Spirulina platensis and Phaeodactylum tricornutum as sustainable sources of bioactive compounds: Health implications and applications in the food industry

Türkan Uzlaşır , Serkan Selli , Hasim Kelebek

Future Postharvest and Food ›› 2024, Vol. 1 ›› Issue (1) : 34 -46.

PDF
Future Postharvest and Food ›› 2024, Vol. 1 ›› Issue (1) : 34 -46. DOI: 10.1002/fpf2.12008
REVIEW

Spirulina platensis and Phaeodactylum tricornutum as sustainable sources of bioactive compounds: Health implications and applications in the food industry

Author information +
History +
PDF

Abstract

The exponential growth of the global population, coupled with issues of insufficient and imbalanced nutrition, as well as a surge in health-related problems, has compelled individuals to seek innovative and alternative food sources while optimizing existing resources. Microalgae have been a staple source of livelihood and essential nourishment for people in various regions worldwide. Their rich content of proteins, essential amino acids, carbohydrates, lipids, vitamins, and minerals necessary for nutrition, has made them a fundamental source of sustenance. Spirulina platensis (S. platensis), a single-celled, filamentous, prokaryotic microalgae, has long been recognized as a valuable natural food source, with historical usage dating back to ancient times. On the other hand, Phaeodactylum tricornutum (P. tricornutum), although a freshwater species, belongs to the Pennateae group of single-celled eukaryotic diatoms and exhibits adaptability to marine environments. S. platensis and P. tricornutum have recently gained attention due to their abundant bioactive compounds, including carotenoids and phenolic acids. These bioactive compounds are known for their potential health benefits, including anticancer, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective, and hypocholesterolemic properties. This review examines the bioactive compounds produced by S. platensis and P. tricornutum, their impacts on human health, and their promising applications within the food industry.

Keywords

bioactive compounds / food / health / Phaeodactylum tricornutum / Spirulina platensis

Cite this article

Download citation ▾
Türkan Uzlaşır, Serkan Selli, Hasim Kelebek. Spirulina platensis and Phaeodactylum tricornutum as sustainable sources of bioactive compounds: Health implications and applications in the food industry. Future Postharvest and Food, 2024, 1(1): 34-46 DOI:10.1002/fpf2.12008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahda, M., Suhendra , & Permadi, A. (2023). Spirulina platensis microalgae as high protein-based products for diabetes treatment. Food Reviews International, 1–9.

[2]

Alajil Alslibi, Z. (2019). Influence of Spirulina and whey protein hydrolysate on growth rate and activity of some probiotic bacteria in ayran. Master of Science Thesis. Gaziantep University, Graduate School of Natural Sciences, Department of Biochemistry Science and Technology.

[3]

Albright, A. (2008). Biological and social exposures in youth set the stage for premature chronic diseases. Journal of the American Dietetic Association, 108(11), 1843–1845.

[4]

Aouir, A., Amiali, M., Bitam, A., Benchabane, A., & Raghavan, V. G. (2017). Comparison of the biochemical composition of different Arthrospira platensis strains from Algeria, Chad, and the USA. Journal of Food Measurement and Characterization, 11(2), 913–923.

[5]

Arnhold Pagnussatt, F., Medeiros Del Ponte, E., Garda-Buffon, J., & Badiale-Furlong, E. (2014). Inhibition of Fusarium graminearum growth and mycotoxin production by phenolic extract from Spirulina sp. Pesticide Biochemistry and Physiology, 108, 21–26.

[6]

Arranz, S., Silván, J. M., & Saura-Calixto, F. (2010). Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols: A study on the Spanish diet. Molecular Nutrition & Food Research, 54(11), 1646–1658.

[7]

Bae, M., Kim, M. B., Park, Y. K., & Lee, J. Y. (2020). Health benefits of fucoxanthin in the prevention of chronic diseases. Biochimica et Biophysica Acta, Molecular and Cell Biology of Lipids, 1865(11), 158618.

[8]

Bartual, A., Villazan, B., & Brun, F. G. (2011). Monitoring the long-term stability of pelagic morphotypes in the model diatom Phaeodactylum tricornutum. Diatom Research, 26(2), 243–253.

[9]

Bashir, S., Sharif, M. K., Butt, M. S., & Shahid, M. (2016). Functional properties and amino acid profile of Spirulina platensis protein isolates. Biological Sciences - PJSIR, 59(1), 12–19.

[10]

Becker, E. W. (2007). Microalgae as a source of protein. Biotechnology Advances, 25(2), 207–210.

[11]

Becker, W. (2004). Microalgae for aquaculture: The nutritional value of microalgae for aquaculture. In A. Richmond (Ed.), Handbook of microalgal culture: Biotechnology and applied phycology (pp. 380–391).

[12]

Begum, H., Yusoff, F. M., Banerjee, S., Khatoon, H., & Shariff, M. (2016). Availability and utilization of pigments from microalgae. Critical Reviews in Food Science and Nutrition, 56(13), 2209–2222.

[13]

Beheshtipour, H., Mortazavian, A. M., Haratian, P., & Darani, K. K. (2012). Effect of Chlorella vulgaris and Arthrospira platensis addition on the viability of probiotic bacteria in yogurt and its biochemical properties. European Food Research and Technology, 235(4), 719–728.

[14]

Bertrand, M. (2010). Carotenoid biosynthesis in diatoms. Photosynthesis Research, 106(1–2), 89–102.

[15]

Branco-Vieira, M., Martin, S. S., Agurto, C., Santos, M. A., Freitas, M. A. V., & Caetano, N. S. (2017). Analyzing Phaeodactylum tricornutum lipid profile for biodiesel production. Energy Procedia, 136, 369–373.

[16]

Bresson, J. L., Fairweather-Tait, S., Flynn, A., Golly, I., Korhonen, H., Lagiou, P., Løvik, M., Marchelli, R., Martin, A., & Moseley, B. (2010). Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA Journal, 8(3), 1461.

[17]

G. Britton, S. Liaaen-Jensen, & H. Pfander (Eds.) (2004). Carotenoids.

[18]

Butler, T., Kapoore, R. V., & Vaidyanathan, S. (2020). Phaeodactylum tricornutum: A diatom cell factory. Trends in Biotechnology, 38(6), 606–622.

[19]

Caballero, M. A., Jallet, D., Shi, L., Rithner, C., Zhang, Y., & Peers, G. (2016). Quantification of chrysolaminarin from the model diatom Phaeodactylum tricornutum. Algal Research, 20, 180–188.

[20]

Chang, M., & Liu, K. (2023). Arthrospira platensis as future food: A review on functional ingredients, bioactivities and application in the food industry. International Journal of Food Science and Technology, 59(3), 1197–1212.

[21]

Chen, X., Yang, Y., Wei, D., Liu, J., Liu, X., Huang, F., & Sun, J. (2022). Lipidomic profiling of Phaeodactylum tricornutum under different light intensities and its potential health benefits. Food Chemistry, 372, 131388.

[22]

Chen, Y., Li, F., Li, J., Li, Y., Yang, S., Zhang, X., & Liu, G. (2021). Beneficial effects of Spirulina platensis on glycemic control and lipid profiles in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Nutrition Journal, 20(1), 1–13.

[23]

Chen, Z., Yang, M., Li, C., Wang, Y., Zhang, J., Wang, D., & Ge, F. (2014). The phosphoproteomic analysis provides novel ınsights into stress responses in Phaeodactylum tricornutum, a model diatom. Journal of Proteome Research, 13(5), 2511–2523.

[24]

Chethana, S., Nayak, C. A., Madhusudhan, M. C., & Raghavarao, K. S. M. C. (2015). Single-step aqueous two-phase extraction for downstream processing of C-phycocyanin from Spirulina platensis. Journal of Food Science and Technology, 52(4), 2415–2421.

[25]

Chuberre, C., Chan, P., Walet-Balieu, M. L., Thiébert, F., Burel, C., Hardouin, J., Gügi, B., & Bardor, M. (2022). Comparative proteomic analysis of the Diatom Phaeodactylum tricornutum reveals new insights into intra- and extra-cellular protein contents of its oval, fusiform, and triradiate morphotypes. Frontiers in Plant Science, 13, 385.

[26]

Ciecierska, A., Drywień, M. E., Hamulka, J., & Sadkowski, T. (2019). Nutraceutical functions of beta-glucans in human nutrition. Roczniki Panstwowego Zakladu Higieny, 70, 315–324.

[27]

Colla, L. M., Reinehr, O. C., Reichert, C., & Costa, J. A. (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Technology, 98(7), 1489–1493.

[28]

Czerwonka, A., Kaławaj, K., Sławińska-Brych, A., Lemieszek, M. K., Bartnik, M., Wojtanowski, K. K., Zdzisińska, B., & Rzeski, W. (2018). Anticancer effect of the water extract of a commercial Spirulina (Arthrospira platensis) product on the human lung cancer A549 cell line. Biomedicine & Pharmacotherapy, 106, 292–302.

[29]

Dean, A. P., Estrada, B., Nicholson, J. M., & Sigee, D. C. (2008). Molecular response of anabaena flos-aquae to differing concentrations of phosphorus: A combined fourier transform infrared and X-ray microanalytical study. Phycological Research, 56(3), 193–201.

[30]

De la Jara, A., Ruano-Rodriguez, C., Polifrone, M., Assunçao, P., Brito-Casillas, Y., Wägner, A. M., & Majem, L. S. (2018). Impact of dietary arthrospira (Spirulina) biomass consumption on human health: Main health targets and systematic review. Journal of Applied Phycology, 30(4), 2403–2423.

[31]

Del Mondo, A., Smerilli, A., Sané, E., Sansone, C., & Brunet, C. (2020). Challenging microalgal vitamins for human health. Microbial Cell Factories, 19(1), 201.

[32]

De Martino, A., Bartual, A., Willis, A., Meichenin, A., Villazan, B., Maheswari, U., & Bowler, C. (2011). Physiological and molecular evidence that environmental changes elicit morphological ınterconversion in the model diatom Phaeodactylum tricornutum. Protist, 162(3), 462–481.

[33]

Dembitsky, V. M., & Maoka, T. (2007). Allenic and cumulenic lipids. Progress in Lipid Research, 46(6), 328–375.

[34]

El-Baz, F. K., El-Senousy, W. M., El-Sayed, A. B., & Kamel, M. M. (2013). In vitro antiviral and antimicrobial activities of Spirulina platensis extract. Journal of Applied Pharmaceutical Science, 3(12), 052–056.

[35]

El-Sheekh, M., & Abomohra, A. E. F. (2020). The therapeutic potential of Spirulina to combat COVID-19 infection. Egyptian Journal of Botany, 60(3), 605–609.

[36]

Fais, G., Manca, A., Bolognesi, F., Borselli, M., Concas, A., Busutti, M., Broggi, G., Sanna, P., Castillo-Aleman, Y. M., Rivero-Jiménez, R. A., Bencomo-Hernandez, A. A., Ventura-Carmenate, Y., Altea, M., Pantaleo, A., Gabrielli, G., Biglioli, F., Cao, G., & Giannaccare, G. (2022). Wide range applications of Spirulina: From earth to space missions. Marine Drugs, 20(5), 299.

[37]

FAO. (2008). A review on culture, production, and use of Spirulina as food for humans and feeds for domestic animals and fish. In M. A. B Habib, M. Parvin, T. C. Huntington, & M. R. Hasan (Eds.), FAO fisheries and aquaculture circular (p. 33). FAO.1034.

[38]

FAO. (2010). Algae-based biofuels: Applications and co-products. In S. vanIersel & A. Flammini (Eds.), FAO environmental and natural resources service series.44.

[39]

Fazilati, M., Mohammadi, N., Sedighi, M., & Asemi, Z. (2021). The effect of Spirulina supplementation on metabolic status, liver enzymes, inflammation, and antioxidant capacity in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. Clinical Nutrition ESPEN, 44, 46–52.

[40]

Ferreres, F., Lopes, G., Gil-Izquierdo, A., Andrade, P. B., Sousa, C., Mouga, T., & Valentão, P. (2012). Phlorotannin extracts from fucales characterized by HPLC-DAD-ESI-MSn: Approaches to hyaluronidase inhibitory capacity and antioxidant properties. Marine Drugs, 10(12), 2766–2781.

[41]

Foo, S. C., Yusoff, F. M., Ismail, M., Basri, M., Yau, S. K., Khong, N. M. H., & Ebrahimi, M. (2017). Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. Journal of Biotechnology, 241, 175–183.

[42]

Gao, B., Chen, A., Zhang, W., Li, A., & Zhang, C. (2017). Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions. Journal of Ocean University of China, 16(5), 916–924.

[43]

García, J. L., de Vicente, M., & Galán, B. (2017). Microalgae, old sustainable food, and fashion 500 nutraceuticals. Microbial Biotechnology, 10(5), 1017–1024.

[44]

García-Villalobos, H., Santos-López, J. A., & López-Martínez, L. X. (2020). Spirulina platensis extracts inhibit the production of pro-inflammatory cytokines and oxidative stress induced by lipopolysaccharide in RAW 264.7 macrophages. Journal of Functional Foods, 66, 103797.

[45]

Gargouri, M., Ben Ahmed, M., Ali, M. B., & Akrout, F. M. (2020). Spirulina platensis ameliorates oxidative stress, inflammation, and lipid profile in rats fed with high-fat and high-fructose diets. Journal of Food Biochemistry, 44(8), e13328.

[46]

Gelzinis, A., Butkus, V., Songaila, E., Augulis, R., Gall, A., Büchel, C., Robert, B., Abramavicius, D., Zigmantas, D., & Valkunas, L. (2015). Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex. Biochimica et Biophysica Acta, 1847(2), 241–247.

[47]

Gentscheva, G., Nikolova, K., Panayotova, V., Peycheva, K., Makedonski, L., Slavov, P., Yotkovska, I., & Petrova, P. (2023). Application of Arthrospira platensis for medicinal purposes and the food industry: A review of the literature. Life, 13(3), 845.

[48]

German-Báez, L., Valdez-Flores, M., Félix-Medina, J., Norzagaray-Valenzuela, C., Santos-Ballardo, D., Reyes-Moreno, C., & Valdez-Ortiz, A. (2017). Chemical composition and physicochemical properties of Phaeodactylum tricornutum microalgal residual biomass. Food Science and Technology International, 23(8), 681–689.

[49]

Goiris, K., Muylaert, K., Voorspoels, S., Noten, B., De Paepe, D., E Baart, G. J., & De Cooman, L. (2014). Detection of flavonoids in microalgae from different evolutionary lineages. Journal of Phycology, 50(3), 483–492.

[50]

Guil-Guerrero, J. L., Navarro-Juárez, R., López-Martınez, J. C., Campra-Madrid, P., & Rebolloso-Fuentes, M. (2004). Functional properties of the biomass of three microalgal species. Journal of Food Engineering, 65(4), 511–517.

[51]

Han, J., Shi, Y., Liu, J., & Guo, Y. (2020). A comparison of the nutrient compositions and antioxidant activities of three microalgae: Phaeodactylum tricornutum, Nannochloropsis oceanica, and Isochrysis galbana. Journal of Applied Phycology, 32(3), 1697–1707.

[52]

Hannan, M. A., Dash, R., Haque, M. N., Mohibbullah, M., Sohag, A. A. M., Rahman, M. A., Uddin, M. J., Alam, M., & Moon, I. S. (2020). Neuroprotective potentials of marine algae and their bioactive metabolites: Pharmacological insights and therapeutic advances. Marine Drugs, 18(7), 347.

[53]

Haoujar, I., Cacciola, F., Abrini, J., Mangraviti, D., Giuffrida, D., Oulad El Majdoub, Y., Skali Senhaji, N., Miceli, N., Fernanda Taviano, M., Mondello, L., & Rigano, F. (2019). The contribution of carotenoids, phenolic compounds, and flavonoids to the antioxidative properties of marine microalgae ısolated from Mediterranean Morocco. Molecules, 24(22), 4037.

[54]

He, L., Han, X., & Yu, Z. (2014). A rare Phaeodactylum tricornutum cruciform morphotype: Culture conditions, transformation, and unique fatty acid characteristics. PLoS One, 9(4), e93922.

[55]

Heffernan, N., Brunton, N. P., FitzGerald, R. J., & Smyth, T. J. (2015). Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins. Marine Drugs, 13(1), 509–528.

[56]

Henrikson, R. (2000). Earth food spirulina: Essential fatty acids and phytonutrients. Ronore enterprises. Inc.

[57]

Hernández-Ledesma, B., & Herrero, M. (2013). Bioactive compounds from marine foods: Plant and animal sources. John Wiley & Sons. ISBN 1-118-41287-7.

[58]

Ismaiel, M. M. S., & Piercey-Normore, M. D. (2020). Gene transcription and antioxidants production in Arthrospira (Spirulina) platensis grown under temperature variation. Journal of Applied Microbiology, 130(3), 891–900.

[59]

Iwamoto, H. (2004). Industrial production of microalgal cell-mass and secondary products-major industrial species- Chlorella. In A. Richmond (Ed.), Handbook of microalgal culture (pp. 255–263). Blackwell.

[60]

Jayachandran, M., Chen, J., Chung, S. S. M., & Xu, B. (2018). A critical review on the Impacts of β-Glucans on gut microbiota and human health. The Journal of Nutritional Biochemistry, 61, 101–110.

[61]

Kadenbach, B., Ramzan, R., & Vogt, S. (2009). Degenerative diseases, oxidative stress, and cytochrome c oxidase function. Trends in Molecular Medicine, 15(4), 139–147.

[62]

Kato, T., Arakawa, M., Saito, M., & Ishihara, K. (2020). Effect of oral intake of Spirulina platensis on atopic dermatitis and other allergic diseases in humans: A retrospective study. Journal of Medicinal Food, 23(2), 128–135.

[63]

Kim, J. H., Kim, S. M., Cha, K. H., Mok, I. K., Koo, S. Y., Pan, C. H., & Lee, J. K. (2016). Evaluation of the anti-obesity effect of the microalgae Phaeodactylum tricornutum. Applied Biological Chemistry, 59(2), 283–290.

[64]

Kuczynska, P., Jemiola-Rzeminska, M., & Strzalka, K. (2015). Photosynthetic pigments in diatoms. Marine Drugs, 13(9), 5847–5881.

[65]

Kuddus, M., Singh, P., Thomas, G., & Ali, A. (2015). Production of C-phycocyanin and its potential applications. Biotechnology of Bioactive Compounds, 283–299.

[66]

Lafarga, T., Fernandez-Sevilla, J. M., Gonzalez-Lopez, C., & Aci enFernandez, F. G. (2020). Spirulina for the food and functional food industries. Food Research International, 137, 356.

[67]

Laurienzo, P. (2010). Marine polysaccharides in pharmaceutical applications: An overview. Marine Drugs, 8(9), 2435–2465.

[68]

Le Costaouec, T., Unamunzaga, C., Mantecon, L., & Helbert, W. (2017). New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Research-Biomass Biofuels Bioproducts, 26, 172–179.

[69]

Li, Y., Qin, J. G., Moore, R. B., & Ball, A. S. (2009). Perspectives of marine phytoplankton as a source of nutrition and bioenergy. In Marine phytoplankton (pp. 187–202). Nova Science Pub Inc.

[70]

Martelli, F., Cirlini, M., Lazzi, C., Neviani, E., & Bernini, V. (2020). Solid-state fermentation of arthrospira platensis to implement new food products: Evaluation of stabilization treatments and bacterial growth on the volatile fraction. Foods, 10(1), 67.

[71]

Martin-Girela, I., Albero, B., Tiwari, B. K., Miguel, E., & Aznar, R. (2020). Screening of contaminants of emerging concern in microalgae food supplements. Separations, 7(2), 28.

[72]

Mathur, M. (2018). Bioactive molecules of Spirulina: A food supplement. Bioactive Molecules in Food, 1–22.

[73]

Mayer, C., Côme, M., Ulmann, L., Zittelli, G. C., Faraloni, C., Nazih, H., Mimouni, V., & Chénais, B. (2019). Preventive effects of the marine microalga Phaeodactylum tricornutum, used as a food supplement, on risk factors associated with metabolic syndrome in Wistar rats. Nutrients, 11(5), 1069.

[74]

Mazo, V. K., Gmoshinskiĭ, I. V., & Zilova, I. S. (2004). Microalgae Spirulina in human nutrition. Voprosy Pitaniia, 73(1), 45–53.

[75]

Mikami, K., & Hosokawa, M. (2013). Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. International Journal of Molecular Sciences, 14(7), 13763–13781.

[76]

Moradi, S., Ziaei, R., Foshati, S., Mohammadi, H., Nachvak, S. M., & Rouhani, M. H. (2019). Effects of Spirulina supplementation on obesity: A systematic review and meta-analysis of randomized clinical trials. Complementary Therapies in Medicine, 47, 102211.

[77]

Moraes, P. C., Noce, C. W., Thomaz, L. A., Cintra, M. L., & Correa, M. E. (2011). Pigmented lichenoid drug eruption secondary to chloroquine therapy: An unusual presentation in the lower lip. Minerva Stomatologica, 60, 32–327.

[78]

Nayak, B., Liu, R. H., & Tang, J. (2015). Effect of processing on phenolic antioxidants of fruits, vegetables, and grains-a review. Critical Reviews in Food Science and Nutrition, 55(7), 887–918.

[79]

Neumann, U., Derwenskus, F., Flaiz Flister, V., Schmid-Staiger, U., Hirth, T., & Bischoff, S. (2019). Fucoxanthin, a carotenoid derived from Phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro. Antioxidants, 8(6), 183.

[80]

Nouri, E., & Abbasi, H. (2018). Effects of different processing methods on phytochemical compounds and antioxidant activity of Spirulina platensis. Applied Food Biotechnology, 5(4), 221–232.

[81]

Ogbonda, K. H., Aminigo, R. E., & Abu, G. O. (2007). Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresource Technology, 98, 2207–2211.

[82]

Park, W. S., Kim, H. J., Li, M., Lim, D. H., Kim, J., Kwak, S. S., Kang, C. M., Ferruzzi, M. G., & Ahn, M. J. (2018). Two Classes of pigments, carotenoids, and C-Phycocyanin, in Spirulina powder and their antioxidant activities. Molecules, 23(8), 2065.

[83]

Peng, J., Yuan, J. P., Wu, C. F., & Wang, J. H. (2011). Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Marine Drugs, 9(10), 1806–1828.

[84]

Pereira, L., & Magalhaes, J. (2014). Neto, marine algae, biodiversity, taxonomy, environmental assessment, and biotechnology. CRC Press.

[85]

Pugh, N., Ross, S. A., Elsohly, H. N., Elsohly, M. A., & Pasco, D. S. (2001). Isolation of three-weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomenon flos-aquae, and Chlorella pyrenoidosa. Planta Medica, 67(08), 737–742.

[86]

Pyne, P. K., Bhattacharjee, P., & Srivastav, P. P. (2017). Microalgae (Spirulina platensis) and its bioactive molecules: A review. Indian Journal of Nutrition, 4(2), 160.

[87]

Reboleira, J., Freitas, R., Pinteus, S., Silva, J., Alves, C., Pedrosa, R., & Bernardino, S. (2019). Spirulina in nonvitamin and nonmineral nutritional supplements (pp. 409–413). Academic Press.

[88]

Rico, M., López, A., Santana-Casiano, J. M., Gonzàlez, A. G., & Gonzàlez-Dàvila, M. (2012). Variability of the phenolic profile in the diatom Phaeodactylum tricornutum growing under copper and iron stress. Limnology & Oceanography, 58(1), 144–152.

[89]

Rodriguez De Marco, E., Steffolani, M. E., Martinez, C. S., & Leon, A. E. (2014). Effects of Spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT - Food Science and Technology, 58(1), 102–108.

[90]

Rodríguez-Hernández, A., Ble-Castillo, J. L., Juárez-Oropeza, M. A., & Díaz-Zagoya, J. C. (2022). Effect of Spirulina platensis on lipid profile, glucose metabolism, and antioxidant capacity in overweight and obese subjects: A systematic review and meta-analysis. Journal of Medicinal Food, 25(1), 3–13.

[91]

Russo, M. T., Rogato, A., Jaubert, M., Karas, B. J., & Falciatore, A. (2023). Phaeodactylum tricornutum: An established model species for diatom molecular research and an emerging chassis for algal synthetic biology. Journal of Phycology, 59(6), 1114–1122.

[92]

Saranraj, P., & Sivasakthi, S. (2014). Spirulina platensis – food for future: A review. Asian Journal of Pharmaceutical Science and Technology, 4(1), 26–33.

[93]

Saura-Calixto, F. (2012). Concept and health-related properties of nonextractable polyphenols: The missing dietary polyphenols. Journal of Agricultural and Food Chemistry, 60(45), 11195–11200.

[94]

Scaglioni, P. T., Quadros, L., de Paula, M., Furlong, V. B., Abreu, P. C., & Badiale-Furlong, E. (2018). Inhibition of enzymatic and oxidative processes by phenolic extracts from Spirulina sp. and Nannochloropsis sp. Food Technology and Biotechnology, 56(3), 344–353.

[95]

Seghiri, R., Kharbach, M., & Essamri, A. (2019). Functional composition, nutritional properties, and biological activities of Moroccan Spirulina microalga. Journal of Food Quality, 11, 1–11.

[96]

Shahidi, F., & Yeo, J. (2016). Insoluble-bound phenolics in food. Molecules, 21(9), 1216.

[97]

Shibata, N., & Kobayashi, M. (2008). The role of oxidative stress in neurodegenerative diseases. Brain and Nerve, 60, 157–170.

[98]

Souza, M. M., Prieto, L., Ribeiro, A. C., Souza, T. D., & Badiale-Furlong, E. (2011). Assessment of the antifungal activity of Spirulina platensis phenolic extract against Aspergillus flavus. Ciencia E Agrotecnologia, 35(6), 1050–1058.

[99]

Sun, L., Zou, T., Chen, W., & Chen, H. (2020). Extraction optimization, characterization, and antioxidant activity of polysaccharides from Phaeodactylum tricornutum. International Journal of Biological Macromolecules, 145, 670–677.

[100]

Sun, P., & Zhu, L. (2021). Evaluation of the antibacterial activity and mechanisms of Phaeodactylum tricornutum extracts. Marine Drugs, 19(9), 489.

[101]

Tibbetts, S. M., Milley, J. E., & Lall, S. P. (2014). Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. Journal of Applied Phycology, 27(3), 1109–1119.

[102]

Uzlasir, T., Isik, O., Hizarci Uslu, L., Selli, S., & Kelebek, H. (2023). Impact of different salt concentrations on growth, biochemical composition, and nutrition quality of Phaeodactylum tricornutum and Spirulina platensis. Food Chemistry, 429, 136843.

[103]

Uzlasir, T., Selli, S., & Kelebek, H. (2023). Effect of salt stress on the phenolic compounds, antioxidant capacity, microbial load, and ın vitro bioaccessibility of two microalgae species (Phaeodactylum tricornutum and Spirulina platensis). Foods, 12(17), 3185.

[104]

Wang, H., Su, Q., Zhuang, Y., Wu, C., Tong, S., Guan, B., Zhao, Y., & Qiao, H. (2023). Effects of iron valence on the growth, photosynthesis, and fatty acid composition of Phaeodactylum tricornutum. Journal of Marine Science and Engineering, 11(2), 316.

[105]

Wu, H., Li, T., Wang, G., Dai, S., He, H., & Xiang, W. (2015). A comparative analysis of fatty acid composition and fucoxanthin content in six Phaeodactylum tricornutum strains from different origins. Chinese Journal of Oceanology and Limnology, 34(2), 391–398.

[106]

Wu, Q., Liu, L., Miron, A., Klímová, B., Wan, D., & Kuča, K. (2016). The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: An overview. Archives of Toxicology, 90(8), 1817–1840.

[107]

Xia, S., Wang, K., Wan, L., Li, A., Hu, Q., & Zhang, C. (2013). Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Marine Drugs, 11(7), 2667–2881.

[108]

Yousefi, R., Saidpour, A., & Mottaghi, A. (2019). The effects of Spirulina supplementation on metabolic syndrome components, its liver manifestation, and related inflammatory markers: A systematic review. Complementary Therapies in Medicine, 42, 137–144.

[109]

Zhang, H., Tang, Y., Zhang, Y., Zhang, S., Qu, J., Wang, X., Liu, Z., & Han, C. (2015). Fucoxanthin: A promising medicinal and nutritional ingredient. Evidence-based Complementary and Alternative Medicine, 2015, 1–10.

[110]

Zhang, Y., Ma, X., Zhao, X., & Hao, Y. (2020). Extraction optimization, structural characterization, and in vitro antioxidant activity of polysaccharides from Phaeodactylum tricornutum. International Journal of Biological Macromolecules, 154, 427–435.

[111]

Zhao, B., Cui, Y., Fan, X., Qi, P., Liu, C., Zhou, X., & Zhang, X. (2019). Antiobesity effects of Spirulina platensis protein hydrolysate by modulating brain liver axis in high-fat diet-fed mice. PLoS One, 14(6), e0218543.

[112]

Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H., Zhu, Y., Li, B., Huang, C., Chen, H., Luo, Y., Gou, H., Jiang, R., Liu, M., Chen, Y., Shen, X., Wang, X., Zheng, X., Shi, Z. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273.

[113]

Zhu, F., Du, B., & Xu, B. (2016). A Critical review on production and ındustrial applications of Beta-Glucans. Food Hydrocolloids, 52, 275–288.

RIGHTS & PERMISSIONS

2024 The Authors. Future Postharvest and Food published by John Wiley & Sons Australia, Ltd on behalf of International Association of Dietetic Nutrition and Safety.

AI Summary AI Mindmap
PDF

215

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/