Development and applications of MgO-activated SiO2 system—achieving a low carbon footprint: A review

Yuan Jia , Jingbin Zhang , Yuxin Zou , Qun Guo , Min Li , Tingting Zhang , Chris Cheeseman

Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (2) : 100072

PDF (6955KB)
Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (2) : 100072 DOI: 10.1016/j.gerr.2024.100072
Reviews
research-article

Development and applications of MgO-activated SiO2 system—achieving a low carbon footprint: A review

Author information +
History +
PDF (6955KB)

Abstract

The MgO-activated SiO2 system demonstrates potential for a low carbon footprint throughout its lifecycle and is characterized by favorable mechanical properties, low alkalinity, and a high specific surface area, which shows promise in replacing traditional silicate cement in certain applications. The current system faces challenges such as slow early hydration rate, low early strength, and inadequate volume stability, which impede its further development and application. The MgO-activated SiO2 system was improved and optimized through multiple tests using carbonation (CO2 gas/NaHCO3 solution), nanomaterials (whiskers), and fiber (organic/inorganic fiber) composite reinforcement. This paper provides an overview of the hydration mechanism of the MgO-activated SiO2 system, explores modifications and control measures based on this mechanism, and discusses the potential applications and future development of the MgO-activated SiO2 system.

Keywords

MgO-activated SiO2 / Low carbon / Application

Cite this article

Download citation ▾
Yuan Jia, Jingbin Zhang, Yuxin Zou, Qun Guo, Min Li, Tingting Zhang, Chris Cheeseman. Development and applications of MgO-activated SiO2 system—achieving a low carbon footprint: A review. Green Energy and Resources, 2024, 2(2): 100072 DOI:10.1016/j.gerr.2024.100072

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

This work was funded by The National Natural Science Foundation of China (No.52178189); The Natural Science Foundation of Hebei Province (NO. E2022209155); Hebei Province "three three three talent project" project (C20231109), Tangshan Key R&D Plan Project (23150217A); Key R&D projects of North China University of Science and Technology (ZD-ST-202301).

CRediT authorship contribution statement

Yuan Jia: Conceptualization, Investigation, Methodology, Writing - original draft, Writing - review & editing. Jingbin Zhang: Investigation, Writing - original draft, Writing - review & editing. Yuxin Zou: Writing - original draft, Writing - review & editing. Qun Guo: Writing - review & editing. Min Li: Writing - original draft. Tingting Zhang: Conceptualization, Funding acquisition, Supervision, Writing - review & editing. Chris Cheeseman: Conceptualization, Supervision, Writing - review & editing.

Declaration of competing interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

We confirm that there are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]

Amaral, L.F., Oliveira, I.R., Salomao, R., et al., 2010. Temperature and common-ion effect on magnesium oxide (MgO) hydration. Ceram. Int. 36, 1047-1054.

[2]

American Ceramic Society, 2011. Novacem's 'carbon negative cement'. Am. Ceram. Soc. Bull. 90, 13.

[3]

Allan Nye, S., Vineet, S., Christopher, O., et al., 2017. Use of olivine for the production of MgO-SiO2 binders. Front. Built Environ. 7, 640243.

[4]

Abdel-Gawwad, H.A., Abd El-Aleem, S., Amer, A.A., et al., 2018. Combined impact of silicate-amorphicity and MgO-reactivity on the performance of Mg-silicate cement. Construct. Build. Mater. 189, 78-85.

[5]

Abdel-Gawwad, H.A., Hassan, H.S., Vásquez-García, S.R., et al., 2020. Towards a clean environment: the potential application of eco-friendly magnesia-silicate cement in CO2 sequestration. J. Clean. Prod. 252, 119875.

[6]

Alexakis, D.E., 2021. Water quality indices: current and future trends in evaluating contamination of groundwater resources. Water 13, 401.

[7]

Brew, D.R.M., Glasser, F.P., 2005. Synthesis and characterisation of magnesium silicate hydrate gels. Cement Concr. Res. 35, 85-98.

[8]

Bobrowski, A., Kmita, A., Starowicz, M., et al., 2012. Effect of magnesium oxide nanoparticles on water glass structure. Arch. Foundry Eng. 12, 9-12.

[9]

Bernard, E., Lothenbach, B., Rentsch, D., et al., 2017. Formation of magnesium silicate hydrates (M-S-H). Phys. Chem. Earth 99, 142-157.

[10]

Bernard, E., Lothenbach, B., Chlique, C., et al., 2019. Characterization of magnesium silicate hydrate (M-S-H). Cement Concr. Res. 116, 309-330.

[11]

Bernard, E., Lothenbach, B., Rentsch, D., et al., 2022. Effect of carbonates on the formation of magnesium silicate hydrates. Mater. Struct. 55, 183.

[12]

Bernard, E., Lothenbach, B., German, A., et al., 2023. Effect of aluminate and carbonate in magnesia silicate cement. Cem. Concr. Compos. 139, 105010.

[13]

Chabrol, K., Gressier, M., Pebere, N., et al., 2010. Functionalization of synthetic talc-like phyllosilicates by alkoxyorganosilane grafting. J. Mater. Chem. 20, 9695-9706.

[14]

Chiang, W.S., Ferraro, G., Fratini, E., et al., 2014. Multiscale structure of calcium- and magnesium-silicate-hydrate gels. J. Mater. Chem. A 2, 12991-12998.

[15]

Chen, J.H., Li, T., Li, X.P., et al., 2016. Some new perspective on the reaction mechanism of MgO-SiO2-H2O system. Int. J. Appl. Ceram. Technol. 13, 1164-1172.

[16]

Cheng, F., Hu, Y., Song, Q., et al., 2022. Effect of curing temperature on the properties of a MgO-SiO2-H2O system prepared using dead-burned MgO. Materials 15, 6065.

[17]

Delacaillerie, J.B.D., Kermarec, M., Clause, O., 1995. Si-29 NMR observation of an amorphous magnesium-silicate formed during impregnation of silica with Mg(II) in aqueous-solution. J. Phys. Chem. 99, 17273-17281.

[18]

Dong, Y., Feng, X., Dong, D., et al., 2007. Elaboration and chemical corrosion resistance of tubular macro-porous cordierite ceramic membrane supports. J. Membr. Sci. 304, 65-75.

[19]

Dauzeres, A., Achiedo, G., Nied, D., et al., 2016. Magnesium perturbation in low-pH concretes placed in clayey environment-solid characterizations and modeling. Cement Concr. Res. 79, 137-150.

[20]

Dewitte, C., Bertron, A., Neji, M., et al., 2022. Chemical and microstructural properties of designed cohesive M-S-H Pastes. Materials 15, 547.

[21]

Dong, J., Zheng, W., Chang, C., et al., 2023. Function and effect of borax on magnesium phosphate cement prepared by magnesium slag after salt lake lithium extraction. Construct. Build. Mater. 366, 130280.

[22]

Esrafilian, M., Maghamipour, A.M., 2012. Nuclear waste effects on human body. Life Sci. J. 9, 1696-1700.

[23]

Ferrero, F., 2010. Adsorption of Methylene Blue on magnesium silicate: kinetics, equilibria and comparison with other adsorbents. J. Environ. Sci. 22, 467-473.

[24]

Gartner, E., Gimenez, M., Meyer, V., et al., 2014. A novel atmospheric pressure approach to the mineral capture of CO2 from industrial point sources. Thirteenth Annual Conference on Carbon Capture, Utilization and Storage, Pittsburgh, Pennsylvania.

[25]

GB 8978-1996. Standard for Comprehensive Sewage Discharge[S]. Beijing Institute of Environmental Protection, Beijing.

[26]

Geng, G., Myers, R.J., Li, J., et al., 2017. Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate. Sci. Rep. 7, 44032.

[27]

Huang, R.Y., He, L., Zhang, T., et al., 2018. Fabrication and adsorption behavior of magnesium silicate hydrate nanoparticles towards methylene blue. Nanomaterials 8, 271.

[28]

Jensen, O.M., 1995. Thermodynamic limitation of self-desiccation. Cement Concr. Res. 25, 157-164.

[29]

Jiang, Z.W., Sun, Z.P., Wang, P.M., 2003. Study on the variation of self-relative humidity and self-shrinkage in cement pastes. J. Build. Mater. 4, 345-349.

[30]

Jin, F., Ai-Tabbaa, A., 2013. Thermogravimetric study on the hydration of reactive magnesia and silica mixture at room temperature. Thermochim. Acta 566, 162-168.

[31]

Jin, F., Al-Tabbaa, A., 2014. Strength and hydration products of reactive MgO-silica pastes. Cem. Concr. Compos. 52, 27-33.

[32]

Jia, Y., Wang, B.M., Wu, Z., et al., 2016. Role of sodium hexametaphosphate in MgO/SiO2 cement pastes. Cement Concr. Res. 89, 63-71.

[33]

Jia, Y., Zou, Y.X., Jiang, Y.T., et al., 2022. Effect of aluminum incorporation on the reaction process and reaction products of hydrated magnesium silicate. Front. Mater. 8, 810535.

[34]

Jia, Y., Zou, Y.X., Jiang, Y.T., et al., 2023a. Effect of a Ca-rich environment on the reaction process of the MgO-activated SiO2 system. Cem. Concr. Compos. 136, 104855.

[35]

Jia, Y., Zou, Y.X., Zou, X.M., et al., 2023b. Study on the adsorption performance of multibase composite magnesia cementitious material microfiltration membrane for different heavy metal ions. Mater. Lett. 335, 133488.

[36]

Kalousek, G.L., Mui, D., 1954. Studies on formation and recrystallization of intermediate reaction products in the system magnesia-silica-water. J. Am. Ceram. Soc. 37, 38-42.

[37]

Kumar, S., Sonata, C., Yang, E.H., et al., 2020. Performance of reactive magnesia cement formulations containing fly ash and ground granulated blast-furnace slag. Construct. Build. Mater. 232, 117275.

[38]

Kumar, S.J., Lei, W., Yang, E.H., et al., 2022. Influence of different additives on the rheology and microstructural development of MgO-SiO2 mixes. Compos. Pt. B-Eng. 235, 109784.

[39]

Li, Z.H., Zhang, T.S., Hu, J., et al., 2014. Characterization of reaction products and reaction process of MgO-SiO2-H2O system at room temperature. Construct. Build. Mater. 61, 252-259.

[40]

Li, Z.H., Yu, Q.J., Chen, X.W., et al., 2017. The role of MgO in the thermal behavior of MgO-silica fume pastes. J. Therm. Anal. Calorim. 127, 1897-1909.

[41]

Li, Z., Xu, Y., Zhang, T., Hu, J., et al., 2018. Effect of MgO calcination temperature on the reaction products and kinetics of MgO-SiO2-H2O system. J. Am. Ceram. Soc. 102, 3269-3285.

[42]

Li, Z.H., Xu, Y.D., Liu, H., et al., 2019a. Effect of the MgO/Silica fume ratio on the reaction process of the MgO-SiO2-H2O system. Materials 12, 80.

[43]

Li, Z.H., Xu, Y.D., Zhang, T.S., et al., 2019b. Effect of MgO calcination temperature on the reaction products and kinetics of MgO-SiO2-H2O system. J. Am. Ceram. Soc. 102, 3269-3285.

[44]

Li, L.A., Qi, J.Y., Lin, Z.H., 2020. Study on the proportion optimization and hydration mechanism of fiber reinforced MgO/SiO2 cement. J. Funct. Mater. 51, 11110-11115.

[45]

Li, X.G., Fu, Q.Y., Lv, Y., et al., 2022. Influence of curing conditions on hydration of magnesium silicate hydrate cement. Construct. Build. Mater 361, 129648.

[46]

Li, Z., Lin, L.D., Yu, J.C., et al., 2022. Performance of magnesium silicate hydrate cement modified with dipotassium hydrogen phosphate. Construct. Build. Mater. 323, 126389.

[47]

Liang, S., Zhou, X.M., Ruan, S.Q., et al., 2023. Milled waste glass powder in magnesiumsilicate- hydrate cement: technical and environmental assessment. J. Mater. Civ. Eng. 35, 04022379.

[48]

Lothenbach, B., Nied, D., L'H^opital, E., et al., 2015. Magnesium and calcium silicate hydrates. Cement Concr. Res. 77, 60-68.

[49]

Lu, D., Zheng, Y., Liu, Y., et al., 2012. Effect of light-burned magnesium oxide on deformation behavior of geopolymer and its mechanism. J. Chin. Ceram. Soc. 40, 1625-1630.

[50]

McCarter, W.J., Watson, D.W., Chrisp, T.M., 2001. Surface zone concrete: drying, absorption, and moisture distribution. J. Mater. Civ. Eng. 13, 49-57.

[51]

Ma, J., Chen, C.Z., Wang, D.G., et al., 2010. Textural and structural studies of sol-gel derived SiO2-CaO-P2O5-MgO glasses by substitution of MgO for CaO. Mater. Sci. Eng., C 30, 886-890.

[52]

Mo, L.W., Deng, M., Tang, M.S., 2010. Effects of calcination condition on expansion property of MgO-type expansive agent used in cement-based materials. Cement Concr. Res. 40, 437-446.

[53]

Mo, L.W., Deng, M., Tang, M.S., et al., 2014. MgO expansive cement and concrete in China: past, present and future. Cement Concr. Res. 57, 1-12.

[54]

Maruyama, I., Nishioka, Y., Igarashi, G., et al., 2014. Microstructural and bulk property changes in hardened cement paste during the first drying process. Cement Concr. Res. 58, 20-34.

[55]

Morrison, J., Jauffret, G., Galvez-Martos, J.L., et al., 2016. Magnesium-based cements for CO2 capture and utilisation. Cement Concr. Res. 85, 183-191.

[56]

Mármol, G., Savastano, G., Mauro, M., Tashima, et al., 2016. Optimization of the MgO SiO2 binding system for fiber-cement production with cellulosic reinforcing elements. Mater. Des. 105, 251-261.

[57]

Martini, F., Tonelli, M., Geppi, M., et al., 2017. Hydration of MgO/SiO2 and Portland cement mixtures: a structural investigation of the hydrated phases by means of X-ray diffraction and solid state NMR spectroscopy. Cement Concr. Res. 102, 60-67.

[58]

Mohammad, N., Atassi, Y., 2021. Enhancement of removal efficiency of heavy metal ions by polyaniline deposition on electrospun polyacrylonitrile membranes. Water Sci. Eng. 14, 129-138.

[59]

Marsiske, M., Debus, C., Di Lorenzo, F., et al., 2021. Immobilization of (aqueous) cations in low pH M-S-H cement. Appl. Sci. 11, 2968.

[60]

Mármol, G., Savastano, H., 2022. High-toughness M-S-H cement composites reinforced with cellulose fibers through CO2 curing. Cem. Concr. Compos. 134, 104759.

[61]

Nied, P.E., 1993. High-temperature thermal-analysis study of the reaction between magnesium-oxide and silica. J. Therm. Anal. 40, 79-84.

[62]

Nied, D., Enemark-Rasmussen, K., L'Hopital, E., et al., 2016. Properties of magnesium silicate hydrates (M-S-H). Cement Concr. Res. 79, 323-332.

[63]

Nishiki, Y., Cama, J., Otake, T., et al., 2023. Formation of magnesium silicate hydrate (MS- H) at pH 10 and 50_C in open-flow systems. Appl. Geochem. 148, 105544.

[64]

Ono, H., Wada, S.-I., 2011. Effects of active silica on stabilization reaction of copper and nickel ions by magnesia. Clay Sci. 13, 149-157.

[65]

Pattanayak, Mondal, K., Mathew, S., et al., 2000. A parametric evaluation of the removal of As(V) and As(III) by carbon-based adsorbents. Carbon 38, 589-596.

[66]

Pedone, A., Palazzetti, F., Barone, V., 2017. Models of aged magnesium-silicate-hydrate cements based on the lizardite and talc crystals: a periodic DFT-GIPAW investigation. J. Phys. Chem. 121, 7319-7330.

[67]

Panda, B., Sonat, C., Yang, E.H., et al., 2021. Use of magnesium-silicate-hydrate (M-S-H) cement mixes in 3D printing applications. Cem. Concr. Compos. 117, 103901.

[68]

Raoufi, K., Schlitter, J., Bentz, D., et al., 2011. Parametric assessment of stress development and cracking in internally cured restrained mortars experiencing autogenous deformations and thermal loadin. Adv. Civ. Eng. 2011, 870128.

[69]

Roosz, C., Grangeon, S., Blanc, P., et al., 2015. Crystal structure of magnesium silicate hydrates (M-S-H): the relation with 2:1 Mg-Si phyllosilicates. Cement Concr. Res. 73, 228-237.

[70]

Sun, Z.P., Jiang, Z.W., 2002. Study of self-shrinkage in high-performance concrete due to changes in relative humidity. Natl. Symp. Perform. Concr. 266-271.

[71]

Salomao, R., Bittencourt, L.R.M., Pandolfelli, V.C., 2007. A novel approach for magnesia hydration assessment in refractory castables. Ceram. Int. 33, 803-810.

[72]

Sako, E.Y., Braulio, M.A.L., Pandolfelli, V.C., 2012. Microstructural evolution of magnesia-based castables containing microsilica. Ceram. Int. 38, 6027-6033.

[73]

Szczerba, J., Prorok, R., Sniezek, E., et al., 2013. Influence of time and temperature on ageing and phases synthesis in the MgO-SiO2-H2O system. Thermochim. Acta 567, 57-64.

[74]

Sonat, C., Dung, N.T., Unluer, C., 2017a. Performance and microstructural development of MgO-SiO2 binders under different curing conditions. Construct. Build. Mater. 154, 945-955.

[75]

Sonat, C., Unluer, C., 2017b. Investigation of the performance and thermal decomposition of MgO and MgO-SiO2 formulations. Thermochim. Acta 655, 251-261.

[76]

Sonat, C., Unluer, C., 2019. Development of magnesium-silicate-hydrate (M-S-H) cement with rice husk ash. J. Clean. Prod. 211, 787-803.

[77]

Song, Q., Su, J.H., Nie, J., et al., 2021. The occurrence of MgO and its influence on properties of clinker and cement: a review. Construct. Build. Mater. 293, 18.

[78]

Sonat, C., He, S., Li, J., et al., 2021. Strain hardening magnesium-silicate-hydrate composites (SHMSHC) reinforced with short and randomly oriented polyvinyl alcohol microfibers. Cement Concr. Res. 142, 106354.

[79]

Scott, A., Oze, C., Shah, V., et al., 2021. Transformation of abundant magnesium silicate minerals for enhanced CO2 sequestration. Commun. Earth Environ. 2, 25.

[80]

Shah, V., Dhakal, M., Scott, A., 2022. Long-term performance of MgO-SiO2 binder. Mater. Struct. 55 (2).

[81]

Saptamongkol, A., Sata, V., Wongsa, A., et al., 2023. Hybrid geopolymer paste from high calcium fly ash and glass wool: mechanical, microstructure, and sulfuric acid and magnesium sulfate resistance characteristics. J. Build. Eng. 76.

[82]

Temuujin, J., Okada, K., MacKenzie, K.J.D., 1998a. Formation of layered magnesium silicate during the aging of magnesium hydroxide silica mixtures. J. Am. Ceram. Soc. 81, 754-756.

[83]

Temuujin, J., Okada, K., MacKenzie, K.J.D., 1998b. Role of water in the mechanochemical reactions of MgO-SiO2 systems. J. Solid State Chem. 138, 169-177.

[84]

Tonelli, M., Martini, F., Calucci, L., et al., 2016. Structural characterization of magnesium silicate hydrate: towards the design of eco-sustainable cements. Dalton Trans. 45, 3294-3304.

[85]

Tan, Q.L., Wen, Z.G., Chen, J.N., 2016. Goal and technology path of CO2 mitigation in China's cement industry: from the perspective of co-benefit. J. Clean. Prod. 114, 299-313.

[86]

Tonelli, M., Martini, F., Calucci, L., et al., 2017. Traditional Portland cement and MgObased cement: a promising combination. Phys. Chem. Earth 99, 158-167.

[87]

Tran, H.M., Scott, A., 2017. Strength and workability of magnesium silicate hydrate binder systems. Construct. Build. Mater. 131, 526-535.

[88]

Tonelli, M., Martini, F., Milanesi, A., et al., 2019. Effect of phosphate additives on the hydration process of magnesium silicate cements: thermal and spectroscopic characterization. J. Therm. Anal. Calorim. 138, 3311-3321.

[89]

Tran, H., Dhakal, R., Scott, A., 2020. Mechanical and durability properties of magnesium silicate hydrate binder concrete. Mag. Concr. Res. 72, 693-702.

[90]

Tonelli, M., Faralli, A., Ridi, F., et al., 2021. 3D printable magnesium-based cements towards the preparation of bioceramics. J. Colloid Interface Sci. 598, 24-35.

[91]

Vespa, M., Lothenbach, B., Dähn, R., et al., 2018. Characterisation of magnesium silicate hydrate phases (M-S-H): a combined approach using synchrotron-based absorptionspectroscopy and ab initio calculations. Cement Concr. Res. 109, 175-183.

[92]

Wei, J.X., Chen, Y.M., Li, Y.X., 2006. The reaction mechanism between MgO and microsilica at room temperature. J. Wuhan Univ. Technol.-Materials Sci. Ed. 21, 88-91.

[93]

Wong, A.C.L., Childs, P.A., Berndt, R., et al., 2007. Simultaneous measurement of shrinkage and temperature of reactive powder concrete at early-age using fibre Bragg grating sensor. Cem. Concr. Compos. 29 (6), 490-497.

[94]

Wei, J.X., Yu, Q.J., Zhang, W.S., et al., 2011. Reaction products of MgO and microsilica cementitious materials at different temperatures. J. Wuhan Univ. Technol.-Materials Sci. Ed. 26, 745-748.

[95]

Walling, S.A., Kinoshita, H., Bernal, S.A., et al., 2015. Structure and properties of binder gels formed in the system Mg(OH)2-SiO2-H2O for immobilisation of Magnox sludge. Dalton Trans. 44, 8126-8137.

[96]

Walling, S.A., Provis, J.L., 2016. Magnesia-based cements: a journey of 150 years, and cements for the future. Chem. Rev. 116, 4170-4204.

[97]

Wang, B., Chang, Q.Y., Gao, K., et al., 2018. The synthesis of magnesium silicate hydroxide with different morphologies and the comparison of their tribological properties. Tribol. Int. 119, 672-679.

[98]

Wei, J.X., Cen, K., 2019. A preliminary calculation of cement carbon dioxide in China from 1949 to 2050. Mitig. Adapt. Strategies Glob. Change 24, 1343-1362.

[99]

Wang, L., Chen, L., Cho, D.W., et al., 2019. Novel synergy of Si-rich minerals and reactive MgO for stabilisation/solidification of contaminated sediment. J. Hazard Mater. 365, 695-706.

[100]

Wang, W., 2023. Advancing green and low-carbon development. Green Energy Resources, 100009.

[101]

Xiao, J., Hu, Y.R., 2022. Microstructure of magnesium silicate hydrates in long curing age. J. Chin. Ceram. Soc. 50 (8), 2221-2229.

[102]

Yang, J.C.S., 1960. The system magnesia-water below 300-degrees low-temperature phases from 100-degrees to 300 degrees-c and the IR properties. J. Am. Ceram. Soc. 43, 542-549.

[103]

Zhang, T.T., Cheeseman, C.R., Vandeperre, L.J., et al., 2011. Development of low pH cement systems forming magnesium silicate hydrate(M-S-H). Cement Concr. Res. 41, 439-442.

[104]

Zhang, T.T., Vandeperre, L.J., Cheeseman, C.R., 2012. Magnesium-silicate-hydrate cements for encapsulating problematic aluminium containing wastes. J. Sustain. Cen.-Based Mater. 1, 34-45.

[105]

Zhu, X.Y., Wei, J., Qin, G.H., 2013. Research and analysis of China's water resources. City Town Water Supply 6, 59-64.

[106]

Zhang, T.T., Vandeperre, L.J., Cheeseman, C.R., 2014. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate. Cement Concr. Res. 65, 8-14.

[107]

Zhang, T.T., Liang, X.M., Li, C.M., et al., 2016a. Control of drying shrinkage in magnesium silicate hydrate (m-s-h) gel mortars. Cement Concr. Res. 88, 36-42.

[108]

Zhang, T.T., Du, Y.N., 2016b. Properties of new type fly ash/slag cement stimulated with sodium carbonate, Res. Appl. Build. Mater. 3, 1-4.

[109]

Zhang, Y., Li, Y., Xu, Y., et al., 2017a. Enhanced formation of magnesium silica hydrates (M-S-H) using sodium metasilicate and caustic magnesia in magnesia castables. Ceram. Int. 43, 9110-9116.

[110]

Zhang, Y., Li, Y.W., Xu, Y.B.A., et al., 2017b. Enhanced formation of magnesium silica hydrates (M-S-H) using sodium metasilicate and caustic magnesia in magnesia castables. Ceram. Int. 43, 9110-9116.

[111]

Zhang, Y., Li, Y.W., Dai, Y.J., et al., 2018. Hydration evolution of MgO-SiO2 slurries in the presence of sodium metasilicate. Ceram. Int. 44, 6626-6633.

[112]

Zhang, T.T., Dieckmann, E., Song, S., et al., 2018. Properties of magnesium silicate hydrate (M-S-H) cement mortars containing chicken feather fibre. Construct. Build. Mater. 180, 692-697.

[113]

Zheng, H.T., Cai, S.Y., Wang, S.X., et al., 2019. Development of a unit-based industrial emission inventory in the Beijing-Tianjin-Hebei region and resulting improvement in air quality modeling. Atmos. Chem. Phys. 19, 3447-3462.

[114]

Zhao, H., Hanein, T., Li, N., et al., 2019. Acceleration of M-S-H gel formation through the addition of alkali carbonates. 15th Int. Cong. Chem. Cem. 16-20.

[115]

Zhang, T.T., Li, T., Zou, J., et al., 2019. Immobilization of radionuclide (133) Cs by magnesium silicate hydrate cement. Materials 13, 146.

[116]

Zhang, T.T., Zou, J., Li, Y.M., et al., 2020a. Stabilization/Solidification of strontium using magnesium silicate hydrate cement. Processes 8, 163.

[117]

Zhang, T.T., Li, T., Zhou, Z., et al., 2020b. Anovelmagnesiumhydroxide sulfate hydratewhiskerreinforced magnesium silicate hydrate composites. Compos. Pt. B-Eng. 198, 108203.

[118]

Zhang, T.T., Zhou, Z., Li, M., et al., 2021. Effect of hydrated magnesium carbonate grown in situ on the property of MgO-activated reactive SiO2 mortars. J. Sustain. Cen.-Based Mater. 11, 286-296.

[119]

Zhang, Y., Nath, M., Wang, J., et al., 2022. Temperature-dependent rehydration of magnesium silicate hydrate (M-S-H): development of no-cement binder through MD/ DFT validation. Ceram. Int. 48, 7063-7070.

[120]

Zeng, Q., Liu, X., Zhang, Z., et al., 2023. Synergistic utilization of blast furnace slag with other industrial solid wastes in cement and concrete industry: synergistic mechanisms, applications, and challenges. Green Energy Resources, 100012.

[121]

Zhang, T.T., Zhang, J.B., Zhao, Y., et al., 2023a. Study on the performance and mechanism of glass fiber-reinforced MgO-SiO2-H2O Cement. Materials 16, 6668.

[122]

Zhang, T.T., Fu, H., Han, J.N., 2023b. Deformation mechanisms of magnesium silicate hydrate cement with a shrinkage-reducing admixture under different curing conditions. Minerals 13, 563.

AI Summary AI Mindmap
PDF (6955KB)

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/