Cuminaldehyde downregulates folate metabolism and membrane proteins to inhibit growth of Penicillium digitatum in citrus fruit

Okwong Oketch Reymick , Dazhao Liu , Xiaoli Tan , Qiuli OuYang , Nengguo Tao

Future Postharvest and Food ›› 2024, Vol. 1 ›› Issue (1) : 104 -123.

PDF
Future Postharvest and Food ›› 2024, Vol. 1 ›› Issue (1) : 104 -123. DOI: 10.1002/fpf2.12010
ORIGINAL PAPER

Cuminaldehyde downregulates folate metabolism and membrane proteins to inhibit growth of Penicillium digitatum in citrus fruit

Author information +
History +
PDF

Abstract

In our previous study, cuminaldehyde triggered oxidative stress to inhibit growth of Penicillium digitatum in citrus fruit. Here, we examined the molecular mechanism by which it inhibited growth of P. digitatum. Results revealed a decline in content of glutathione and catalase activity from 10 and 20 min, respectively. Transcriptome and proteome data disclosed downregulation of proteins integral to mitochondrial electron transport chain (mETC) complexes I, IV, V, and transmembrane transporters. Catalase, regulators of transcription and replication, and biosynthesis of glutathione and folate were also downregulated. These were confirmed by RT-qPCR analysis. Reduced expression of proteins integral to mETC complexes signaled possible damage to inner mitochondrial membrane. This was confirmed by decline in mitochondrial membrane potential with a concomitant decline in cellular ATP levels. mETC Complex I activity increased from 10 min which corresponded to the onset of rise in superoxide dismutase activity. The results suggest that cuminaldehyde instigated superoxide anion radicle production initially from mitochondrial complex I, while limiting the ability of the cells to scavenge the accumulating ROS by reducing the expression of glutathione and catalase. This was possibly achieved by downregulation of folate metabolism with the associated reduced expression of transcription regulators and proteins involved in glutathione biosynthesis.

Keywords

catalase / complex I / cuminaldehyde / folate metabolism / glutathione / transcription regulators

Cite this article

Download citation ▾
Okwong Oketch Reymick, Dazhao Liu, Xiaoli Tan, Qiuli OuYang, Nengguo Tao. Cuminaldehyde downregulates folate metabolism and membrane proteins to inhibit growth of Penicillium digitatum in citrus fruit. Future Postharvest and Food, 2024, 1(1): 104-123 DOI:10.1002/fpf2.12010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amo, T., Sato, S., Saiki, S., Wolf, A. M., Toyomizu, M., Gautier, C. A., Shen, J., Ohta, S., & Hattori, N. (2011). Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects. Neurobiology of Disease, 41(1), 111–118.

[2]

Douce, R., Bourguignon, J., Neuburger, M., & Rébeillé, F. (2001). The glycine decarboxylase system: A fascinating complex. Trends in Plant Science, 6(4), 167–176.

[3]

Emri, T., Pócsi, I., & Szentirmai, A. (1997). Glutathione metabolism and protection against oxidative stress caused by peroxides in Penicillium chrysogenum. Free Radical Biology & Medicine, 23(5), 809–814.

[4]

Fan, J., Ye, J., Kamphorst, J. J., Shlomi, T., Thompson, C. B., & Rabinowitz, J. D. (2014). Quantitative flux analysis reveals folate-dependent NADPH production. Nature, 510(7504), 298–302.

[5]

Goel, V., Singla, L., & Choudhury, D. (2020). Cuminaldehyde induces oxidative stress-mediated physical damage and death of Haemonchus contortus. Biomedicine & Pharmacotherapy, 130, 110411.

[6]

Gorelova, V., Ambach, L., Rébeillé, F., Stove, C., & Van Der Straeten, D. (2017). Folates in plants: Research advances and progress in crop biofortification. Frontiers in Chemistry, 5, 21.

[7]

Hansberg, W., Salas-Lizana, R., & Domínguez, L. (2012). Fungal catalases: Function, phylogenetic origin and structure. Archives of Biochemistry and Biophysics, 525(2), 170–180.

[8]

Hermes-Lima, M. (2005). Oxygen in biology and biochemistry: Role of free radicals. Functional Metabolism, 319–368.

[9]

Hernandez, C. E. M., Guerrero, I. E. P., Hernandez, G. A. G., Solis, E. S., & Guzman, J. C. T. (2010). Catalase overexpression reduces the germination time and increases the pathogenicity of the fungus Metarhizium anisopliae. Applied Microbiology and Biotechnology, 87(3), 1033–1044.

[10]

Kakarla, P., Floyd, J., Mukherjee, M. M., Devireddy, A. R., Inupakutika, M. A., Ranweera, I., Kc, R., Shrestha, U., Cheeti, U. R., Willmon, T. M., Adams, J., Bruns, M., Gunda, S. K., & Varela, M. F. (2017). Inhibition of the multidrug efflux pump LmrS from Staphylococcus aureus by cumin spice Cuminum cyminum. Archives of Microbiology, 199(3), 465–474.

[11]

Kalvelytė, A. V., Imbrasaitė, A., Krestnikova, N., & Stulpinas, A. (2017). Adult stem cells and anticancer therapy. Advances in Molecular Toxicology, 11, 123–202.

[12]

Kamada, K. (2012). The GINS complex: Structure and function. Subcellular Biochemistry, 62, 135–156.

[13]

Koopman, W. J. H., Verkaart, S., Visch, H. J., Van Der Westhuizen, F. H., Murphy, M. P., Van Den Heuvel, L. W. P. J., Smeitink, J. A. M., & Willems, P. H. G. M. (2005). Inhibition of complex I of the electron transport chain causes O2⁃•-mediated mitochondrial outgrowth. American Journal of Physiology - Cell Physiology, 288(6), 1440–1451.

[14]

Lee, D. Y., Northrop, J. P., Kuo, M.-H., & Stallcup, M. R. (2006). Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear receptors. Journal of Biological Chemistry, 281(13), 8476–8485.

[15]

Lee, H. S. (2005). Cuminaldehyde: Aldose reductase and α-glucosidase inhibitor derived from Cuminum cyminum L. seeds. Journal of Agricultural and Food Chemistry, 53(7), 2446–2450.

[16]

Li, N., Ragheb, K., Lawler, G., Sturgis, J., Rajwa, B., Melendez, J. A., & Robinson, J. P. (2003). Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Journal of Biological Chemistry, 278(10), 8516–8525.

[17]

Li, Q., McNeil, B., & Harvey, L. M. (2008). Adaptive response to oxidative stress in the filamentous fungus Aspergillus niger B1-D. Free Radical Biology and Medicine, 44(3), 394–402.

[18]

Li, Y., & Trush, M. A. (1998). Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochemical and Biophysical Research Communications, 253(2), 295–299.

[19]

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402–408.

[20]

Lodhi, I. J., & Semenkovich, C. F. (2014). Peroxisomes: A nexus for lipid metabolism and cellular signaling. Cell Metabolism, 19(3), 380–392.

[21]

Massart, C., Giusti, N., Beauwens, R., Dumont, J. E., Miot, F., & Sande, J. van (2014). Diphenyleneiodonium, an inhibitor of NOXes and DUOXes, is also an iodide-specific transporter. FEBS Open Biology, 4(1), 55–59.

[22]

Monteiro-Neto, V., de Souza, C. D., Gonzaga, L. F., da Silveira, B. C., Sousa, N. C. F., Pontes, J. P., Santos, D. M., Martins, W. C., Pessoa, J. F. V., Carvalho Júnior, A. R., Almeida, V. S. S., de Oliveira, N. M. T., de Araújo, T. S., Maria-Ferreira, D., Mendes, S. J. F., Ferro, T. A. F., & Fernandes, E. S. (2020). Cuminaldehyde potentiates the antimicrobial actions of ciprofloxacin against Staphylococcus aureus and Escherichia coli. PLoS One, 15(5), e0232987.

[23]

Morshedi, D., Aliakbari, F., Tayaranian-Marvian, A., Fassihi, A., Pan-Montojo, F., & Pérez-Sánchez, H. (2015). Cuminaldehyde as the major component of cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Journal of Food Science, 80(10), H2336–H2345.

[24]

Nishiyama, Y., Massey, V., Takeda, K., Kawasaki, S., Sato, J., Watanabe, T., & Niimura, Y. (2001). Hydrogen peroxide-forming NADH oxidase belonging to the peroxiredoxin oxidoreductase family: Existence and physiological role in bacteria. Journal of Bacteriology, 183(8), 2431–2438.

[25]

Ouyang, Q., Liu, Y., Oketch, O. R., Zhang, M., Shao, X., & Tao, N. (2021). Citronellal exerts its antifungal activity by targeting ergosterol biosynthesis in Penicillium digitatum. Journal of Fungi, 7(6), 432.

[26]

OuYang, Q., Okwong, R. O., Chen, Y., & Tao, N. (2020). Synergistic activity of cinnamaldehyde and citronellal against green mold in citrus fruit. Postharvest Biology and Technology, 162, 111095.

[27]

Paital, B. (2014). A modified fluorimetric method for determination of hydrogen peroxide using homovanillic acid oxidation principle. BioMed Research International, 2014, 1–8.

[28]

Patil, S. B., Takalikar, S. S., Joglekar, M. M., Haldavnekar, V. S., & Arvindekar, A. U. (2013). Insulinotropic and β-cell protective action of cuminaldehyde, cuminol and an inhibitor isolated from Cuminum cyminum in streptozotocin-induced diabetic rats. British Journal of Nutrition, 110(8), 1434–1443.

[29]

Pitkänen, S., & Robinson, B. H. (1996). Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. Journal of Clinical Investigation, 98(2), 345–351.

[30]

Pradhan, A., Herrero-de-Dios, C., Belmonte, R., Budge, S., Lopez Garcia, A., Kolmogorova, A., Lee, K. K., Martin, B. D., Ribeiro, A., Bebes, A., Yuecel, R., Gow, N. A. R., Munro, C. A., MacCallum, D. M., Quinn, J., & Brown, A. J. P. (2017). Elevated catalase expression in a fungal pathogen is a double-edged sword of iron. PLoS Pathogens, 13(5), e1006405.

[31]

Qin, G., Liu, J., Cao, B., Li, B., & Tian, S. (2011). Hydrogen peroxide acts on sensitive mitochondrial proteins to induce death of a fungal pathogen revealed by proteomic analysis. PLoS One, 6(7), e21945.

[32]

Reymick, O. O., Liu, D., Cheng, Y., Ouyang, Q., & Tao, N. (2022). Cuminaldehyde-induced oxidative stress inhibits growth of Penicillium digitatum in citrus. Postharvest Biology and Technology, 192, 111991.

[33]

Schmidt, M. M., & Dringen, R. (2012). Glutathione (GSH) synthesis and metabolism. In: I. Y. Choi, R. Gruetter (eds) Neural metabolism in vivo. Advances in neurobiology 4: 1029–1050. Springer.

[34]

Storz, G., & Imlay, J. A. (1999). Oxidative stress. Current Opinion in Microbiology, 2(2), 188–194.

[35]

Tanapichatsakul, C., Khruengsai, S., & Pripdeevech, P. (2020). In vitro and in vivo antifungal activity of Cuminum cyminum essential oil against Aspergillus aculeatus causing bunch rot of postharvest grapes. PLoS One, 15(11), e0242862.

[36]

Tao, N., Jia, L., & Zhou, H. (2014). Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum. Food Chemistry, 153, 265–271.

[37]

Tao, N., Jia, L., Zhou, H., & He, X. (2014). Effect of octanal on the mycelial growth of Penicillium italicum and P. digitatum. World Journal of Microbiology and Biotechnology, 30(4), 1169–1175.

[38]

Tavares, D. G., Barbosa, B. V. L., Ferreira, R. L., Duarte, W. F., & Cardoso, P. G. (2018). Antioxidant activity and phenolic compounds of the extract from pigment-producing fungi isolated from Brazilian caves. Biocatalysis and Agricultural Biotechnology, 16, 148–154.

[39]

Tomy, M. J., Dileep, K. V., Prasanth, S., Preethidan, D. S., Sabu, A., Sadasivan, C., & Haridas, M. (2014). Cuminaldehyde as a lipoxygenase inhibitor: In vitro and in silico validation. Applied Biochemistry and Biotechnology, 174(1), 388–397.

[40]

Tsai, K. D., Liu, Y. H., Chen, T. W., Yang, S. M., Wong, H. Y., Cherng, J., Chou, K. S., & Cherng, J. M. (2016). Cuminaldehyde from Cinnamomum verum induces cell death through targeting Topoisomerase 1 and 2 in human colorectal adenocarcinoma COLO 205 cells. Nutrients, 8(6), 318.

[41]

Wang, Y., Ji, D., Chen, T., Li, B., Zhang, Z., Qin, G., & Tian, S. (2019). Production, signalling, and scavenging mechanisms of reactive oxygen species in fruit-pathogen interactions. International Journal of Molecular Sciences, 20(12), 2994.

[42]

Wu, Y., OuYang, Q., & Tao, N. (2016). Plasma membrane damage contributes to antifungal activity of citronellal against Penicillium digitatum. Journal of Food Science and Technology, 53(10), 3853–3858.

[43]

Yuan, X., Meng, K., Shi, S., Wu, Y., Chen, X., OuYang, Q., & Tao, N. (2023). Trans-2-hexenal inhibits the growth of imazalil-resistant Penicillium digitatum Pdw03 and delays green mold in postharvest citrus. Postharvest Biology and Technology, 199, 112304.

[44]

Zandalinas, S. I., & Mittler, R. (2018). ROS-induced ROS release in plant and animal cells. Free Radical Biology & Medicine, 122, 21–27.

[45]

Zhang, L. L., Zhang, Y., Ren, J. N., Liu, Y. L., Li, J. J., Tai, Y. N., Yang, S. Z., Pan, S. Y., & Fan, G. (2016). Proteins differentially expressed during limonene biotransformation by Penicillium digitatum DSM 62840 were examined using iTRAQ labeling coupled with 2D-LC-MS/MS. Journal of Industrial Microbiology & Biotechnology, 43(10), 1481–1495.

[46]

Zhang, Y., OuYang, Q., Duan, B., Reymick, O. O., Chen, Y., Tan, Y., Zhu, X., Su, D., Li, G., & Tao, N. (2022). Trans-2-hexenal/β-cyclodextrin effectively reduces green mold in citrus fruit. Postharvest Biology and Technology, 187, 111871.

[47]

Zheng, S., Jing, G., Wang, X., Ouyang, Q., Jia, L., & Tao, N. (2015). Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function. Food Chemistry, 178, 76–81.

[48]

Zorova, L. D., Popkov, V. A., Plotnikov, E. Y., Silachev, D. N., Pevzner, I. B., Jankauskas, S. S., Babenko, V. A., Zorov, S. D., Balakireva, A. V., Juhaszova, M., Sollott, S. J., & Zorov, D. B. (2018). Mitochondrial membrane potential. Analytical Biochemistry, 552, 50–59.

RIGHTS & PERMISSIONS

2024 The Authors. Future Postharvest and Food published by John Wiley & Sons Australia, Ltd on behalf of International Association of Dietetic Nutrition and Safety.

AI Summary AI Mindmap
PDF

304

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/