-352
[36]
Marazita ML, Spence MA, Melnick M. Genetic analysis of cleft lip with or without cleft palate in Danish kindreds. Am J Med Genet 1984; 19(01): 9-18
[37]
Mitchell LE.Mode of inheritance of oral clefts. In: Wyszyski DF. ed. Cleft Lip and Palate: From Origin to Treatment. New York, NY: Oxford University Press; 2002: 234-239
[38]
Grosen D, Bille C, Pedersen JK, Skytthe A, Murray JC, Christensen K. Recurrence risk for offspring of twins discordant for oral cleft: a population-based cohort study of the Danish 1936-2004 cleft twin cohort. Am J Med Genet A 2010; 152A(10): 2468-2474
[39]
Chung KC, Kowalski CP, Kim HM, Buchman SR. Maternal cigarette smoking during pregnancy and the risk of having a child with cleft lip/palate. Plast Reconstr Surg 2000; 105(02): 485-491
[40]
Bhaskar LV, Murthy J, Venkatesh Babu G. Polymorphisms in genes involved in folate metabolism and orofacial clefts. Arch Oral Biol 2011; 56(08): 723-737
[41]
Sabbagh HJ, Innes NP, Sallout BI, et al. Birth prevalence of non-syndromic orofacial clefts in Saudi Arabia and the effects of parental consanguinity. Saudi Med J 2015; 36(09): 1076-1083
[42]
Neela PK, Reddy SG, Husain A, Mohan V. Association of cleft lip and/or palate in people born to consanguineous parents: a 13-year retrospective study from a very high volume cleft center. J Cleft Lip Palate Craniofacial Anomalies 2019; 6: 33-37
[43]
FitzPatrick DR, Carr IM, McLaren L, et al. Identification of SATB2 as the cleft palate gene on 2q32-q33. Hum Mol Genet 2003; 12(19): 2491-2501
[44]
Britanova O, Depew MJ, Schwark M, et al. SATB2 haploinsufficiency phenocopies 2q32-q33 deletions, whereas loss suggests a fundamental role in the coordination of jaw development. Am J Hum Genet 2006; 79(04): 668-678
[45]
Leoyklang P, Suphapeetiporn K, Siriwan P, et al. Heterozygous nonsense mutation SATB2 associated with cleft palate, osteoporosis, and cognitive defects. Hum Mutat 2007; 28(07): 732-738
[46]
Grassia V, Lombardi A, Kawasaki H, et al. Salivary microRNAs as new molecular markers in cleft lip and palate: a new frontier in molecular medicine. Oncotarget 2018; 9(27): 18929-18938
[47]
Martinelli M, Scapoli L, Pezzetti F, et al. Suggestive linkage between markers on chromosome 19q13.2 and nonsyndromic orofacial cleft malformation. Genomics 1998; 51(02): 177-181
[48]
Park BY, Sull JW, Park JY, Jee SH, Beaty TH. Differential parental transmission of markers in BCL3 among Korean cleft case-parent trios. J Prev Med Public Health 2009; 42(01): 1-4
[49]
Lace B, Kempa I, Klovins J, et al. BCL3 gene role in facial morphology. Birth Defects Res A Clin Mol Teratol 2012; 94(11): 918-924
[50]
François-Fiquet C, Poli-Merol ML, Nguyen P, Landais E, Gaillard D, Doco-Fenzy M. Role of angiogenesis-related genes in cleft lip/palate: review of the literature. Int J Pediatr Otorhinolaryngol 2014; 78(10): 1579-1585
[51]
Neela PK, Gosla SR, Husain A, Mohan V, Thumoju S, Rajeshwari BV. Association of nucleotide variants of GRHL3, IRF6, NAT2, SDC2, BCL3 and PVRL1 genes with non-syndromic cleft lip with/without cleft palate in multigenerational families: a retrospective study. Contemp Clin Dent2020; In press
[52]
Talbot JC, Johnson SL, Kimmel CB. hand2 and Dlx genes specify dorsal, intermediate and ventral domains within zebrafish pharyngeal arches. Development 2010; 137(15): 2507-2517
[53]
Murthi P, Said JM, Doherty VL, et al. Homeobox gene DLX4 expression is increased in idiopathic human fetal growth restriction. Mol Hum Reprod 2006; 12(12): 763-769
[54]
Zhang L, Yang M, Gan L, et al. DLX4 upregulates TWIST and enhances tumor migration, invasion and metastasis. Int J Biol Sci 2012; 8(08): 1178-1187
[55]
Wu D, Mandal S, Choi A, et al. DLX4 is associated with orofacial clefting and abnormal jaw development. Hum Mol Genet 2015; 24(15): 4340-4352
[56]
He M, Bian Z. Association between DLX4 polymorphisms and nonsyndromicorofacial clefts in a Chinese Han population. Cleft Palate Craniofac J 2019; 56(03): 357-362
[57]
Bonczek O, Balcar VJ, Šerý O. PAX9 gene mutations and tooth agenesis: a review. Clin Genet 2017; 92(05): 467-476
[58]
Li R, Chen Z, Yu Q, Weng M, Chen Z. The function and regulatory network of PAX9 gene in palate development. J Dent Res 2019; 98(03): 277-287
[59]
Peters H, Neubüser A, Kratochwil K, Balling R. PAX9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev 1998; 12(17): 2735-2747
[60]
Schuffenhauer S, Leifheit HJ, Lichtner P, Peters H, Murken J, Emmerich P. De novo deletion (14)(q11.2q13) including PAX9: clinical and molecular findings. J Med Genet 1999; 36(03): 233-236
[61]
Das P, Hai M, Elcock C, et al. Novel missense mutations and a 288-bp exonic insertion in PAX9 in families with autosomal dominant hypodontia. Am J Med Genet A 2003; 118A(01): 35-42
[62]
Zhao JL, Chen YX, Bao L, Xia QJ, Wu TJ, Zhou L. Novel mutations of PAX9 gene in Chinese patients with oligodontia. Zhonghua Kou Qiang Yi Xue Za Zhi 2005; 40(04): 266-270
[63]
Sull JW, Liang KY, Hetmanski JB, et al. Maternal transmission effects of the PAX genes among cleft case-parent trios from four populations. Eur J Hum Genet 2009; 17(06): 831-839
[64]
Nakatomi M, Wang XP, Key D, et al. Genetic interactions between PAX9 and Msx1 regulate lip development and several stages of tooth morphogenesis. Dev Biol 2010; 340(02): 438-449
[65]
Song T, Wu D, Wang Y, Li H, Yin N, Zhao Z. SNPs and interaction analyses of IRF6, MSX1 and PAX9 genes in patients with nonsyndromic cleft lip with or without palate. Mol Med Rep 2013; 8(04): 1228-1234
[66]
de Araujo TK, Secolin R, Félix TM, et al. A multicentric association study between 39 genes and nonsyndromic cleft lip and palate in a Brazilian population. J Craniomaxillofac Surg 2016; 44(01): 16-20
[67]
Serafini T, Colamarino SA, Leonardo ED, et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 1996; 87(06): 1001-1014
[68]
Salminen M, Meyer BI, Bober E, Gruss P. Netrin 1 is required for semicircular canal formation in the mouse inner ear. Development 2000; 127(01): 13-22
[69]
Srinivasan K, Strickland P, Valdes A, Shin GC, Hinck L. Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis. Dev Cell 2003; 4(03): 371-382
[70]
Leslie EJ, Taub MA, Liu H, et al. Identification of functional variants for cleft lip with or without cleft palate in or near PAX7, FGFR2, and NOG by targeted sequencing of GWAS loci. Am J Hum Genet 2015; 96(03): 397-411
[71]
Guo Q, Li D, Meng X, et al. Association between PAX7 and NTN1 gene polymorphisms and nonsyndromicorofacial clefts in a northern Chinese population. Medicine (Baltimore) 2017; 96: 19 (e6724)
[72]
Braybrook C, Doudney K, Marçano AC, et al. The T-box transcription factor gene TBX22 is mutated in X-linked cleft palate and ankyloglossia. Nat Genet 2001; 29(02): 179-183
[73]
Braybrook C, Lisgo S, Doudney K, et al. Craniofacial expression of human and murine TBX22 correlates with the cleft palate and ankyloglossia phenotype observed in CPX patients. Hum Mol Genet 2002; 11(22): 2793-2804
[74]
Prescott NJ, Lees MM, Winter RM, Malcolm S. Identification of susceptibility loci for nonsyndromic cleft lip with or without cleft palate in a two stage genome scan of affected sib-pairs. Hum Genet 2000; 106(03): 345-350
[75]
Marçano AC, Doudney K, Braybrook C, et al. TBX22 mutations are a frequent cause of cleft palate. J Med Genet 2004; 41(01): 68-74
[76]
Suphapeetiporn K, Tongkobpetch S, Siriwan P, Shotelersuk V. TBX22 mutations are a frequent cause of non-syndromic cleft palate in the Thai population. Clin Genet 2007; 72(05): 478-483
[77]
Dai J, Xu C, Wang G, et al. Novel TBX22 mutations in Chinese nonsyndromic cleft lip/palate families. J Genet 2018; 97(02): 411-417
[78]
Kantaputra PN, Paramee M, Kaewkhampa A, et al. Cleft lip with cleft palate, ankyloglossia, and hypodontia are associated with TBX22 mutations. J Dent Res 2011; 90(04): 450-455
[79]
Shu X, Dong Z, Cheng L, Shu S. DNA hypermethylation of Fgf16 and Tbx22 associated with cleft palate during palatal fusion. J Appl Oral Sci 2019; 27: e20180649
[80]
Takahashi K, Nakanishi H, Miyahara M, et al. Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein. J Cell Biol 1999; 145(03): 539-549
[81]
Suzuki K, Hu D, Bustos T, et al. Mutations of PVRL1, encoding a cell-cell adhesion molecule/herpesvirus receptor, in cleft lip/palate-ectodermal dysplasia. Nat Genet 2000; 25(04): 427-430
[82]
Sözen MA, Suzuki K, Tolarova MM, Bustos T, Fernández Iglesias JE, Spritz RA. Mutation of PVRL1 is associated with sporadic, non-syndromic cleft lip/palate in northern Venezuela. Nat Genet 2001; 29(02): 141-142
[83]
Scapoli L, Palmieri A, Martinelli M, et al. Study of the PVRL1 gene in Italian nonsyndromic cleft lip patients with or without cleft palate. Ann Hum Genet 2006; 70(Pt 3): 410-413
[84]
Oner DA, Tastan H. Identification of novel variants in the PVRL1 gene in patients with nonsyndromic cleft lip with or without cleft palate. Genet Test Mol Biomarkers 2016; 20(05): 269-272
[85]
Avila JR, Jezewski PA, Vieira AR, et al. PVRL1 variants contribute to non-syndromic cleft lip and palate in multiple populations. Am J Med Genet A 2006; 140(23): 2562-2570
[86]
Sözen MA, Hecht JT, Spritz RA. Mutation analysis of the PVRL1 gene in Caucasians with nonsyndromic cleft lip/palate. Genet Test Mol Biomarkers 2009; 13(05): 617-621
[87]
Cheng HQ, Huang EM, Xu MY, Shu SY, Tang SJ. PVRL1 as a candidate gene for nonsyndromic cleft lip with or without cleft palate: no evidence for the involvement of common or rare variants in southern Han Chinese patients. DNA Cell Biol 2012; 31(07): 1321-1327
[88]
Shu SY, Zhang MJ, Cheng HQ, et al. Mutation analysis of PVRL1 in patients with non-syndromic cleft of the lip and/or palate in Guangdong. Genet Mol Res 2015; 14(02): 3400-3408
[89]
Yoshiura K, Machida J, Daack-Hirsch S, et al. Characterization of a novel gene disrupted by a balanced chromosomal translocation t(2;19)(q11.2;q13.3) in a family with cleft lip and palate. Genomics 1998; 54(02): 231-240
[90]
Warrington A, Vieira AR, Christensen K, et al. Genetic evidence for the role of loci at 19q13 in cleft lip and palate. J Med Genet 2006; 43(06): e26
[91]
Ichikawa E, Watanabe A, Nakano Y, et al. PAX9 and TGFB3 are linked to susceptibility to nonsyndromic cleft lip with or without cleft palate in the Japanese: population-based and family-based candidate gene analyses. J Hum Genet 2006; 51(01): 38-46
[92]
Carter TC, Molloy AM, Pangilinan F, et al. Testing reported associations of genetic risk factors for oral clefts in a large Irish study population. Birth Defects Res A Clin Mol Teratol 2010; 88(02): 84-93
[93]
Wang PW, Eisenbart JD, Cordes SP, Barsh GS, Stoffel M, Le Beau MM. Human KRML (MAFB): cDNA cloning, genomic structure, and evaluation as a candidate tumor suppressor gene in myeloid leukemias. Genomics 1999; 59(03): 275-281
[94]
Beaty TH, Murray JC, Marazita ML, et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4. Nat Genet 2010; 42(06): 525-529
[95]
Zankl A, Duncan EL, Leo PJ, et al. Multicentric carpotarsal osteolysis is caused by mutations clustering in the amino-terminal transcriptional activation domain of MAFB. Am J Hum Genet 2012; 90(03): 494-501
[96]
Park JG, Tischfield MA, Nugent AA, et al. Loss of MAFB function in humans and mice causes Duane syndrome, aberrant extraocular muscle innervation, and inner-ear defects. Am J Hum Genet 2016; 98(06): 1220-1227
[97]
Mi N, Hao Y, Jiao X, et al. Association study of single nucleotide polymorphisms of MAFB with non-syndromic cleft lip with or without cleft palate in a population in Heilongjiang Province, northern China. Br J Oral Maxillofac Surg 2014; 52(08): 746-750
[98]
He Y, Huang L, Zheng Y, Chen JH, Tang S. Association of single nucleotide polymorphisms at 20q12 with nonsyndromic cleft lip with or without cleft palate in a Southern Chinese Han cohort. Mol Genet Genomic Med 2020; 8(01): e1028
[99]
Imani MM, Lopez-Jornet P, Pons-Fuster López E, Sadeghi M. Polymorphic variants of V-Maf musculoaponeurotic fibrosarcoma oncogene homolog B (rs13041247 and rs11696257) and risk of non-syndromic cleft lip/palate: systematic review and meta-analysis. Int J Environ Res Public Health 2019; 16(15): 2792
[100]
Huang L, Liang X, Ou Y, Tang S, He Y. Association between 20q12 rs13041247 polymorphism and risk of nonsyndromic cleft lip with or without cleft palate: a meta-analysis. BMC Oral Health 2020; 20(01): 39
[101]
Liang X, Huang L, Ou Y, He Y, Tang S. Association between MAFB rs17820943 and rs6072081 polymorphism and risk of nonsyndromic cleft lip with or without cleft palate: a meta-analysis. Br J Oral Maxillofac Surg 2020; 58(09): 1065-1072
[102]
Riley BM, Mansilla MA, Ma J, et al. Impaired FGF signaling contributes to cleft lip and palate. Proc Natl Acad Sci U S A 2007; 104(11): 4512-4517
[103]
Xu H, Niu Y, Wang T, et al. Novel FGFR1 and KISS1R mutations in Chinese Kallmann syndrome males with cleft lip/palate. BioMed Res Int 2015; 2015: 649698
[104]
Davies AF, Imaizumi K, Mirza G, et al. Further evidence for the involvement of human chromosome 6p24 in the aetiology of orofacial clefting. J Med Genet 1998; 35(10): 857-861
[105]
Shi J, Song T, Jiao X, Qin C, Zhou J. Single-nucleotide polymorphisms (SNPs) of the IRF6 and TFAP2A in non-syndromic cleft lip with or without cleft palate (NSCLP) in a northern Chinese population. Biochem Biophys Res Commun 2011; 410(04): 732-736
[106]
Babu Gurramkonda V, Syed AH, Murthy J., V K S Lakkakula B. Association of TFAP2A gene polymorphism with susceptibility to non-syndromic cleft lip with or without palate risk in south Indian population. Meta Gene 2016; 9: 181-184
[107]
Cobourne MT. The complex genetics of cleft lip and palate. Eur J Orthod 2004; 26(01): 7-16
[108]
Shi M, Christensen K, Weinberg CR, et al. Orofacial cleft risk is increased with maternal smoking and specific detoxification-gene variants. Am J Hum Genet 2007; 80(01): 76-90
[109]
109 Hozyasz KK, Mostowska A, Surowiec Z, Jagodziński PP. [Genetic polymorphisms of GSTM1 and GSTT1 in mothers of children with isolated cleft lip with or without cleft palate]. Przegl Lek 2005; 62(10): 1019-1022
[110]
Watanabe A, Akita S, Tin NT, et al. A mutation in RYK is a genetic factor for nonsyndromic cleft lip and palate. Cleft Palate Craniofac J 2006; 43(03): 310-316
[111]
Smane L, Pilmane M. IRF6, RYK, and PAX9 expression in facial tissue of children with cleft palate. Int J Morphol 2015; 33: 647-652
[112]
Scapoli L, Martinelli M, Pezzetti F, et al. Linkage disequilibrium between GABRB3 gene and nonsyndromic familial cleft lip with or without cleft palate. Hum Genet 2002; 110(01): 15-20
[113]
Baroni T, Bellucci C, Lilli C, et al. Retinoic acid, GABA-ergic, and TGF-beta signaling systems are involved in human cleft palate fibroblast phenotype. Mol Med 2006; 12(9-10): 237-245
[114]
Vieira AR, Howe A, Murray JC. Studies of γ-aminobutyric acid type A receptor β3 (GABRB3) and glutamic acid decarboxylase 67 (GAD67) with oral clefts. Am J Med Genet A 2008; 146A(21): 2828-2830
[115]
Fontoura C, Silva RM, Granjeiro JM, Letra A. Further evidence of association of the ABCA4 gene with cleft lip/palate. Eur J Oral Sci 2012; 120(06): 553-557
[116]
Beaty TH, Taub MA, Scott AF, et al. Confirming genes influencing risk to cleft lip with/without cleft palate in a case-parent trio study. Hum Genet 2013; 132(07): 771-781
[117]
Mi N, Hao Y, Jiao X, Zheng X, Shi J, Chen Y. A polymorphic marker associated with non-syndromic cleft lip with or without cleft palate in a population in Heilongjiang Province, northern China. Arch Oral Biol 2015; 60(02): 357-361
[118]
Peng HH, Chang NC, Chen KT, et al. Nonsynonymous variants in MYH9 and ABCA4 are the most frequent risk loci associated with nonsyndromic orofacial cleft in Taiwanese population. BMC Med Genet 2016; 17(01): 59

RIGHTS & PERMISSIONS

2020 Global Medical Genetics
PDF(277 KB)

Accesses

Citations

Detail

Sections
Recommended

/