A comprehensive review on recent advances in postharvest treatment, storage, and quality evaluation of onion (Allium cepa): Current status, and challenges

Rajvardhan Kiran Patil , Pramod Aradwad , T. V. Arun Kumar , N. Parvathy Nayana , C. S. Ramya , Monalisa Sahoo , Sumit B. Urhe , Rahul Yadav , Abhijit Kar , Indra Mani

Future Postharvest and Food ›› 2024, Vol. 1 ›› Issue (1) : 124 -157.

PDF
Future Postharvest and Food ›› 2024, Vol. 1 ›› Issue (1) : 124 -157. DOI: 10.1002/fpf2.12009
ORIGINAL PAPER

A comprehensive review on recent advances in postharvest treatment, storage, and quality evaluation of onion (Allium cepa): Current status, and challenges

Author information +
History +
PDF

Abstract

Onion is an important economical and nutritional vegetable crop having a global demand. However, the long-term storage and availability of quality produce during off seasons remain a constraint. The intricate process of quality degradation in onions, both pre and postharvest, is influenced by internal factors and storage conditions. To preserve the postharvest quality and prolong the shelf life of onions, effective postharvest technologies incorporating quality assessment and preservation treatments are crucial. This paper delves into the key factors associated with crop quality, postharvest treatments, and storage, providing a comprehensive understanding of their cause-effect relationships. The primary objective of this review is to shed light on diverse postharvest treatments, storage conditions, and structures, along with their effects on the physical, chemical, and biochemical aspects of onions. Additionally, the study explores destructive and non-destructive assessment technologies to evaluate the quality of onions. Storage and marketability is intricately tied to the advancement of appropriate technology aimed at minimizing losses during various stages of harvesting and storage conditions. This review serves as a preliminary document that can assist in exploring critical factors and advancing technologies to enhance the shelf life and quality of onions, bridging the gap between traditional methods and promising advancements.

Keywords

irradiation / non-destructive / post harvest treatment / rotting / sprouting / storage

Cite this article

Download citation ▾
Rajvardhan Kiran Patil, Pramod Aradwad, T. V. Arun Kumar, N. Parvathy Nayana, C. S. Ramya, Monalisa Sahoo, Sumit B. Urhe, Rahul Yadav, Abhijit Kar, Indra Mani. A comprehensive review on recent advances in postharvest treatment, storage, and quality evaluation of onion (Allium cepa): Current status, and challenges. Future Postharvest and Food, 2024, 1(1): 124-157 DOI:10.1002/fpf2.12009

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abayomi, L. A., Terry, L. A., White, S. F., & Warner, P. J. (2006). Development of a disposable pyruvate biosensor to determine pungency in onions (Allium cepa L.). Biosensors and Bioelectronics, 21(11), 2176–2179.

[2]

Abd-Alla, M. H., Bashandy, S. R., Ratering, S., & Schnell, S. (2011). First report of soft rot of onion bulbs in storage caused by Pseudomonas aeruginosa in Egypt. Journal of Plant Interactions, 6(4), 229–238.

[3]

Abdullah, R., Farooq, A., Qaiser, H., Iqtedar, M., Kaleem, A., & Naz, S. (2018). Enhancement of safety and quality of Allium cepa by optimizing gamma radiation dose enduring reduction. FUUAST Journal of Biology, 8(1), 95–102.

[4]

Abubakar, M. S., Maduako, J. N., & Ahmed, M. (2019). Effects of storage duration and bulb sizes on physiological losses of Agrifound light red onion bulbs (Allium cepa L.). Agricultural Science & Technology, 11(1), 1313–8820.

[5]

Adamicki, F. (2005). Effects of pre-harvest treatments and storage conditions on quality and shelf-life of onions (pp. 229–238).

[6]

Adamicki, F., & Kepka, A. K. (1973). Storage of onions in controlled atmospheres. Symposium on Vegetable Storage, 38, 53–74.

[7]

Agblor, S., & Waterer, D. (2001). Onions - postharvest handling and storage sciences, university of Saskatchewan. Canada-Saskatchewan Irrigation Diversification Centre.

[8]

Anbukkarasi, V., Pugalendhi, L., Ragupathi, N., & Jeyakumar, P. (2013). Studies on pre and post-harvest treatments for extending shelf life in onion. A Review, 34(4), 256–268.

[9]

Anuradha, S. (2016). Designing a controlled ventilation onion storage structure and creating awareness among the selected beneficiaries in Erode district. Food Science: Indian Journal of Research in Food Science and Nutrition, 3(1), 24–29.

[10]

Arowora, K. A., & Adetunji, C. O. (2014). Antifungal effects of crude extracts of Moringa oleifera on Aspergillus niger v. tieghem associated with post harvest rot of onion bulb. SMU Medical Journal, 1, 214–224.

[11]

Aseabo, T. F., Fiase, J. O., & Akaagerger, N. (2019). Investigation of gamma irradiation effects on onion bulbs. Physical Reports, 4(5), 1–8.

[12]

Aslam, R., Alam, M. S., Singh, S., & Kumar, S. (2021). Aqueous ozone sanitization of whole peeled onion: Process optimization and evaluation of keeping quality during refrigerated storage. LWT, 151, 11218.

[13]

Bachal, S. S., Kolekar, S. M., & More, R. P. (2018). Smart system for protecting onion from different attack. In 2018 international conference on information, communication, engineering and technology (pp. 1–4). ICICET 2018.

[14]

Bagy, H. M. M. K., Abo-Elyousr, K. A. M., Hesham, A. E. L., & Sallam, N. M. A. (2023). Development of antagonistic yeasts for controlling black mold disease of onion. Egyptian Journal of Biological Pest Control, 33(1), 17.

[15]

Bansal, M. K., Boyhan, G. E., & MacLean, D. D. (2015). Effects of postharvest curing, ozone, sulfur dioxide, or low oxygen/high carbon dioxide storage atmospheres on quality of short-day onions. HortTechnology, 25(5), 639–644.

[16]

Beghi, R., Buratti, S., Giovenzana, V., Benedetti, S., & Guidetti, R. (2017). Electronic nose and visible-near infrared spectroscopy in fruit and vegetable monitoring. Reviews in Analytical Chemistry, 36(4), 20160016.

[17]

Bhalshankar, S. (2021). The preservation techniques of onion (No. 6561). EasyChair.

[18]

Bhasker, P., Gupta, P. K., Rayte, B. P., & Ambare, T. P. (2020). Modern NHRDF onion storage structure under sub-tropical conditions. Vegetable Science, 47(2), 261–265.

[19]

Bhong, M. G., & Kale, V. M. (2020). Drying mechanism of Indian dark red onion slices at high velocity. AIMS Agriculture and Food, 5(2), 245–261.

[20]

Birth, G. S., Dull, G. G., Renfroe, W. T., & Kays, S. J. (1985). Non-destructive spectrophotometric determination of dry M atter in onions. Journal of the American Society for Horticultural Sciences, 110(15), 297–303.

[21]

Borole, S. T., Burbade, R., & Shinde, A. (2013). Comparative losses and economic feasibility of the improved onion storage with low cost of onion storage structure. International Journal of Modern Engineering Research, 3(5), 2656–2661.

[22]

Bufler, G. (2009). Exogenous ethylene inhibits sprout growth in onion bulbs. Annals of Botany, 103(1), 23–28.

[23]

Cardoso, D. S. C. P., Pereira, A. M., Correia, T. D., & Finger, F. L. (2016). Drying time and post-harvest quality of onion bulbs submitted to artificial curing (pp. 822–828).

[24]

Carpenter, A., Epenhuijsen, C. W. V. A. N., Brash, D. W., & Zhang, Z. (2002). Eco2 Fume ® for control of onion Thrips controlled atmosphere for Raspberry Bud.

[25]

Chávez-Mendoza, C., Vega-García, M. O., Guevara-Aguilar, A., Sánchez, E., Alvarado-González, M., & Flores-Córdova, M. A. (2016). Effect of prolonged storage in controlled atmospheres on the conservation of the onion (Allium cepa L.) quality. Emirates Journal of Food and Agriculture, 28(12), 842–852.

[26]

Chope, G. A., & Terry, L. A. (2010). Effect of curing at different temperatures on phytohormone and biochemical composition of onion “red baron” during long-term postharvest storage. Acta Horticulturae, 877, 699–706.

[27]

Chope, G. A., Terry, L. A., & White, P. J. (2007a). The effect of 1-methylcyclopropene (1-MCP) on the physical and biochemical characteristics of onion cv. SS1 bulbs during storage. Postharvest Biology and Technology, 44(2), 131–140.

[28]

Chope, G. A., Terry, L. A., & White, P. J. (2007b). The effect of the transition between controlled atmosphere and regular atmosphere storage on bulbs of onion cultivars SS1, Carlos and Renate. Postharvest Biology and Technology, 44(3), 228–239.

[29]

Chugunov, S., & Li, C. (2015). Monte Carlo simulation of light propagation in healthy and diseased onion bulbs with multiple layers. Computers and Electronics in Agriculture, 117, 91–101.

[30]

Cools, K., Chope, G. A., & Terry, L. A. (2012). Short treatment with ethylene and 1-methylcyclopropene in combination prior to storage is sufficient to reduce sprout growth in onion (Allium cepa L.). Acta Horticulturae, 945, 297–301.

[31]

Croci, C. A., Banek, S. A., & Curzio, A. (1995). Effect of gamma-irradiation and extended storage on chemical quality in onion (Allium cepa L.). 8146(94), 151–154.

[32]

Curzio, O. A., & CROCI, C. A. (1983). Extending onion storage life by gamma-irradiation. Journal of Food Processing and Preservation, 7(1), 19–23.

[33]

Dabhi, M., & Patel, N. (2017). Effect of storage ventilation on bulb disease of onion. Advances in Food Science and Engineering, 1(3), 100–106.

[34]

Dabhi, M. N., Patel, N. C., & Dhamsaniya, N. K. (2008). Effect of storage conditions on the quality characteristics of onion. Journal of Food Science and Technology, 45(4), 376–377.

[35]

Demissew, A., Meresa, A., & Temesgen, K. (2018). Evaluation of drying methods on some nutritional and volatile components of Bombay red onion (Allium cepal L.). Preprints, 1–12.

[36]

Downes, K., Chope, G. A., & Terry, L. A. (2009). Effect of curing at different temperatures on biochemical composition of onion (Allium cepa L.) skin from three freshly cured and cold stored UK-grown onion cultivars. Postharvest Biology and Technology, 54(2), 80–86.

[37]

Downes, K., Chope, G. A., & Terry, L. A. (2010). Postharvest application of ethylene and 1-methylcyclopropene either before or after curing affects onion (Allium cepa L.) bulb quality during long term cold storage. Postharvest Biology and Technology, 55(1), 36–44.

[38]

El-Mesery, H. S., Mao, H., & Abomohra, A. E. F. (2019). Applications of non-destructive technologies for agricultural and food products quality inspection. Sensors, 19(4), 846.

[39]

Endalew, W., Getahun, A., Demissew, A., & Ambaye, T. (2014). Storage performance of naturally ventilated structure for onion bulbs. Agricultural Engineering International: CIGR Journal, 16(3), 97–101.

[40]

Eriballo, S. G., Satheesh, N., & Fanta, S. W. (2022). Performance evaluation of low-cost storage structures for onions (Allium cepa L.) storage in Bahir dar, Amhara region, Ethiopia. Philippine Journal of Science, 151(1), 437–448.

[41]

Eshel, D., Teper-Bamnolker, P., Vinokur, Y., Saad, I., Zutahy, Y., & Rodov, V. (2014). Fast curing: A method to improve postharvest quality of onions in hot climate harvest. Postharvest Biology and Technology, 88, 34–39.

[42]

FAOSTAT. (2021). Retrieved from

[43]

Galsurker, O., Kelly, G., Doron-Faigenboim, A., Aruchamy, K., Salam, B. B., Teper-Bamnolker, P., Lers, A., & Eshel, D. (2020). Endogenous sugar level is associated with differential heat tolerance in onion bulb scales. Postharvest Biology and Technology, 163, 111145.

[44]

Geries, L. S. M., El-Shahawy, T. A., & Moursi, E. A. (2021). Cut-off irrigation as an effective tool to increase water-use efficiency, enhance productivity, quality and storability of some onion cultivars. Agricultural Water Management, 244, 106589.

[45]

Ghodki, B. M., Srihari, G., Dukare, A. S., Kannaujia, P. K., Kalnar, Y. B., & Vishwakarma, R. K. (2021). Potential utilization of guar straw and wood wool in controlling relative humidity and temperature of storage environment. Journal of Food Process Engineering, 44(2), 1–12.

[46]

Gomathy, K., Balakrishnan, M., & Pandiselvam, R. (2019). Nonlinear and multiple linear regression analysis of airflow resistance in multiplier onion. Journal of Food Process Engineering, 42(7), 1–10.

[47]

Gorrepati, K., Onion, D. O., Thangasamy, A., & Murkute, A. (2017). Curing of onion: A review.

[48]

Gubb, I. R., & MacTavish, H. S. (2002). Onion pre- and post-harvest considerations. In H. D. Rabinowitch & L. Currah (Eds.), Allium crop sciences: Recent advances (pp. 233–266). CAB Int.

[49]

Guha, P., & Basak, S. (2013). Optimization of ethanol and potassium sorbate treatment for minimizing postharvest losses in onion bulbs (Allium cepa L. Cv. Sukhsagar). International Journal of Agriculture and Food Science Technology, 4, 561–570.

[50]

Ha, N. T. N., Linh, N. T. T., Son, N. A., Sang, N. T. M., Ha, P. T. N., Duc, L. D. D., & Kume, T. (2022). Irradiation conditions for sprout inhibition in onions and potatoes using low-energy X-rays. SSRN Electronic Journal, 1–16.

[51]

Haff, R. P., & Toyofuku, N. (2008). X-ray detection of defects and contaminants in the food industry. Sensing and Instrumentation for Food Quality and Safety, 2(4), 262–273.

[52]

Horvitz, S., & Cantalejo, M. J. (2014). Application of ozone for the postharvest treatment of fruits and vegetables application of ozone for the postharvest treatment of fruits. Critical Reviews in Food Science and Nutrition, 37–41.

[53]

Ilić, Z., Milenković, L., Djurovka, M., & Trajković, R. (2009). The effect of long-term storage on quality attributes and storage potential of different onion cultivars. Acta Horticulturae, 830, 635–642.

[54]

Imoukhuede, O. B., & Ale, M. O. (2015). Onion storage and the roof influence in the tropics. Sky Journal of Agricultural Research, 4(1), 33–37.

[55]

Islam, Md N., Körner, O., Pedersen, J. S., Sørensen, J. N., & Edelenbos, M. (2019). Analyzing quality and modelling mass loss of onions during drying and storage. Computers and Electronics in Agriculture, 164, 104865.

[56]

Islam, Md N., Nielsen, G., Stærke, S., Kjær, A., Jørgensen, B., & Edelenbos, M. (2018). Novel non-destructive quality assessment techniques of onion bulbs: A comparative study. Journal of Food Science and Technology, 55(8), 3314–3324.

[57]

Islam, Md N., Wang, A., Skov Pedersen, J., & Edelenbos, M. (2017). Microclimate tools to monitor quality changes in stored onions. Acta Horticulturae, 1154, 229–234.

[58]

Ito, H. (2014). New ways to evaluate the quality of vegetables using instruments. Japan Agricultural Research Quarterly, 48(2), 111–120.

[59]

Jantra, C., Slaughter, D. C., Liang, P. S., & Pathaveerat, S. (2017). Nondestructive determination of dry matter and soluble solids content in dehydrator onions and garlic using a handheld visible and near infrared instrument. Postharvest Biology and Technology, 133, 98–103.

[60]

Ji, S. H., Kim, T. K., Keum, Y. S., & Chun, S. C. (2018). The major postharvest disease of onion and its control with thymol fumigation during low-temperature storage. Mycobiology, 46(3), 242–253.

[61]

Jolayemi, O. S., Shamsudeen Nassarawa, S., Lawal, O. M., Sodipo, M. A., & Oluwalana, I. B. (2018). Monitoring the changes in chemical properties of red and white onions (Allium cepa) during storage. Journal of Stored Products and Postharvest Research, 9(7), 78–86.

[62]

Jorjandi, M., Bonjar, G. H. S., Baghizadeh, A., Sirchi, G. R. S., Massumi, H., Baniasadi, F., Aghighi, S., & Farokhi, P. R. (2009). Biocontrol of botrytis allii munn the causal agent of neck rot, the postharvest disease in onion, by use of a new iranian isolate of streptomyces. American Journal of Agricultural and Biological Science, 4(1), 72–78.

[63]

Kallai, S., & Kudachikar, R. V. B. (2015). Assessment of Bulb pungency level in Indian onion cultivars under influence of low doses of Ionizing radiation and short-term storage. International Journal of Scientific Engineering and Research, 6(10), 38–49.

[64]

Kassali, R., & Idowu, E. O. (2007). Economics of onion storage systems under tropical conditions. International Journal of Vegetable Science, 13(1), 85–97.

[65]

Kate, A. E., Chakraborty, S. K., Pawar, D. A., & Gorrepati, K. (2019). Airflow resistance and pressure drop behavior in different conditions of bulk-stored onion and its dynamic modelling. Journal of Food Process Engineering, 42(5), 1–11.

[66]

Khalifa, M., Mahmoud, N., & Abou-Zeid, N. (2016). Management of onion bulb rots during storage using pre- and post-harvest control treatments. Egyptian Journal of Phytopathology, 44(2), 1–16.

[67]

Khandagale, K., & Gawande, S. (2019). Genetics of bulb colour variation and flavonoids in onion. Journal of Horticultural Science and Biotechnology, 94(4), 522–532.

[68]

Khokhar, K. M. (2017). Environmental and genotypic effects on bulb development in onion–a review. The Journal of Horticultural Science and Biotechnology, 92(5), 448–454.

[69]

Kitinoja, L., & Kader, A. (2002). Small-scale postharvest practices A manual for horticultural crops - postharvest technology center (Vol. 8, p. 267). Postharvest Technology Research and Information Center.

[70]

Kiura, I. N., Gichimu, B. M., & Rotich, F. (2021). Proximate and nutritional composition of stored bulb onions as affected by harvest and postharvest treatments. International Journal of Agronomy, 2021, 1–9.

[71]

Konduru, T., Rains, G. C., & Li, C. (2015a). A customized metal oxide semiconductor-based gas sensor array for onion quality evaluation: System development and characterization. Sensors, 15(1), 1252–1273.

[72]

Konduru, T., Rains, G. C., & Li, C. (2015b). Detecting sour skin infected onions using a customized gas sensor array. Journal of Food Engineering, 160, 19–27.

[73]

Kumar, S., Imtiyaz, M., & Kumar, A. (2007). Effect of differential soil moisture and nutrient regimes on postharvest attributes of onion (Allium cepa L.). Scientia Horticulturae, 112(2), 121–129.

[74]

Kumar, V., Neeraj , Sharma, S., & Sagar, N. A. (2015). Post harvest management of fungal diseases in onion - a review. International Journal of Current Microbiology and Applied Sciences, 4(6), 737–752.

[75]

Kuroki, S., Nishino, M., Nakano, S., Deguchi, Y., & Itoh, H. (2017). Positioning in spectral measurement dominates estimation performance of internal rot in onion bulbs. Postharvest Biology and Technology, 128, 18–23.

[76]

Lawande , & Tripathi (2019). On farm storage of onion and Garlic: Success story. International Symposium on Edible Alliums: Challenge and Opportunities.

[77]

Lee, J.-T., Bae, D.-W., Park, S.-H., Shim, C.-K., Kwak, Y.-S., & Kim, H.-K. (2001). Occurrence and biological control of postharvest decay in onion caused by fungi. Plant Pathology Journal, 17(3), 141–148.

[78]

Li, C., Schmidt, N. E., & Gitaitis, R. (2011). Detection of onion postharvest diseases by analyses of headspace volatiles using a gas sensor array and GC-MS. LWT, 44(4), 1019–1025.

[79]

Lim, J., Song, J.-S., Eom, S., Yoon, J. W., Ji, S.-H., Kim, S. B., & Ryu, S. (2021). The effect of gaseous ozone generated by surface dielectric barrier discharge on the decay and quality of stored. Agronomy, 11(1058), 1–7.

[80]

Mahanti, N. K., Pandiselvam, R., Kothakota, A., Chakraborty, S. K., Kumar, M., & Cozzolino, D. (2022). Emerging non-destructive imaging techniques for fruit damage detection: Image processing and analysis. Trends in Food Science & Technology, 120, 418–438.

[81]

Malekabadi, A. J., Khojastehpour, M., Emadi, B., & Golzarian, M. R. (2017). Development of a machine vision system for determination of mechanical properties of onions. Computers and Electronics in Agriculture, 141, 131–139.

[82]

Marefati, N., Ghorani, V., Shakeri, F., Boskabady, M., Kianian, F., Rezaee, R., & Boskabady, M. H. (2021). A review of anti-inflammatory, antioxidant, and immunomodulatory effects of Allium cepa and its main constituents. Pharmaceutical Biology, 59(1), 287–302.

[83]

Maw, B. W., & Mullinix, B. G. (2005). Moisture loss of sweet onions during curing. Postharvest Biology and Technology, 35(2), 223–227.

[84]

McKeown, M. S., Trabelsi, S., Tollner, E. W., & Nelson, S. O. (2012). Dielectric spectroscopy measurements for moisture prediction in Vidalia onions. Journal of Food Engineering, 111(3), 505–510.

[85]

Medina-Jaramillo, C., Usgame-Fagua, K., Franco-González, N., & López-Córdoba, A. (2022). Single and combined effect of mild-heat treatment and alginate coatings on quality preservation of minimally processed bunching green onions. Foods, 11(5), 641.

[86]

Medlicott, A., Brice, J., Salgado, T., & Ramirez, D. (1995). Forced ambient air storage of different onion cultivars. HortTechnology, 5(1), 52–57.

[87]

Mogren, L. M., Olsson, M. E., & Gertsson, U. E. (2006). Quercetin content in field-cured onions (Allium cepa L.): Effects of cultivar, lifting time, and nitrogen fertilizer level. Journal of Agricultural and Food Chemistry, 54(17), 6185–6191.

[88]

Mota, A. P., Pedroza Cruz, R. R., Ferreira, A. P. S., Gomes, M. D. P., Silva Guimarães, M. E. da, Ribeiro, W. S., Da Costa, F. B., & Finger, F. L. (2019). The harvest season changes the organoleptic properties of onion during storage. Journal of Experimental Agriculture International, 33(1), 1–9.

[89]

Murkute, A. A., & Anandhan, S. (2016). Onion quality affected by ethanol and ethephon during storage. National Academy Science Letters, 39(3), 163–169.

[90]

Nabi, G., Rab, A., Sajid, M., Ullah, F., Abbas, S. J., & Ali, I. (2013). Influence of curing methods and storage conditions on the post-harvest quality of onion bulbs. Pakistan Journal of Botany, 45(2), 455–460.

[91]

Naik, M. K., Raju, K., Rani, G. S. D., Krishnaprasad , & Veeregowda (2008). Evaluation of different storage structures and monitoring of storage molds in onion genotypes for managing post-harvest diseases. Indian Phytopathology, 61(3), 311–316.

[92]

Naqash, S., Jan, T., Naik, H. R., Hussain, S. Z., Dar, B. N., & Makroo, H. A. (2022). Influence of controlled curing process on physico-chemical, nutritional, and bio-active composition of brown Spanish onion. Journal of Food Composition and Analysis, 114, 104823.

[93]

Nassarawa, S. S., & Sulaiman, S. A. (2019). Extending the shelf life of tomato and onion in Nigeria: A review. International Journal of Food Science and Nutrition, 4(5), 99–111.

[94]

Ndereyimana, A., Koyama, S., & Kagiraneza, B. (2020). Effect of curing and storage temperature on shelf life of onion (Allium cepa L.) bulbs. Fundamental and Applied Agriculture, 5(0), 1.

[95]

Nega, B. G., Mohammed, A., & Menamo, T. (2015). Effect of curing and top removal time on quality and shelf life of onions (Allium cepa L.). Global Journal of Science Frontier Research: D Agriculture and Veterinary, 15(8), 26–36.

[96]

Nishino, M., Kuroki, S., Deguchi, Y., Nakano, S., & Itoh, H. (2019). Dual-beam spectral measurement improves accuracy of non-destructive identification of internal rot in onion bulbs. Postharvest Biology and Technology, 156, 110935.

[97]

Opara, L. U. (2003). Onion onions: Post-harvest operation. INPho- Post-Harvest Compendium, 17.

[98]

Ortola, M. P., & Knox, J. W. (2015). Water relations and irrigation requirements of onion (Allium cepa L.): A review of yield and quality impacts. Experimental Agriculture, 51(2), 210–231.

[99]

Pandiselvam, R., Venkatachalam, T., & Rajamani, M. (2015). Decay rate kinetics of ozone gas in rice grains. Ozone: Science & Engineering, 37(5), 450–455.

[100]

Petropoulos, S. A., Ntatsi, G., Fernandes, Â, Barros, L., Barreira, J. C. M., Ferreira, I. C. F. R., & Antoniadis, V. (2016). Long-term storage effect on chemical composition, nutritional value and quality of Greek onion landrace “vatikiotiko.”. Food Chemistry, 201, 168–176.

[101]

Petropoulos, S. A., Ntatsi, G., & Ferreira, I. C. F. R. (2017). Long-term storage of onion and the factors that affect its quality: A critical review. Food Reviews International, 33(1), 62–83.

[102]

Põldma, P., Moor, U., Merivee, A., & Tõnutare, T. (2012). Effect of controlled atmosphere storage on storage life of onion and garlic cultivars. Acta Horticulturae(945), 63–69.

[103]

Praeger, U., Ernst, M. K., & Weichmann, J. (2003). Effects of ultra-low oxygen storage on postharvest quality of onion bulbs (Allium cepa L. var. cepa). European Journal of Horticultural Science, 68(1), 14–19.

[104]

Prajapati, D. M., & Saini, A. (2020). Characterizing low-energy based storage structure design for on-farm safe- transient storage of onion and Garlic.

[105]

Priya, E. P. B., Sinja, V. R., Alice, R. P. J. S., Shanmugasundaram, S., & Alagusundaram, K. (2014). Storage of onions – A review. Agricultural Reviews, 35(4), 239.

[106]

Qadir, A., Hashinaga, F., & Karim, M. R. (2007). Effects of pre-storage treatment with ethanol and CO2 on onion dormancy. Journal of Bio-Science, 15, 55–62.

[107]

Raju, K., & Naik, M. K. (2007). Effect of post-harvest treatments of onion to control spoilage during storage. Journal of Food Science and Technology, 44(6), 595–599.

[108]

Ramin, A. A. (1999). Storage potential of bulb onions (Allium cepa L.) under high temperatures. The Journal of Horticultural Science and Biotechnology, 74(2), 181–186.

[109]

Rana, S. S., & Sinija, V. R. (2014). Study on Curing of big Bellary onion when cured in modular Ventilated structure and by other popular curing practices. International Journal of Latest Trends in Engineering and Technology, 4(4), 150–156.

[110]

Rekha, E., Kukanoor, L., Adarsh, K., & Praveen, J. (2014). Studies on effect of different curing methods on physical parameters of onion during storage. Plant Archives, 14(1), 257–261.

[111]

Ren, F., Nian, Y., & Perussello, C. A. (2020). Effect of storage, food processing and novel extraction technologies on onions flavonoid content: A review. Food Research International, 132, 108953.

[112]

Rutherford, P. P., & Whittle, R. (1982). The carbohydrate composition of onions during long term cold storage. Journal of Horticultural Science, 57(3), 349–356.

[113]

Sabaragamuwa, R., Dharmasena, D., & Mannaperuma, J. (2011). Optimization of environmental parameters for short-term storage of big onions and evaluation of the feasibility of controlled environmental storage. Tropical Agricultural Research, 22(4), 356.

[114]

Sachdev, D., Kumar, V., Maheshwari, P. H., Pasricha, R., Deepthi , & Baghel, N. (2016). Silver based nanomaterial, as a selective colorimetric sensor for visual detection of postharvest spoilage in onion. Sensors and Actuators, B. Chemical, 228, 471–479.

[115]

Sanusi, S. N. (2018). Nutrient retention capacity of white and red varieties of onion (Allium cepa) bulbs as influenced by storage conditions. International Journal of Food Science and Biotechnology, 3(3), 95.

[116]

Sanusi, S. N., & Gambo, A. (2019). Effect of storage methods on some selected mineral and ascorbic acid content of red and white onion (Allium cepa). Journal of Food, Nutrition and Agriculture, 2(1), 6–9.

[117]

Schroeder, B. K., Humann, J. L., & du Toit, L. J. (2012). Effects of postharvest onion curing parameters on the development of sour skin and slippery skin in storage. Plant Disease, 96(10), 1548–1555.

[118]

Sekara, A., Pokluda, R., Del Vacchio, L., Somma, S., & Caruso, G. (2017). Interactions among genotype, environment and agronomic practices on production and quality of storage onion (Allium cepa L.) - a review. Horticultural Science, 44(1), 21–42.

[119]

Shahin, M. A., Tollner, E. W., Gitaitis, R. D., Sumner, D. R., & Maw, B. W. (2002). Classification of sweet onions based on internal defects using image processing and neural network techniques. American Society of Agricultural Engineers, 45(5), 1613–1618.

[120]

Shankar, S., Thirupathi, V., & Venugopal, A. P. (2017). Development of on farm ventilated storage system for aggregatum onion. International Journal of Current Microbiology and Applied Sciences, 6(6), 1354–1361.

[121]

Sharma, K., & Lee, Y. R. (2016). Effect of different storage temperature on chemical composition of onion (Allium cepa L.) and its enzymes. Journal of Food Science and Technology, 53(3), 1620–1632.

[122]

Sharma, P., Sharma, S. R., Dhall, R. K., & Mittal, T. C. (2020). Effect of γ-radiation on post-harvest storage life and quality of onion bulb under ambient condition. Journal of Food Science and Technology, 57(7), 2534–2544.

[123]

Sharma, T., Kavita , Mishra, B. B., & Variyar, P. S. (2023). Detection of gamma radiation processed onion during storage using propidium iodide-based fluorescence microscopy. Food Chemistry, 398, 133928.

[124]

Shelake, P. S., Mohapatra, D., Tripathi, M. K., Giri, S. K., Kate, A., & Kumar, M. (2022). Inactivation of Aspergillus Niger and Erwinia carotovora in onion (Allium cepa L.) bulbs subjected to pulsed ozone treatment. Postharvest Biology and Technology, 192, 111998.

[125]

Shelke, R. D., Bhogaonkar, M. M., & Chavan, R. V. (2016). Study of storage losses, price realized and comparative profitability of the storage methods of onion in Ahmednagar district of Maharashtra. International Journal of Commerce and Business Management, 9(1), 17–23.

[126]

Shukla, B. D., & Gupta, R. K. (1993). Development and evaluation of concentric-type storage structures for onions. In International symposium on Alliums for the tropics (Vol. 358, pp. 389–394).

[127]

Sinha, R., Khot, L. R., Schroeder, B. K., & Sankaran, S. (2018). FAIMS based volatile fingerprinting for real-time postharvest storage infections detection in stored potatoes and onions. Postharvest Biology and Technology, 135, 83–92.

[128]

Song, J., Fan, L., Hildebrand, P. D., & Forney, C. F. (2000). Biological effects of Corona discharge on onions in a commercial storage facility. HortTechnology, 10(3), 608–612.

[129]

Song, J., Hildebrand, P. D., Forney, C. F., & Fan, L. H. (2000b). Corona discharge reduces mold on commercially stored onions. In IV international conference on postharvest science (Vol. 553, pp. 427–428).

[130]

Speir, R. A., & Haidekker, M. A. (2017). Onion postharvest quality assessment with x-ray computed tomography - a pilot study. IEEE Instrumentation and Measurement Magazine, 20(3), 15–19.

[131]

Srinivasan, R., & Shanmugam, V. (2006). Postharvest management of black mould rot of onion. Indian Phytopathology, 59(3), 333–339.

[132]

Sun, J., Künnemeyer, R., McGlone, A., Tomer, N., & Sharrock, K. (2020). A spatially resolved transmittance spectroscopy system for detecting internal rots in onions. Postharvest Biology and Technology, 163, 111141.

[133]

Tanaka, K., Matsuo, Y., & Egashira, J. (1996). Controlled atmosphere storage for onions. International Symposium on Plant Production in Closed Ecosystems, 440, 669–674.

[134]

Tekeste, N., Dechassa, N., Woldetsadik, K., Talae, A., Dessalegne, L., & Takele, A. (2017). Effect of Integrated Nitrogen, Phosphorus, and Farmyard manure on post-harvest quality and storability of onion (Allium cepa L.). Journal of Postharvest Technology, 5(4), 25–37.

[135]

Tollner, E. W., Gitaitis, R. D., Seebold, K. W., & Maw, B. W. (2005). Experiences with a food product X-ray inspection system for classifying onions. American Society of Agricultural Engineers, 21(5), 907–912.

[136]

Torimiro, N., Makinde, I. O., Omole, R. K., & Daramola, O. B. (2020). Deterioration profile of postharvest onion (Allium cepa L.) bulbs induced by potential pathogenic microorganisms. International Journal of Pathogen Research, 5(2), 39–45.

[137]

Tripathi, P., Lawande, K. E., Phule, M., Vidyapeeth, K., & Tripathi, P. C. (2016). Designing and evaluation of onion storage structures for Indian conditions. International Journal of Agricultural Sciences, 6(2), 918–924.

[138]

Tripathi, P., & Sankar, V. (2011). Response of gamma irradiation on post-harvest losses in some onion varieties.

[139]

Tripathi, P. C., Dhumal, S. S., Jadhav, H. M., & Lawande, K. E. (2004). Onion storage in India - a survey report, p. 42. National Research Centre for Onion and Garlic, Rajgurunagar, Pune, India.

[140]

Tripathi, P. C., & Lawande, K. E. (2019). Onion storage in tropical region — A review. Current Horticulture, 7(2), 15.

[141]

Vahling-Armstrong, C., Dung, J. K. S., Humann, J. L., & Schroeder, B. K. (2016). Effects of postharvest onion curing parameters on bulb rot caused by Pantoea agglomerans, Pantoea ananatis and Pantoea allii in storage. Plant Pathology, 65(4), 536–544.

[142]

Vitnor, D. S., Varma, L. R., & Pawar, Y. (2020). Influence of methods of harvesting and time of curing on yield and storage life of Rabi onion Cv. Agrifound Light Red, 9(5), 2007–2009.

[143]

Wang, H., Li, C., & Wang, M. (2013). Quantitative determination of onion internal quality using reflectance, interactance, and transmittance modes of hyperspectral imaging. American Society of Agricultural and Biological Engineers, 56(4), 1623–1635.

[144]

Wang, W., & Li, C. (2015). A multimodal machine vision system for quality inspection of onions. Journal of Food Engineering, 166, 291–301.

[145]

Wang, W., Li, C., & Gitaitis, R. D. (2014). Optical properties of healthy and diseased onion tissues in the visible and near-infrared spectral region. Transactions of the ASABE, 57(6), 1771–1782.

[146]

Wang, W., Li, C., Tollner, E. W., Gitaitis, R. D., & Rains, G. C. (2012). Shortwave infrared hyperspectral imaging for detecting sour skin (Burkholderia cepacia)-infected onions. Journal of Food Engineering, 109(1), 38–48.

[147]

Ward, C. M. (1976). The influence of temperature on weight loss from stored onion bulbs due to desiccation, respiration and sprouting. Annals of Applied Biology, 83(1), 149–155.

[148]

Woldetsadik, S. K., & Workneh, T. S. (2010). Effects of nitrogen levels, harvesting time and curing on quality of shallot bulb. African Journal of Agricultural Research, 5(24), 3342–3353.

[149]

Wright, P. J., Grant, D. G., & Triggs, C. M. (2001). Effects of onion (Allium cepa) plant maturity at harvest and method of topping on bulb quality and incidence of rots in storage. New Zealand Journal of Crop and Horticultural Science, 29(2), 85–91.

[150]

Yadav, S. S., & Yadav, V. V. (2011). A comparative study on different types of structures for onion storage. 38, 92–94.

[151]

Yoo, K. S., Lee, E. J., & Patil, B. S. (2012). Changes in flavor precursors, pungency, and sugar content in short-day onion bulbs during 5-month storage at various temperatures or in controlled atmosphere. Journal of Food Science, 77(2), 216–221.

[152]

Younes, O. S. (2020). Utilization of antibacterial edible coating and nano-silver to enhance the quality of fresh and dried onion. Egyptian Journal of Agricultural Research, 98(4), 613–633.

[153]

Zewdie, T. A., Delele, M. A., Fanta, S. W., Alemayehu, M., Alemayehu, G., Adgo, E., Nyssen, J., Verboven, P., & Nicolai, B. M. (2022). Optimisation of onion bulb curing using a heat and mass transfer model. Biosystems Engineering, 214, 42–57.

RIGHTS & PERMISSIONS

2024 The Authors. Future Postharvest and Food published by John Wiley & Sons Australia, Ltd on behalf of International Association of Dietetic Nutrition and Safety.

AI Summary AI Mindmap
PDF

266

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/