Hydrothermal co-carbonization of rice straw and acid whey for enhanced hydrochar properties and nutrient recovery

Yuxiang Zhao , Taotao Lu , Guochen Xu , Yilun Luo , Xianlong Zhang , Xueping Wu , Xiaozhao Han , Jefferson W. Tester , Kui Wang

Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (2) : 100077

PDF (3839KB)
Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (2) : 100077 DOI: 10.1016/j.gerr.2024.100077
Research Articles
research-article

Hydrothermal co-carbonization of rice straw and acid whey for enhanced hydrochar properties and nutrient recovery

Author information +
History +
PDF (3839KB)

Abstract

This study investigated rice straw hydrothermal carbonization (HTC) in water, optimizing operating conditions to enhance solid carbon content and nitrogen content in hydrochar. Additionally, we conducted hydrothermal co-carbonization (co-HTC) of rice straw and acid whey, achieving significant improvements in hydrochar properties. Co-HTC resulted in a 53.6% increase in HHVs, 20.0% higher yield, and a 42.7% rise in carbon content, accompanied by notable reductions in ash content. Nitrogen content increased by 26.0%, P content by 12.7 times, and K content by 27.6%. Analytical techniques revealed promising modifications, indicating potential applications of hydrochar in solid fuel or organic fertilizers, thus contributing to a circular bioeconomy in agricultural waste management.

Keywords

Rice straw / Acid whey / Co-hydrothermal carbonization / Hydrochar / Nutrient recovery

Cite this article

Download citation ▾
Yuxiang Zhao, Taotao Lu, Guochen Xu, Yilun Luo, Xianlong Zhang, Xueping Wu, Xiaozhao Han, Jefferson W. Tester, Kui Wang. Hydrothermal co-carbonization of rice straw and acid whey for enhanced hydrochar properties and nutrient recovery. Green Energy and Resources, 2024, 2(2): 100077 DOI:10.1016/j.gerr.2024.100077

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yuxiang Zhao: Writing - original draft, Visualization, Formal analysis, Data curation. Taotao Lu: Writing - review & editing, Formal analysis, Data curation. Guochen Xu: Writing - review & editing, Formal analysis, Data curation. Yilun Luo: Writing - review & editing, Formal analysis, Data curation. Xianlong Zhang: Writing - review & editing, Resources. Xueping Wu: Writing - review & editing, Resources. Xiaozhao Han: Writing - review & editing, Supervision, Resources. Jefferson W. Tester: Writing - review & editing, Project administration, Funding acquisition, Conceptualization. Kui Wang: Writing - review & editing, Validation, Supervision, Project administration, Methodology, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work is supported by the Seed Fund from the Young Huangshan Scholar Program (grant NO.13020-03712021051) and 2022 National College Students Innovation and Entrepreneurship Training Program (202210359044) at Hefei University of Technology. This work is also partially supported by the USDA grant 2019-69012-29905.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gerr.2024.100077.

References

[1]

Alengebawy, A., Ran, Y., Ghimire, N., Osman, A.I., Ai, P., 2023. Rice straw for energy and value-added products in China: a review. Environ. Chem. Lett. 21 (5), 2729-2760.

[2]

Arauzo, P.J., Atienza-Martínez, M., Ábrego, J., Olszewski, M.P., Cao, Z., Kruse, A., 2020. Combustion characteristics of hydrochar and pyrochar derived from digested sewage sludge. Energies 13 (16), 4164.

[3]

Asmadi, A.A., Tamunaidu, P., Masafumi, G., Motoo, U., 2023. Effects of rice husk and rice straw hydrochar as soil amendment. Chemical Engineering Transactions 106, 1225-1230.

[4]

Baccile, N., Laurent, G., Coelho, C., Babonneau, F., Zhao, L., Titirici, M.-M., 2011. Structural insights on nitrogen-containing hydrothermal carbon using solid-state magic angle spinning 13C and 15N nuclear magnetic resonance. J. Phys. Chem. C 115 (18), 8976-8982.

[5]

Bhadoria, P., Shrivastava, M., Khandelwal, A., Das, R., Langyan, S., Rohatgi, B., Singh, R., 2022. Preparation of modified rice straw-based bio-adsorbents for the improved removal of heavy metals from wastewater. Sustainable Chemistry and Pharmacy 29, 100742.

[6]

Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, J.-M., Ham-Pichavant, F., Cansell, F., Aymonier, C., 2011. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35 (1), 298-307.

[7]

Cavali, M., Benbelkacem, H., Kim, B., Bayard, R., Junior, N.L., Domingos, D.G., Woiciechowski, A.L., de Castilhos Junior, A.B., 2023. Co-hydrothermal carbonization of pine residual sawdust and non-dewatered sewage sludge-effect of reaction conditions on hydrochar characteristics. J. Environ. Manag. 340, 117994.

[8]

Chandini, Kumar, R., Kumar, R., Prakash, O., 2019. The Impact of Chemical Fertilizers on Our Environment and Ecosystem, pp. 69-86.

[9]

Chen, D., Ma, Q., Wei, L., Li, N., Shen, Q., Tian, W., Zhou, J., Long, J., 2018. Catalytic hydroliquefaction of rice straw for bio-oil production using Ni/CeO2 catalysts. J. Anal. Appl. Pyrol. 130, 169-180.

[10]

Chen, X., Lin, Q., He, R., Zhao, X., Li, G., 2017. Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresour. Technol. 241.

[11]

Cheng, F., Porter, M.D., Colosi, L.M., 2020. Is hydrothermal treatment coupled with carbon capture and storage an energy-producing negative emissions technology? Energy Convers. Manag. 203, 112252.

[12]

Cui, S., Song, Z., Zhang, L., Shen, Z., Hough, R., Zhang, Z., An, L., Fu, Q., Zhao, Y., Jia, Z., 2021. Spatial and temporal variations of open straw burning based on fire spots in northeast China from 2013 to 2017. Atmos. Environ. 244, 117962.

[13]

Czerwińska, K., Śliz, M., Wilk, M., 2022. Hydrothermal carbonization process: fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A review. Renew. Sustain. Energy Rev. 154, 111873.

[14]

Deng, W., Feng, Y., Fu, J., Guo, H., Guo, Y., Han, B., Jiang, Z., Kong, L., Li, C., Liu, H., Nguyen, P.T.T., Ren, P., Wang, F., Wang, S., Wang, Y., Wang, Y., Wong, S.S., Yan, K., Yan, N., Yang, X., Zhang, Y., Zhang, Z., Zeng, X., Zhou, H., 2023. Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy Environ. 8 (1), 10-114.

[15]

Escala, M., Graber, A., Junge, R., Koller, C., Guiné V., Krebs, R., 2013. Hydrothermal carbonization of organic material with low dry matter content: the example of waste whey. J. Residuals Sci. Technol. 10, 179.

[16]

Fakudze, S., Wei, Y., Shang, Q., Ma, R., Li, Y.-H., Chen, J., Zhou, P., Han, J., Liu, C., 2021. Single-pot upgrading of run-of-mine coal and rice straw via Taguchi-optimized hydrothermal treatment: fuel properties and synergistic effects. Energy 236, 121482.

[17]

Gorissen, S.H.M., Crombag, J.J.R., Senden, J.M.G., Waterval, W.A.H., Bierau, J., Verdijk, L.B., van Loon, L.J.C., 2018. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 50 (12), 1685-1695.

[18]

IRRI, 2020. The Value of Sustainable Rice Straw Management, vol. 2024.

[19]

Jiang, H., Deng, F., Luo, Y., Xie, Z., Chen, Y., Zhou, P., Liu, X., Li, D., 2022. Hydrothermal carbonization of corn straw in biogas slurry. J. Clean. Prod. 353, 131682.

[20]

Jin, S., Chen, H., 2007. Near-infrared analysis of the chemical composition of rice straw. Ind. Crop. Prod. 26 (2), 207-211.

[21]

Kavindi, G.A.G., Lei, Z., Yuan, T., Shimizu, K., Zhang, Z., 2022. Use of hydrochar from hydrothermal co-carbonization of rice straw and sewage sludge for Cr(VI) bioremediation in soil. Bioresour. Technol. Rep. 18, 101052.

[22]

Lang, Q., Guo, Y., Zheng, Q., Liu, Z., Gai, C., 2018. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: hydrochar properties and heavy metal transformation behavior. Bioresour. Technol. 266, 242-248.

[23]

Li, Y., Liu, H., Xiao, K., Liu, X., Hu, H., Li, X., Yao, H., 2019. Correlations between the physicochemical properties of hydrochar and specific components of waste lettuce: influence of moisture, carbohydrates, proteins and lipids. Bioresour. Technol. 272, 482-488.

[24]

Liu, D., Labas, A., Long, B., McKnight, S., Xu, C., Tian, J., Xu, Y., 2023. Bacterial nanocellulose production using cost-effective, environmentally friendly, acid whey based approach. Bioresour. Technol. Rep. 24, 101629.

[25]

Liu, L., Zheng, X., Wei, X., Kai, Z., Xu, Y., 2021. Excessive application of chemical fertilizer and organophosphorus pesticides induced total phosphorus loss from planting causing surface water eutrophication. Sci. Rep. 11 (1), 23015.

[26]

Liu, T., Wen, C., Li, C., Yan, K., Li, R., Jing, Z., Zhang, B., Ma, J., 2022a. Integrated water washing and carbonization pretreatment of typical herbaceous and woody biomass: fuel properties, combustion behaviors, and techno-economic assessments. Renew. Energy 200, 218-233.

[27]

Liu, X., Fan, Y., Zhai, Y., Liu, X., Wang, Z., Zhu, Y., Shi, H., Li, C., Zhu, Y., 2022b. Cohydrothermal carbonization of rape straw and microalgae: pH-enhanced carbonization process to obtain clean hydrochar. Energy 257, 124733.

[28]

Liu, Y., Yao, S., Wang, Y., Lu, H., Brar, S.K., Yang, S., 2017. Bio- and hydrochars from rice straw and pig manure: inter-comparison. Bioresour. Technol. 235, 332-337.

[29]

Lv, P., Liu, B., Bai, Y., Wang, J., Wei, J., Song, X., Su, W., Yu, G., Xu, G., 2023. Residual carbon from coal gasification fine slag for inducing rice straw hydrothermal carbonization to achieve improved reactivity and wastewater decontamination. Fuel 349, 128649.

[30]

Masoumi, S., Borugadda, V.B., Nanda, S., Dalai, A.K., 2021. Hydrochar: a review on its production technologies and applications. Catalysts 11 (8), 939.

[31]

Morya, R., Andrianantenaina, F.H., Singh, S., Pandey, A.K., Kim, G.-B., Verma, J.P., Kumar, G., Raj, T., Kim, S.-H., 2023. Exploring rice straw as substrate for hydrogen production: critical challenges and opportunities. Environ. Technol. Innov. 31, 103153.

[32]

Murakami, K., Sato, M., Kato, T., Sugawara, K., 2012. Influence of difference in chemical compositions of rice straw on hydrogen formation in nickel-catalyzed steam gasification. Fuel Process. Technol. 95, 78-83.

[33]

Nawaz, A., Kumar, P., 2023. Impact of temperature severity on hydrothermal carbonization: fuel properties, kinetic and thermodynamic parameters. Fuel 336, 127166.

[34]

Nishu, Liu, R., Rahman, M.M., Li, C., Chai, M., Sarker, M., Wang, Y., Cai, J., 2021. Catalytic pyrolysis of microcrystalline cellulose extracted from rice straw for high yield of hydrocarbon over alkali modified ZSM-5. Fuel 285, 119038.

[35]

Pahalvi, H.N., Rafiya, L., Rashid, S., Nisar, B., Kamili, A.N., 2021. Chemical fertilizers and their impact on soil health. Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs 1-20.

[36]

Petrovič A., Cenčič Predikaka, T., Škodič L., Vohl, S., Čuček, L., 2023. Hydrothermal cocarbonization of sewage sludge and whey: enhancement of product properties and potential application in agriculture. Fuel 350, 128807.

[37]

Rocha-Mendoza, D., Kosmerl, E., Krentz, A., Zhang, L., Badiger, S., Miyagusuku- Cruzado, G., Mayta-Apaza, A., Giusti, M., Jiménez-Flores, R., García-Cano, I., 2021. Invited review: acid whey trends and health benefits. J. Dairy Sci. 104 (2), 1262-1275.

[38]

Sarrion, A., Diaz, E., de la Rubia, M.A., Mohedano, A.F., 2021. Fate of nutrients during hydrothermal treatment of food waste. Bioresour. Technol. 342, 125954.

[39]

Sharma, H.B., Dubey, B.K., 2020. Co-hydrothermal carbonization of food waste with yard waste for solid biofuel production: hydrochar characterization and its pelletization. Waste Manag. 118, 521-533.

[40]

Singh, R., Chaudhary, K., Biswas, B., Balagurumurthy, B., Bhaskar, T., 2015. Hydrothermal liquefaction of rice straw: effect of reaction environment. J. Supercrit. Fluids 104, 70-75.

[41]

Stefos, G.C., Dalaka, E., Papoutsi, G., Palamidi, I., Andreou, V., Katsaros, G., Bossis, I., Politis, I., Theodorou, G., 2024. In vitro evaluation of the effect of yogurt acid whey fractions on iron bioavailability. J. Dairy Sci. 107 (2), 683-694.

[42]

Su, H., Zhou, X., Zheng, R., Zhou, Z., Zhang, Y., Zhu, G., Yu, C., Hantoko, D., Yan, M., 2021. Hydrothermal carbonization of food waste after oil extraction pre-treatment: study on hydrochar fuel characteristics, combustion behavior, and removal behavior of sodium and potassium. Sci. Total Environ. 754, 142192.

[43]

Sudibyo, H., Wang, K., Tester, J.W., 2021. Hydrothermal liquefaction of acid whey: effect of feedstock properties and process conditions on energy and nutrient recovery. ACS Sustain. Chem. Eng. 9 (34), 11403-11415.

[44]

Wang, K., Tester, J.W., 2023. Sustainable management of unavoidable biomass wastes. Green Energy and Resources, 100005.

[45]

Wang, Q., Wu, S., Cui, D., Pan, S., Xu, F., Xu, F., Wang, Z., Li, G., 2022a. Co-hydrothermal carbonization of corn stover and food waste: characterization of hydrochar, synergistic effects, and combustion characteristic analysis. J. Environ. Chem. Eng. 10 (6), 108716.

[46]

Wang, Q., Wu, S., Cui, D., Zhou, H., Wu, D., Pan, S., Xu, F., Wang, Z., 2022b. Cohydrothermal carbonization of organic solid wastes to hydrochar as potential fuel: a review. Sci. Total Environ. 850, 158034.

[47]

Wang, R., Lin, Z., Meng, S., Liu, S., Zhao, Z., Wang, C., Yin, Q., 2022c. Effect of lignocellulosic components on the hydrothermal carbonization reaction pathway and product properties of protein. Energy 259.

[48]

Wang, T., Zhai, Y., Zhu, Y., Peng, C., Xu, B., Wang, T., Li, C., Zeng, G., 2018. Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste. Bioresour. Technol. 247, 182-189.

[49]

Wang, Z.-b., Chen, J., Mao, S.-c., Han, Y.-c., Chen, F., Zhang, L.-f., Li, Y.-b., Li, C.-d., 2017. Comparison of greenhouse gas emissions of chemical fertilizer types in China's crop production. J. Clean. Prod. 141, 1267-1274.

[50]

Xu, Z.-X., Ma, X.-Q., Zhou, J., Duan, P.-G., Zhou, W.-Y., Ahmad, A., Luque, R., 2022. The influence of key reactions during hydrothermal carbonization of sewage sludge on aqueous phase properties: a review. J. Anal. Appl. Pyrol. 167, 105678.

[51]

Xu, Z., Guo, Z., Xiao, X., Zeng, P., Xue, Q., 2019. Effect of inorganic potassium compounds on the hydrothermal carbonization of Cd-contaminated rice straw for experimentalscale hydrochar. Biomass Bioenergy 130, 105357.

[52]

Xue, Y., Bai, L., Chi, M., Xu, X., Chen, Z., Yu, K., Liu, Z., 2022. Co-hydrothermal carbonization of pretreatment lignocellulose biomass and polyvinyl chloride for clean solid fuel production: hydrochar properties and its formation mechanism. J. Environ. Chem. Eng. 10 (1).

[53]

Yu, S., Yang, X., Li, Q., Zhang, Y., Zhou, H., 2023. Breaking the temperature limit of hydrothermal carbonization of lignocellulosic biomass by decoupling temperature and pressure. Green Energy Environ. 8 (4), 1216-1227.

[54]

Yu, Y., Lau, A., Sokhansanj, S., 2022. Hydrothermal carbonization and pelletization of moistened wheat straw. Renew. Energy 190, 1018-1028.

[55]

Zhan, H., Zhang, S., Song, Y., Chang, G., Wang, X., Zeng, Z., 2022. Hydrothermal cocarbonization of industrial biowastes with lignite toward modified hydrochar production: synergistic effects and structural characteristics. J. Environ. Chem. Eng. 10 (3), 107540.

[56]

Zhang, C., Wang, X., Shao, M., Li, H., Chen, Q., Wang, N., Xu, Q., 2022. Synthesis of nitrogen-enriched hydrochar via co-hydrothermal reaction of liquid digestate and corn stalk. Sci. Total Environ. 836, 155572.

[57]

Zhang, J., Zhang, L., Lin, C., Wang, C., Zhao, P., Li, Y., 2023a. Co-hydrothermal carbonization of polyvinyl chloride and lignocellulose biomasses: influence of biomass feedstock on fuel properties and combustion behaviors. Sci. Total Environ. 868, 161532.

[58]

Zhang, Q., Mu, K., Han, J., Qin, L., Zhao, B., Yi, L., 2023b. Low nitrogen and high value hydrochar preparation through co-hydrothermal carbonization of sludge and saw dust with acid/alcohol assistance. Energy 278, 128012.

[59]

Zhao, G., Zhao, S., Hagner Nielsen, L., Zhou, F., Gu, L., Tilahun Tadesse, B., Solem, C., 2023. Transforming acid whey into a resource by selective removal of lactic acid and galactose using optimized food-grade microorganisms. Bioresour. Technol. 387, 129594.

[60]

Zheng, C., Ma, X., Yao, Z., Chen, X., 2019. The properties and combustion behaviors of hydrochars derived from co-hydrothermal carbonization of sewage sludge and food waste. Bioresour. Technol. 285, 121347.

AI Summary AI Mindmap
PDF (3839KB)

219

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/