Advances in resources, biosynthesis pathway, bioavailability, bioactivity, and pharmacology of ochnaflavone

Shiye Lin , Abirami Ramu Ganesan , Celia Vargas-De-La-Cruz , Jaime Ortiz-Viedma , Jianbo Xiao

Future Postharvest and Food ›› 2024, Vol. 1 ›› Issue (1) : 47 -60.

PDF
Future Postharvest and Food ›› 2024, Vol. 1 ›› Issue (1) : 47 -60. DOI: 10.1002/fpf2.12011
REVIEW

Advances in resources, biosynthesis pathway, bioavailability, bioactivity, and pharmacology of ochnaflavone

Author information +
History +
PDF

Abstract

Ochnaflavone is a naturally occurring biflavonoid mainly isolated from Ochna integerrima, manifests health benefits encompassing antidiabetic, anticancer, anti-cardiovascular, and anti-inflammatory activities. However, most bioactivity research has focused on in vitro experiments, rather than in vivo disease models, toxicological assessments, and human clinical trials. Moreover, a comprehensive review of the pharmacological aspects of ochnaflavone is conspicuously lacking. Thus, this review provides a concise and comprehensive summary of existing knowledge on the chemical structure, plant origin, physical properties, biotransformations, and multifaceted biological activities of ochnaflavone along with an in-depth exploration of the complex molecular mechanisms behind these activities, including signaling pathways and gene expression regulation, with the aim of promoting future theoretical needs for ochnaflavone in clinical trials and providing comprehensive insights into the research and application of this valuable natural compound.

Keywords

bioavailability / biological activities / biosynthesis / ochnaflavone / physical properties

Cite this article

Download citation ▾
Shiye Lin, Abirami Ramu Ganesan, Celia Vargas-De-La-Cruz, Jaime Ortiz-Viedma, Jianbo Xiao. Advances in resources, biosynthesis pathway, bioavailability, bioactivity, and pharmacology of ochnaflavone. Future Postharvest and Food, 2024, 1(1): 47-60 DOI:10.1002/fpf2.12011

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abe, I., Morita, H., Nomura, A., & Noguchi, H. (2000). Substrate specificity of chalcone synthase: Enzymatic formation of unnatural polyketides from synthetic cinnamoyl-CoA analogues. Journal of the American Chemical Society, 122(45), 11242–11243.

[2]

à Zintchem, A. A., Atchadé, A. d. T., Tih, R. G., Mbafor, J. T., Blond, A., Pegnyemb, D. E., & Bodo, B. (2007). Flavonoids from Ouratea staudtii Van Tiegh. (ex Keay) (Ochnaceae). Biochemical Systematics and Ecology, 4(35), 255–256.

[3]

Bandyopadhyay, S., Abiodun, O. A., Ogboo, B. C., Kola-Mustapha, A. T., Attah, E. I., Edemhanria, L., Kumari, A., Jaganathan, R., & Adelakun, N. S. (2022). Polypharmacology of some medicinal plant metabolites against SARS-CoV-2 and host targets: Molecular dynamics evaluation of NSP9 RNA binding protein. Journal of Biomolecular Structure Dynamics, 40(22), 11467–11483.

[4]

Benedek, B., Weniger, B., Parejo, I., Bastida, J., Arango, G., Lobstein, A., & Codina, C. (2006). Antioxidant activity of isoflavones and biflavones isolated from Godoya antioquiensis. Arzneimittelforschung, 56(09), 661–664.

[5]

Bittar, M., Souza, M., Yunes, R., Lento, R., Monache, F., & Filho, V. (2000). Antinociceptive activity of I3, II8-binaringenin, a biflavonoid present in plants of the guttiferae. Planta Medica, 66(01), 84–86.

[6]

Carvalho, M. G. d., Alves, C. C. F., Silva, K. G. S. d., Eberlin, M. N., & Werle, A. A. (2004). Luxenchalcone, a new bichalcone and other constituents from Luxemburgia octandra. Journal of the Brazilian Chemical Society, 15(1), 146–149.

[7]

Chauhan, K. M., Chen, Y., Chen, Y., Liu, A. T., Sun, X., & Dai, M. (2021). The SUMO-specific protease SENP1 deSUMOylates p53 and regulates its activity. Journal of Cellular Biochemistry, 122(2), 189–197.

[8]

Chebil, L., Humeau, C., Anthoni, J., Dehez, F., Engasser, J. M., & Ghoul, M. (2007). Solubility of flavonoids in organic solvents. Journal of Chemical Engineering Data, 52(5), 1552–1556.

[9]

Chen, Z., Zheng, S., Li, L., & Jiang, H. (2014). Metabolism of flavonoids in human: A comprehensive review. Current Drug Metabolism, 15(1), 48–61.

[10]

Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology Biochemistry, 72, 1–20.

[11]

Darwanto, A., Tanjung, M., & Darmadi, M. O. (2000). Cytotoxic mechanism of flavonoid from Temu Kunci (Kaempferia pandurata) in cell culture of human mammary carcinoma. Clinical Hemorheology, 23(2–4), 185–190.

[12]

Das, S., & Rosazza, J. P. (2006). Microbial and enzymatic transformations of flavonoids. Journal of Natural Products, 69(3), 499–508.

[13]

Forman, H. J., & Zhang, H. (2021). Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery, 20(9), 689–709.

[14]

Gangoni, A., Suneetha, B., Sunanda, S., & Ravindrababu, S. (2015). Hypolipidemic and antioxidant activity of methanolic leaf extract of Ochna obtusata on high fat diet induced obesity in rats. Research Journal of Pharmacology and Pharmacodynamics, 7(1), 1–4.

[15]

Gontijo, V. S., Dos Santos, M. H., & Viegas, C., Jr. (2017). Biological and chemical aspects of natural biflavonoids from plants: A brief review. Mini Reviews in Medicinal Chemistry, 17(10), 834–862.

[16]

Goossens, J.-F., Goossens, L., & Bailly, C. (2021). Hinokiflavone and related C–O–C-type biflavonoids as anti-cancer compounds: Properties and mechanism of action. Natural Products Bioprospecting, 11(4), 365–377.

[17]

Górniak, I., Bartoszewski, R., & Króliczewski, J. (2019). Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews, 18(1), 241–272.

[18]

Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 13(10), 572–584.

[19]

Hong, L., He, M., & Zhao, J. (2022). Predicting for anti-(mutant) SARS-CoV-2 and anti-inflammation compounds of Lianhua Qingwen Capsules in treating COVID-19. Chinese Medicine, 17(1), 1–13.

[20]

Hostetler, G. L., Ralston, R. A., & Schwartz, S. J. (2017). Flavones: Food sources, bioavailability, metabolism, and bioactivity. Advances in Nutrition, 8(3), 423–435.

[21]

Ismail, A. M., Musa, A. M., Nasir, T., Magaji, M. G., Jega, Y. A., & Ibrahim, I. (2017). Anti-proliferative study and isolation of Ochnaflavone from the ethyl acetate-soluble fraction of Ochna kibbiensis Hutch & Dalziel. Natural Product Research, 31(18), 2149–2152.

[22]

Jayakrishna, G., Reddy, M. K., Jayaprakasam, B., Gunasekar, D., Blond, A., & Bodo, B. (2003). A new biflavonoid from Ochna beddomei. Journal of Asian Natural Products Research, 5(2), 83–87.

[23]

Jayaprakasam, B., Damu, A., Gunasekar, D., Blond, A., & Bodo, B. (2000). A biflavanone from Cycas beddomei. Biochemical Systematics, 53(4), 515–517.

[24]

Kang, S. S., Lee, J. Y., Choi, Y. K., Song, S. S., Kim, J. S., Jeon, S. J., Han, Y. N., Son, K. H., & Han, B. H. (2005). Neuroprotective effects of naturally occurring biflavonoids. Bioorganic & Medicinal Chemistry Letters, 15(15), 3588–3591.

[25]

Kang, Y.-J., Min, H. Y., Hong, J. Y., Kim, Y. S., Kang, S. S., & Lee, S. K. (2009). Ochnaflavone, a natural biflavonoid, induces cell cycle arrest and apoptosis in HCT-15 human colon cancer cells. Biomolecules Therapeutics, 17(3), 282–287.

[26]

Kim, H. K., Son, K. H., Chang, H. W., & Kang, S. S. (1998). Amentoflavone, a plant biflavone: A new potential anti-inflammatory agent. Archives of Pharmacal Research, 21(4), 406–410.

[27]

Kim, H. P., Park, H., Son, K. H., Chang, H. W., & Kang, S. S. (2008). Biochemical pharmacology of biflavonoids: Implications for anti-inflammatory action. Archives of Pharmacal Research, 31(3), 265–273.

[28]

Kim, S. S., Vo, V. A., & Park, H. (2014). Synthesis of ochnaflavone and its inhibitory activity on PGE(2) production. Bulletin of the Korean Chemical Society, 35(11), 3219–3223.

[29]

성수, & 해일 (2014). Synthesis of ochnaflavone and its inhibitory activity on PGE2 production. Bulletin of the Korean Chemical Society, 35(11), 3219–3223.

[30]

Kumar, N., Singh, B., Bhandari, P., Gupta, A. P., Uniyal, S. K., & Kaul, V. K. (2005). Biflavonoids from Lonicera japonica. Phytochemistry, 66(23), 2740–2744.

[31]

Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013, 1–16.

[32]

Kwak, W.-J., Han, C. K., Son, K. H., Chang, H. W., Kang, S. S., Park, B. K., & Kim, H. P. (2002). Effects of Ginkgetin from Ginkgo biloba leaves on cyclooxygenases and in vivo skin inflammation. Planta Medica, 68(04), 316–321.

[33]

Lee, J.-H. (2011). Involvement of T-cell immunoregulation by ochnaflavone in therapeutic effect on fungal arthritis due to Candida albicans. Archives of Pharmacal Research, 34(7), 1209–1217.

[34]

재숙, 명주, & 장순 (2015). In vitro anti-cancer effect of wellness-compound (ochnaflavone). 디지털융복합연구, 13(5), 337–344.

[35]

Likhitwitayawuid, K., Kaewamatawong, R., & Ruangrungsi, N. (2005). Mono-and biflavonoids of Ochna integerrima. Biochemical Systematics and Ecology, 5(33), 527–536.

[36]

Likhitwitayawuid, K., Rungserichai, R., Ruangrungsi, N., & Phadungcharoen, T. (2001). Flavonoids from Ochna integerrima. Phytochemistry, 56(4), 353–357.

[37]

Lim, H., Son, K. H., Chang, H. W., Kang, S. S., & Kim, H. P. (2006). Effects of anti-inflammatory biflavonoid, ginkgetin, on chronic skin inflammation. Biological Pharmaceutical Bulletin, 29(5), 1046–1049.

[38]

Lobstein, A., Weniger, B., Um, B. H., Vonthron, C., Alzate, F., & Anton, R. (2004). Polyphenols from Cespedesia spathulata and Cespedesia macrophylla (Ochnaceae). Biochemical Systematics and Ecology, 32(2), 229–231.

[39]

Lou, Y., Hu, H., Liu, Y., Yu, Q., Li, L., Ping, L., Yu, L., Jiang, H., & Zeng, S. (2011). Determination of chamaechromone in rat plasma by liquid chromatography–tandem mass spectrometry: Application to pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis, 55(5), 1163–1169.

[40]

Maier, A. G., Matuschewski, K., Zhang, M., & Rug, M. (2019). Plasmodium falciparum. Trends in Parasitology, 35(6), 481–482.

[41]

Makhafola, T. J., Samuel, B. B., Elgorashi, E. E., & Eloff, J. N. (2012). Ochnaflavone and ochnaflavone 7-O-methyl ether two antibacterial biflavonoids from Ochna pretoriensis (Ochnaceae). Natural Product Communications, 7(12), 1601–1604.

[42]

Menezes, J. C., & Diederich, M. F. (2021). Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacological Research, 167, 105525.

[43]

Messi, A. N., Ngo Mbing, J., Ndongo, J. T., Nyegue, M. A., Tchinda, A. T., Yemeda, F. L., Frédérich, M., & Pegnyemb, D. E. (2016). Phenolic compounds from the roots of Ochna schweinfurthiana and their antioxidant and antiplasmodial activities. Phytochemistry Letters, 17, 119–125.

[44]

Moon, T. C., Hwang, H. S., Quan, Z., Son, K. H., Kim, C. H., Kim, H. P., Kang, S. S., Son, J. K., & Chang, H. W. (2006). Ochnaflavone, naturally occurring biflavonoid, inhibits phospholipase A2 dependent phosphatidylethanolamine degradation in a CCl4-induced rat liver microsome. Biological Pharmaceutical Bulletin, 29(12), 2359–2361.

[45]

Ndoile, M. (2018). Ochnaflavone, a naturally occuring biflavonoid: Pharmacology and prospects for future research. Archives of Current Research International, 14(3), 1–14.

[46]

Ndoile, M., & Van Heerden, F. J. T. (2018). Cytotoxic and antimalarial biflavonoids isolated from the aerial parts of Ochna serrulata (Hochst.) Walp. Tanzania Journal of Science, 44(3), 152–162.

[47]

Ndoile, M. M., & van Heerden, F. R. (2013). Total synthesis of ochnaflavone. Beilstein Journal of Organic Chemistry, 9(1), 1346–1351.

[48]

Njock, G. B. B., Grougnet, R., Efstathiou, A., Smirlis, D., Genta-Jouve, G., Michel, S., Mbing, J. N., & Kritsanida, M. (2017). A nitrile glucoside and biflavones from the leaves of Campylospermum excavatum (Ochnaceae). Chemistry and Biodiversity, 14(11), e1700241.

[49]

Oliveira, M. C., de Carvalho, M. G., Grynberg, N. F., & Brioso, P. S. (2005). A biflavonoid from Luxemburgia nobilis as inhibitor of DNA topoisomerases. Planta Medica, 71(06), 561–563.

[50]

Pawellek, A., Ryder, U., Tammsalu, T., King, L. J., Kreinin, H., Ly, T., Hay, R. T., Hartley, R. C., & Lamond, A. I. (2017). Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP. Elife, 6, e27402.

[51]

Rao, K., Sreeramulu, K., Venkata Rao, C., Gunasekar, D., Martin, M. T., & Bodo, B. (1997). Two new biflavonoids from Ochna obtusata. Journal of Natural Products, 60(6), 632–634.

[52]

Reddy, B. A., Reddy, N. P., Gunasekar, D., Blond, A., & Bodo, B. (2008). Biflavonoids from Ochna lanceolata. Phytochemistry Letters, 1(1), 27–30.

[53]

Reutrakul, V., Ningnuek, N., Pohmakotr, M., Yoosook, C., Napaswad, C., Kasisit, J., Santisuk, T., & Tuchinda, P. (2007). Anti HIV-1 flavonoid glycosides from Ochna integerrima. Planta Medica, 73(07), 683–688.

[54]

Santos-Buelga, C., & González-Paramás, A. M. (2016). Flavonoids: Functions, metabolism and biotechnology. In Industrial biotechnology of vitamins, biopigments, antioxidants (pp. 469–495).

[55]

Selvam, C., & Jachak, S. M. (2004). A cyclooxygenase (COX) inhibitory biflavonoid from the seeds of Semecarpus anacardium. Journal of Ethnopharmacology, 95(2–3), 209–212.

[56]

Serra, A., Macià, A., Romero, M. P., Reguant, J., Ortega, N., & Motilva, M. J. (2012). Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chemistry, 130(2), 383–393.

[57]

Shan, C.-x., Guo, S. c., Yu, S., Shan, M. q., Chai, C., Cui, X. b., Zhang, L., Ding, A. w., & Wu, Q. n. (2018). Simultaneous determination of quercitrin, afzelin, amentoflavone, hinokiflavone in rat plasma by UFLC–MS-MS and its application to the pharmacokinetics of platycladus orientalis leaves extract. Journal of Chromatographic Science, 56(10), 895–902.

[58]

Sievers, H., Burkhardt, G., Becker, H., & Dietmar Zinsmeister, H. (1994). Further biflavonoids and 3′-phenylflavonoids from Hypnum cupressiforme. Phytochemistry, 35(3), 795–798.

[59]

Sievers, H., Burkhardt, G., Becker, H., & Zinsmeister, H. D. (1992). Hypnogenols and other dihydroflavonols from the moss Hypnum cupressiforme. Phytochemistry, 31(9), 3233–3237.

[60]

Son, M. J., Moon, T. C., Lee, E. K., Son, K. H., Kim, H. P., Kang, S. S., Son, J. K., Lee, S. H., & Chang, H. W. (2006). Naturally occurring biflavonoid, ochanflavone, inhibits cyclooxygenases-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Archives of Pharmacal Research, 29(4), 282–286.

[61]

Su, X., Zhu, Z. h., Zhang, L., Wang, Q., Xu, M. m., Lu, C., Zhu, Y., Zeng, J., Duan, J. A., & Zhao, M. (2021). Anti-inflammatory property and functional substances of Lonicerae Japonicae Caulis. Journal of Ethnopharmacology, 267, 113502.

[62]

Suh, S. J., Jin, U., Kim, S., Chang, H., Son, J., Ho Lee, S., Son, K., & Kim, C. (2006). Ochnaflavone inhibits TNF-α-induced human VSMC proliferation via regulation of cell cycle, ERK1/2, and MMP-9. Journal of Cellular Biochemistry, 99(5), 1298–1307.

[63]

Tiam, E. R., Ngono Bikobo, D. S., Abouem A Zintchem, A., Mbabi Nyemeck, N., Moni Ndedi, E. D. F., Betote Diboué, P. H., Nyegue, M. A., Atchadé, A. d. T., Emmanuel Pegnyemb, D., Bochet, C. G., & Koert, U. (2019). Secondary metabolites from Triclisia gilletii (De Wild) staner (menispermaceae) with antimycobacterial activity against Mycobacterium tuberculosis. Natural Product Research, 33(5), 642–650.

[64]

Wiese, S., Esatbeyoglu, T., Winterhalter, P., Kruse, H., Winkler, S., Bub, A., & Kulling, S. E. (2015). Comparative biokinetics and metabolism of pure monomeric, dimeric, and polymeric flavan-3-ols: A randomized cross-over study in humans. Molecular Nutrition & Food Research, 59(4), 610–621.

[65]

Williams, C. A., and J. B. Harborne. (1989). 10 - biflavonoids. In Methods in plant Biochemistry. J. B. Harborne, ed. Pp. 357-388: Academic Press.

[66]

Wink, M. (2008). Plant secondary metabolism: Diversity, function and its evolution. Natural Product Communications, 3(8), 1934578X0800300801.

[67]

Xiao, J., Capanoglu, E., Jassbi, A. R., & Miron, A. (2016). Advance on the flavonoid C-glycosides and health benefits. Critical reviews in food science, 56(supp 1), S29–S45.

[68]

Xu, J. C., Liu, X. Q., & Chen, K. L. (2009). A new biflavonoid from Selaginella labordei Hieron. ex Christ. Chinese Chemical Letters, 20(8), 939–941.

[69]

You-Jin, K., Min, H. Y., Hong, J. Y., Kim, Y. S., Kang, S. S., & Lee, S. K. (2009). Ochnaflavone, a natural biflavonoid, induces cell cycle arrest and apoptosis in HCT-15 human colon cancer cells. Biomolecules Therapeutics, 17(3), 282–287.

[70]

Zhang, X., Wang, G., Gurley, E. C., & Zhou, H. (2014). Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. PLoS One, 9(9), e107072.

RIGHTS & PERMISSIONS

2024 The Authors. Future Postharvest and Food published by John Wiley & Sons Australia, Ltd on behalf of International Association of Dietetic Nutrition and Safety.

AI Summary AI Mindmap
PDF

260

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/