Further Evidence of a Recessive Variant in COL1A1 as an Underlying Cause of Ehlers-Danlos Syndrome: A Report of a Saudi Founder Mutation

Ahmad Almatrafi, Jamil A. Hashmi, Fatima Fadhli, Asma Alharbi, Sibtain Afzal, Khushnooda Ramzan, Sulman Basit

PDF(214 KB)
PDF(214 KB)
Global Medical Genetics ›› 2021, Vol. 7 ›› Issue (04) : 109-112. DOI: 10.1055/s-0041-1722873
Original Article
Original Article

Further Evidence of a Recessive Variant in COL1A1 as an Underlying Cause of Ehlers-Danlos Syndrome: A Report of a Saudi Founder Mutation

Author information +
History +

Abstract

Ehlers-Danlos syndrome (EDS) is a group of clinically and genetically heterogeneous disorder of soft connective tissues. The hallmark clinical features of the EDS are hyperextensible skin, hypermobile joints, and fragile vessels. It exhibits associated symptoms including contractures of muscles, kyphoscoliosis, spondylodysplasia, dermatosparaxis, periodontitis, and arthrochalasia. The aim of this study is to determine the exact subtype of EDS by molecular genetic testing in a family segregating EDS in an autosomal recessive manner. Herein, we describe a family with two individuals afflicted with EDS. Whole exome sequencing identified a homozygous missense mutation (c.2050G > A; p.Glu684Lys) in the COL1A1 gene in both affected individuals, although heterozygous variants in the COL1A1 are known to cause EDS. Recently, only one report showed homozygous variant as an underlying cause of the EDS in two Saudi families. This is the second report of a homozygous variant in the COL1A1 gene in a family of Saudi origin. Heterozygous carriers of COL1A1 variant are asymptomatic. Interestingly, the homozygous variant identified previously and the one identified in this study are same (c.2050G > A). The identification of a unique homozygous mutation (c.2050G > A) in three Saudi families argues in favor of a founder effect.

Keywords

COL1A1 homozygous mutation / Ehlers-Danlos syndrome / founder mutation / Saudi family

Cite this article

Download citation ▾
Ahmad Almatrafi, Jamil A. Hashmi, Fatima Fadhli, Asma Alharbi, Sibtain Afzal, Khushnooda Ramzan, Sulman Basit. Further Evidence of a Recessive Variant in COL1A1 as an Underlying Cause of Ehlers-Danlos Syndrome: A Report of a Saudi Founder Mutation. Global Medical Genetics, 2021, 7(04): 109‒112 https://doi.org/10.1055/s-0041-1722873

References

[1]
Malfait F, Francomano C, Byers P, et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet 2017; 175(01): 8-26
[2]
Ghali N, Sobey G, Burrows N. Ehlers-Danlos syndromes. BMJ 2019; 366: l4966
[3]
Steinmann B, Royce PM, Superti-Furga A.The Ehlers-Danlos syndrome. In: Peter MR, Beat S. eds. Connective Tissue and its Heritable Disorders: Molecular, Genetic, and Medical Aspects. Wiley-Liss, Inc. 2002: 431-523
[4]
Wenstrup RJ, Hoechstetter LB.Ehlers-Danlos syndromes. In: Cassady SB, Allanson JE. eds. Management of Genetic Syndromes. 2. Hoboken: Wiley; 2005: 211-223
[5]
Kapferer-Seebacher I, Pepin M, Werner R, et al; Molecular Basis of Periodontal EDS Consortium. Periodontal Ehlers-Danlos syndrome is caused by mutations in C1R and C1S, which encode subcomponents C1r and C1s of complement. Am J Hum Genet 2016; 99(05): 1005-1014
[6]
Tinkle B, Castori M, Berglund B, et al. Hypermobile Ehlers-Danlos syndrome (a.k.a. Ehlers-Danlos syndrome Type III and Ehlers-Danlos syndrome hypermobility type): Clinical description and natural history. Am J Med Genet C Semin Med Genet 2017; 175(01): 48-69
[7]
Kosho T, Mizumoto S, Watanabe T, Yoshizawa T, Miyake N, Yamada S. Recent Advances in the Pathophysiology of Musculocontractural Ehlers-Danlos Syndrome. Genes (Basel) 2019; 11(01): 43
[8]
D'Alessio M, Ramirez F, Blumberg BD, et al. Characterization of a COL1A1 splicing defect in a case of Ehlers-Danlos syndrome type VII: further evidence of molecular homogeneity. Am J Hum Genet 1991; 49(02): 400-406
[9]
Carr AJ, Chiodo AA, Hilton JM, Chow CW, Hockey A, Cole WG. The clinical features of Ehlers-Danlos syndrome type VIIB resulting from a base substitution at the splice acceptor site of intron 5 of the COL1A2 gene. J Med Genet 1994; 31(04): 306-311
[10]
De Paepe A, Nuytinck L, Hausser I, Anton-Lamprecht I, Naeyaert JM. Mutations in the COL5A1 gene are causal in the Ehlers-Danlos syndromes I and II. Am J Hum Genet 1997; 60(03): 547-554
[11]
Byers PH, Duvic M, Atkinson M, et al. Ehlers-Danlos syndrome type VIIA and VIIB result from splice-junction mutations or genomic deletions that involve exon 6 in the COL1A1 and COL1A2 genes of type I collagen. Am J Med Genet 1997; 72(01): 94-105
[12]
Gilchrist D, Schwarze U, Shields K, MacLaren L, Bridge PJ, Byers PH. Large kindred with Ehlers-Danlos syndrome type IV due to a point mutation (G571S) in the COL3A1 gene of type III procollagen: low risk of pregnancy complications and unexpected longevity in some affected relatives. Am J Med Genet 1999; 82(04): 305-311
[13]
Nuytinck L, Freund M, Lagae L, Pierard GE, Hermanns-Le T, De Paepe A. Classical Ehlers-Danlos syndrome caused by a mutation in type I collagen. Am J Hum Genet 2000; 66(04): 1398-1402
[14]
Alzahrani F, Alkeraye S, Alkuraya FS. The alternatively spliced exon of COL5A1 is mutated in autosomal recessive classical Ehlers-Danlos syndrome. Clin Genet 2018; 93(04): 936-937
[15]
Dembure PP, Priest JH, Snoddy SC, Elsas LJ. Genotyping and prenatal assessment of collagen lysyl hydroxylase deficiency in a family with Ehlers-Danlos syndrome type VI. Am J Hum Genet 1984; 36(04): 783-790
[16]
Burch GH, Gong Y, Liu W, et al. Tenascin-X deficiency is associated with Ehlers-Danlos syndrome. Nat Genet 1997; 17(01): 104-108
[17]
Faiyaz-Ul-Haque M, Zaidi SHE, Al-Ali M, et al. A novel missense mutation in the galactosyltransferase-I (B4GALT7) gene in a family exhibiting facioskeletal anomalies and Ehlers-Danlos syndrome resembling the progeroid type. Am J Med Genet A 2004; 128A(01): 39-45
[18]
Colige A, Nuytinck L, Hausser I, et al. Novel types of mutation responsible for the dermatosparactic type of Ehlers-Danlos syndrome (Type VIIC) and common polymorphisms in the ADAMTS2 gene. J Invest Dermatol 2004; 123(04): 656-663
[19]
Giunta C, Chambaz C, Pedemonte M, Scapolan S, Steinmann B. The arthrochalasia type of Ehlers-Danlos syndrome (EDS VIIA and VIIB): the diagnostic value of collagen fibril ultrastructure. Am J Med Genet A 2008; 146A(10): 1341-1346
[20]
Janecke AR, Li B, Boehm M, et al. The phenotype of the musculocontractural type of Ehlers-Danlos syndrome due to CHST14 mutations. Am J Med Genet A 2016; 170A(01): 103-115
[21]
Baumann M, Giunta C, Krabichler B, et al. Mutations in FKBP14 cause a variant of Ehlers-Danlos syndrome with progressive kyphoscoliosis, myopathy, and hearing loss. Am J Hum Genet 2012; 90(02): 201-216
[22]
Aldeeri AA, Alazami AM, Hijazi H, Alzahrani F, Alkuraya FS. Excessively redundant umbilical skin as a potential early clinical feature of Morquio syndrome and FKBP14-related Ehlers-Danlos syndrome. Clin Genet 2014; 86(05): 469-472
[23]
Alazami AM, Al-Qattan SM, Faqeih E, et al. Expanding the clinical and genetic heterogeneity of hereditary disorders of connective tissue. Hum Genet 2016; 135(05): 525-540
[24]
Blackburn PR, Xu Z, Tumelty KE, et al. Bi-allelic alterations in AEBP1 lead to defective collagen assembly and connective tissue structure resulting in a variant of Ehlers-Danlos syndrome. Am J Hum Genet 2018; 102(04): 696-705
[25]
Malfait F, De Paepe A. The Ehlers-Danlos syndrome. Adv Exp Med Biol 2014; 802: 129-143
[26]
Albarry MA, Hashmi JA, Alreheli AQ, et al. Novel homozygous loss-of-function mutations in RP1 and RP1L1 genes in retinitis pigmentosa patients. Ophthalmic Genet 2019; 40(06): 507-513
[27]
Almatrafi A, Alfadhli F, Khan YN, et al. A Heterozygous mutation in the triple helical region of the Alpha 1 (II) chain of the COL2A1 protein causes non-lethal spondyloepiphyseal dysplasia congenita. Genet Test Mol Biomarkers 2019; 23(05): 310-315
[28]
Hashmi JA, Almatrafi A, Latif M, Nasir A, Basit S. An 18 bps in-frame deletion mutation in RUNX2 gene is a population polymorphism rather than a pathogenic variant. Eur J Med Genet 2019; 62(02): 124-128
[29]
Basit S, Al-Edressi HM, Sairafi MH, et al. Centromere protein I (CENPI) is a candidate gene for X-linked steroid sensitive nephrotic syndrome. J Nephrol 2020; 33(04): 763-769
[30]
Kõressaar T, Lepamets M, Kaplinski L, Raime K, Andreson R, Remm M. Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics 2018; 34(11): 1937-1938
[31]
Alharby E, Albalawi AM, Nasir A, et al. A homozygous potentially pathogenic variant in the PAXBP1 gene in a large family with global developmental delay and myopathic hypotonia. Clin Genet 2017; 92(06): 579-586
[32]
Hashmi JA, Al-Harbi KM, Ramzan K, et al. A novel splice-site mutation in the ASPM gene underlies autosomal recessive primary microcephaly. Ann Saudi Med 2016; 36(06): 391-396
[33]
Basit S, Albalawi AM, Alharby E, Khoshhal KI. Exome sequencing identified rare variants in genes HSPG2 and ATP2B4 in a family segregating developmental dysplasia of the hip. BMC Med Genet 2017; 18(01): 34
[34]
Xi L, Zhang H, Zhang Z-L. Clinical and genetic analysis in 185 Chinese probands of osteogenesis imperfecta. J Bone Miner Metab 2020
(e-pub ahead of print) DOI: 10.1007/s00774-020-01163-5.
[35]
Alkhiary YM, Ramzan A, Ilyas M, et al. Whole exome sequencing analysis identifies a missense variant in COL1A2 gene which causes osteogenesis imperfecta Type IV in a family from Saudi Arabia. J Musculoskelet Surg Res 2017; 1(02): 33-38
[36]
Basit S. Next-Generation sequencing and molecular diagnosis in musculoskeletal disorders. [J] Musculoskelet Surg Res. 2017; 1(02): 23-24
[37]
Colombi M, Dordoni C, Chiarelli N, Ritelli M. Differential diagnosis and diagnostic flow chart of joint hypermobility syndrome/ehlers-danlos syndrome hypermobility type compared to other heritable connective tissue disorders. Am J Med Genet C Semin Med Genet 2015; 169C(01): 6-22

RIGHTS & PERMISSIONS

2020 Global Medical Genetics
PDF(214 KB)

Accesses

Citations

Detail

Sections
Recommended

/