Valorization of spent coffee ground and coffee silverskin as a source of nutrients and bioactive compounds

Agnese Santanatoglia , Laura Alessandroni , Cinzia Mannozzi , Riccardo Marconi , Diletta Piatti , Gianni Sagratini , Sauro Vittori , Caprioli Giovanni

Future Postharvest and Food ›› 2024, Vol. 1 ›› Issue (1) : 61 -81.

PDF
Future Postharvest and Food ›› 2024, Vol. 1 ›› Issue (1) : 61 -81. DOI: 10.1002/fpf2.12007
REVIEW

Valorization of spent coffee ground and coffee silverskin as a source of nutrients and bioactive compounds

Author information +
History +
PDF

Abstract

In a world where a greener approach is increasingly necessary, it is mandatory to reduce waste production and reuse residues from the company's supply chain. Spent Coffee grounds (SCG) and Coffee Silverskin (CS) are two important by-products of coffee production, being sources of important dietary fibers and bioactive compounds, which is why some authors have proposed their reuse in the nutraceutical, food and cosmetic industries. However, their nutrients chemical content has been insufficiently studied. Therefore, the aim of the present review was to investigate the main components, such as carbohydrates, dietary fibers, lipids, and bioactive compounds of SCG and CS. In addition, the most common extraction methods to obtain these aforementioned nutrients were evaluated.

Keywords

bioactive compounds / carbohydrates / coffee silverskin / dietary fibers / lipids / spent coffee ground / valorization / waste

Cite this article

Download citation ▾
Agnese Santanatoglia, Laura Alessandroni, Cinzia Mannozzi, Riccardo Marconi, Diletta Piatti, Gianni Sagratini, Sauro Vittori, Caprioli Giovanni. Valorization of spent coffee ground and coffee silverskin as a source of nutrients and bioactive compounds. Future Postharvest and Food, 2024, 1(1): 61-81 DOI:10.1002/fpf2.12007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acevedo, F., Rubilar, M., Scheuermann, E., Cancino, B., Uquiche, E., Garcés, M., Inostroza, K., & Shene, C. (2013). Spent coffee grounds as a renewable source of bioactive compounds. Journal of Biobased Materials and Bioenergy, 7(3), 420–428.

[2]

Al-Hamamre, Z., Foerster, S., Hartmann, F., Kröger, M., & Kaltschmitt, M. (2012). Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel, 96, 70–76.

[3]

Andrade, C., Perestrelo, R., & Câmara, J. S. (2022). Bioactive compounds and antioxidant activity from spent coffee grounds as a powerful approach for its valorization. Molecules, 27(21), 7504.

[4]

Angeloni, S., Mustafa, A. M., Abouelenein, D., Alessandroni, L., Acquaticci, L., Nzekoue, F. K., Petrelli, R., Sagratini, G., Vittori, S., Torregiani, E., & Caprioli, G. (2021). Characterization of the aroma profile and main key odorants of espresso coffee. Molecules, 26(13), 3856.

[5]

Angeloni, S., Nzekoue, F. K., Navarini, L., Sagratini, G., Torregiani, E., Vittori, S., & Caprioli, G. (2020). An analytical method for the simultaneous quantification of 30 bioactive compounds in spent coffee ground by HPLC-MS/MS. Journal of Mass Spectrometry, 55(11), e4519.

[6]

Angeloni, S., Scortichini, S., Fiorini, D., Sagratini, G., Vittori, S., Neiens, S. D., Steinhaus, M., Zheljazkov, V. D., Maggi, F., & Caprioli, G. (2020). Characterization of odor-active compounds, polyphenols, and fatty acids in coffee silverskin. Molecules, 25(13), 2993.

[7]

Ateş, G., & Elmacı, Y. (2019). Physical, chemical and sensory characteristics of fiber-enriched cakes prepared with coffee silverskin as wheat flour substitution. Journal of Food Measurement and Characterization, 13(1), 755–763.

[8]

Ballesteros, L. F., Cerqueira, M. A., Teixeira, J. A., & Mussatto, S. I. (2015). Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment. Carbohydrate Polymers, 127, 347–354.

[9]

Ballesteros, L. F., Teixeira, J. A., & Mussatto, S. I. (2014). Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food and Bioprocess Technology, 7(12), 3493–3503.

[10]

Barbosa, M. D. S. G., dos Santos Scholz, M. B., Kitzberger, C. S. G., & de Toledo Benassi, M. (2019). Correlation between the composition of green Arabica coffee beans and the sensory quality of coffee brews. Food Chemistry, 292, 275–280.

[11]

Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Coffee, tea, cocoa. Food Chemistry, 938–970.

[12]

Bertolino, M., Barbosa-Pereira, L., Ghirardello, D., Botta, C., Rolle, L., Guglielmetti, A., Borotto Dalla Vecchia, S., & Zeppa, G. (2019). Coffee silverskin as nutraceutical ingredient in yogurt: Its effect on functional properties and its bioaccessibility. Journal of the Science of Food and Agriculture, 99(9), 4267–4275.

[13]

Bessada, S. M., Alves, R. C., & Pp Oliveira, M. B. (2018). Coffee silverskin: A review on potential cosmetic applications. Cosmetics, 5(1), 5.

[14]

Bevilacqua, E., Cruzat, V., Singh, I., Rose’Meyer, R. B., Panchal, S. K., & Brown, L. (2023). The potential of spent coffee grounds in functional food development. Nutrients, 15(4), 994.

[15]

Bhaturiwala, R. A., & Modi, H. A. (2020). Extraction of oligosaccharides and phenolic compounds by roasting pretreatment and enzymatic hydrolysis from spent coffee ground. Journal of Applied Biology & Biotechnology, 8(4), 75–81.

[16]

Bijla, L., Aissa, R., Laknifli, A., Bouyahya, A., Harhar, H., & Gharby, S. (2022). Spent coffee grounds: A sustainable approach toward novel perspectives of valorization. Journal of Food Biochemistry, 46(8), e14190.

[17]

Boppana, S. H., Peterson, M., Du, A. L., Kutikuppala, L. S., Gabriel, R. A., Du, A., & Kutikuppala, L. V. S. (2022). Caffeine: What is its role in pain medicine? Cureus, 14(6).

[18]

Borrelli, R. C., Esposito, F., Napolitano, A., Ritieni, A., & Fogliano, V. (2004). Characterization of a new potential functional ingredient: Coffee silverskin. Journal of Agricultural and Food Chemistry, 52(5), 1338–1343.

[19]

Borrelli, R. C., Visconti, A., Mennella, C., Anese, M., & Fogliano, V. (2002). Chemical characterization and antioxidant properties of coffee melanoidins. Journal of Agricultural and Food Chemistry, 50(22), 6527–6533.

[20]

Bravo, J., Juaniz, I., Monente, C., Caemmerer, B., Kroh, L. W., De Peña, M. P., & Cid, C. (2012). Evaluation of spent coffee obtained from the most common coffeemakers as a source of hydrophilic bioactive compounds. Journal of Agricultural and Food Chemistry, 60(51), 12565–12573.

[21]

Bresciani, L., Calani, L., Bruni, R., Brighenti, F., & Del Rio, D. (2014). Phenolic composition, caffeine content and antioxidant capacity of coffee silverskin. Food Research International, 61, 196–201.

[22]

Bunzel, M., Schüßler, A., & Tchetseubu Saha, G. (2011). Chemical characterization of Klason lignin preparations from plant-based foods. Journal of Agricultural and Food Chemistry, 59(23), 12506–12513.

[23]

Campos-Vega, R., Loarca-Pina, G., Vergara-Castañeda, H. A., & Oomah, B. D. (2015). Spent coffee grounds: A review on current research and future prospects. Trends in Food Science & Technology, 45(1), 24–36.

[24]

Castaldo, L., Narváez, A., Izzo, L., Graziani, G., & Ritieni, A. (2020). In vitro bioaccessibility and antioxidant activity of coffee silverskin polyphenolic extract and characterization of bioactive compounds using UHPLC-Q-Orbitrap HRMS. Molecules, 25(9), 2132.

[25]

Cavanagh, Q., Brooks, M. S. L., & Rupasinghe, H. V. (2023). Innovative technologies used to convert spent coffee grounds into new food ingredients: Opportunities, challenges, and prospects. Future Foods, 8, 100255.

[26]

Cholakov, G., Toteva, V., Nikolov, R., Uzunova, S., & Yanev, S. (2013). Extracts from coffee by-products as potential raw materials for fuel additives and carbon adsorbents. Journal of Chemical Technology and Metallurgy, 48(5), 497–504.

[27]

Couto, R. M., Fernandes, J., Da Silva, M. G., & Simoes, P. C. (2009). Supercritical fluid extraction of lipids from spent coffee grounds. The Journal of Supercritical Fluids, 51(2), 159–166.

[28]

Cunniff, P., & Washington, D. (1997). Official methods of analysis of AOAC international. Journal of AOAC International, 80(6), 127A.

[29]

Delgado-Andrade, C., Rufián-Henares, J. A., & Morales, F. J. (2005). Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. Journal of Agricultural and Food Chemistry, 53(20), 7832–7836.

[30]

Dos Santos Polidoro, A., Scapin, E., Lazzari, E., Silva, A. N., dos Santos, A. L., Caramao, E. B., & Jacques, R. A. (2018). Valorization of coffee silverskin industrial waste by pyrolysis: From optimization of bio-oil production to chemical characterization by GC× GC/qMS. Journal of Analytical and Applied Pyrolysis, 129, 43–52.

[31]

Efthymiopoulos, I., Hellier, P., Ladommatos, N., Kay, A., & Mills-Lamptey, B. (2018). Integrated strategies for water removal and lipid extraction from coffee industry residues. Sustainable Energy Technologies and Assessments, 29, 26–35.

[32]

Esquivel, P., & Jiménez, V. M. (2012). Functional properties of coffee and coffee by-products. Food Research International, 46(2), 488–495.

[33]

Essien, S. O., Young, B., & Baroutian, S. (2020). Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends in Food Science & Technology, 97, 156–169.

[34]

Falcone Ferreyra, M. L., Rius, S. P., & Casati, P. (2012). Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3, 222.

[35]

Franca, A. S., & Oliveira, L. S. (2022). Potential uses of spent coffee grounds in the food industry. Foods, 11(14), 2064.

[36]

García-Roldán, A., Piriou, L., & Jauregi, P. (2023). Natural deep eutectic solvents as a green extraction of polyphenols from spent coffee ground with enhanced bioactivities. Frontiers in Plant Science, 13, 1072592.

[37]

Gottstein, V., Bernhardt, M., Dilger, E., Keller, J., Breitling-Utzmann, C. M., Schwarz, S., Kuballa, T., Lachenmeier, D. W., & Bunzel, M. (2021). Coffee silver skin: Chemical characterization with special consideration of dietary fiber and heat-induced contaminants. Foods, 10(8), 1705.

[38]

Hall, R. D., Trevisan, F., & de Vos, R. C. (2022). Coffee berry and green bean chemistry–Opportunities for improving cup quality and crop circularity. Food Research International, 151, 110825.

[39]

Ho, K. V., Schreiber, K. L., Park, J., Vo, P. H., Lei, Z., Sumner, L. W., Brown, C. R., & Lin, C. H. (2020). Identification and quantification of bioactive molecules inhibiting pro-inflammatory cytokine production in spent coffee grounds using metabolomics analyses. Frontiers in Pharmacology, 11, 229.

[40]

ICO. (2023). Accessed 7 September 2023.

[41]

Iriondo-De Hond (2019). Development of novel functional dairy foods using byproducts from the coffee and wine industries for sustainable nutrition and health. Doctoral dissertation. Universidad Autónoma de Madrid.

[42]

Iriondo-De Hond, A., Martorell, P., Genovés, S., Ramón, D., Stamatakis, K., Fresno, M., Molina, A., & Del Castillo, M. D. (2016). Coffee silverskin extract protects against accelerated aging caused by oxidative agents. Molecules, 21(6), 721.

[43]

Ishwarya, S. P., & Nisha, P. (2021). Unraveling the science of coffee foam–a comprehensive review. Critical Reviews in Food Science and Nutrition, 61(10), 1704–1724.

[44]

Ishwarya, S. P., & Nisha, P. (2022). Insights into the composition, structure-function relationship, and molecular organization of surfactants from spent coffee grounds. Food Hydrocolloids, 124(A), 107204.

[45]

Jiménez-Zamora, A., Pastoriza, S., & Rufián-Henares, J. A. (2015). Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties. LWT-Food Science and Technology, 61(1), 12–18.

[46]

Jones, R. A., Panda, S. S., & Hall, C. D. (2015). Quinine conjugates and quinine analogues as potential antimalarial agents. European Journal of Medicinal Chemistry, 97, 335–355.

[47]

LIczbiński, P., & Bukowska, B. (2022). Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations. Industrial Crops and Products, 175, 114265.

[48]

López-Barrera, D. M., Vázquez-Sánchez, K., Loarca-Piña, M. G. F., & Campos-Vega, R. (2016). Spent coffee grounds, an innovative source of colonic fermentable compounds, inhibit inflammatory mediators in vitro. Food Chemistry, 212, 282–290.

[49]

Loyao, A. S., Jr, Villasica, S. L. G., Peña, P. L. L. D., & Go, A. W. (2018). Extraction of lipids from spent coffee grounds with non-polar renewable solvents as alternative. Industrial Crops and Products, 119, 152–161.

[50]

Malara, A., Paone, E., Frontera, P., Bonaccorsi, L., Panzera, G., & Mauriello, F. (2018). Sustainable exploitation of coffee silverskin in water remediation. Sustainability, 10, 3547.

[51]

Martuscelli, M., Esposito, L., Di Mattia, C. D., Ricci, A., & Mastrocola, D. (2021). Characterization of coffee silver skin as potential food-safe ingredient. Foods, 10(6), 1367.

[52]

Mesías, M., Navarro, M., Martínez-Saez, N., Ullate, M., Del Castillo, M. D., & Morales, F. J. (2014). Antiglycative and carbonyl trapping properties of the watersoluble fraction of coffee silverskin. Food Research International, 62, 1120–1126.

[53]

Moreira, A. S., Nunes, F. M., Domingues, M. R., & Coimbra, M. A. (2012). Coffee melanoidins: Structures, mechanisms of formation and potential health impacts. Food & Function, 3(9), 903–915.

[54]

Mota, D. A., Santos, J. C., Faria, D., Lima, Á. S., Krause, L. C., Soares, C. M., & Ferreira-Dias, S. (2020). Synthesis of dietetic structured lipids from spent coffee grounds crude oil catalyzed by commercial immobilized lipases and immobilized Rhizopus oryzae lipase on biochar and hybrid support. Processes, 8(12), 1542.

[55]

Murthy, P. S., & Naidu, M. M. (2012). Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and Recycling, 66, 45–58.

[56]

Mussatto, S. I. (2015). Generating biomedical polyphenolic compounds from spent coffee or silverskin. In Coffee in health and disease prevention (pp. 93–106). Academic Press.

[57]

Mussatto, S. I., Ballesteros, L. F., Martins, S., & Teixeira, J. A. (2012). Use of agro-industrial wastes in solid-state fermentation processes. Industrial Waste, 274.

[58]

Mussatto, S. I., Machado, E. M., Martins, S., & Teixeira, J. A. (2011). Production, composition, and application of coffee and its industrial residues. Food and Bioprocess Technology, 4(5), 661–672.

[59]

Mustafa, A. M., Abouelenein, D., Angeloni, S., Maggi, F., Navarini, L., Sagratini, G., Santanatoglia, A., Torregiani, E., Vittori, S., & Caprioli, G. (2022). A new HPLC-MS/MS method for the simultaneous determination of quercetin and its derivatives in green coffee beans. Foods, 11(19), 3033.

[60]

Mustafa, A. M., Caprioli, G., Ricciutelli, M., Maggi, F., Marín, R., Vittori, S., & Sagratini, G. (2015). Comparative HPLC/ESI-MS and HPLC/DAD study of different populations of cultivated, wild and commercial Gentiana lutea L. Food Chemistry, 174, 426–433.

[61]

Napolitano, A., Fogliano, V., Tafuri, A., & Ritieni, A. (2007). Natural occurrence of ochratoxin A and antioxidant activities of green and roasted coffees and corresponding byproducts. Journal of Agricultural and Food Chemistry, 55(25), 10499–10504.

[62]

Nolasco, A., Squillante, J., Velotto, S., D'Auria, G., Ferranti, P., Mamone, G., Errico, M. E., Avolio, R., Castaldo, R., Cirillo, T., & Esposito, F. (2022). Valorization of coffee industry wastes: Comprehensive physicochemical characterization of coffee silverskin and multipurpose recycling applications. Journal of Cleaner Production, 370, 133520.

[63]

Nunes, F. M., & Coimbra, M. A. (2010). Role of hydroxycinnamates in coffee melanoidin formation. Phytochemistry Reviews, 9(1), 171–185.

[64]

Nzekoue, F., Khamitova, G., Angeloni, S., Sempere, A. N., Tao, J., Maggi, F., Xiao, J., Sagratini, G., Vittori, S., & Caprioli, G. (2020). Spent coffee grounds: A potential commercial source of phytosterols. Food Chemistry, 325, 126836.

[65]

Nzekoue, F. K., Angeloni, S., Navarini, L., Angeloni, C., Freschi, M., Hrelia, S., Vitali, L. A., Sagratini, G., Vittori, S., & Caprioli, G. (2020b). Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Research International, 133, 109128.

[66]

Oosterveld, A., Harmsen, J. S., Voragen, A. G. J., & Schols, H. A. (2003). Extraction and characterization of polysaccharides from green and roasted Coffea arabica beans. Carbohydrate Polymers, 52(3), 285–296.

[67]

Parus, A. (2012). Antioxidant and pharmacological properties of phenolic acids. Postępy Fitoterapii.

[68]

Passos, C. P., & Coimbra, M. A. (2013). Microwave superheated water extraction of polysaccharides from spent coffee grounds. Carbohydrate Polymers, 94(1), 626–633.

[69]

Pavlić, B., Aćimović, M., Sknepnek, A., Miletić, D., Mrkonjić, Ž., Kljakić, A. C., Jerković, J., Mišan, A., Pojić, M., Stupar, A., Zeković, Z., Teslić, N., & Teslić, N. (2023). Sustainable raw materials for efficient valorization and recovery of bioactive compounds. Industrial Crops and Products, 193, 116167.

[70]

Perron, N. R., & Brumaghim, J. L. (2009). A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochemistry and Biophysics, 53(2), 75–100.

[71]

Pourfarzad, A., Mahdavian-Mehr, H., & Sedaghat, N. (2013). Coffee silverskin as a source of dietary fiber in bread-making: Optimization of chemical treatment using response surface methodology. LWT-Food Science and Technology, 50(2), 599–606.

[72]

Prosky, L., Asp, N. G., Schweizer, T. F., Devries, J. W., & Furda, I. (1988). Determination of insoluble, soluble, and total dietary fiber in foods and food products: Interlaboratory study. Journal of the Association of Official Analytical Chemists, 71(5), 1017–1023.

[73]

Quideau, S., Deffieux, D., Douat-Casassus, C., & Pouységu, L. (2011). Plant polyphenols: Chemical properties, biological activities, and synthesis. Angewandte Chemie International Edition, 50(3), 586–621.

[74]

Quijote, K. L., Go, A. W., Agapay, R. C., Ju, Y. H., Angkawijaya, A. E., & Santoso, S. P. (2021). Lipid-dense and pre-functionalized post-hydrolysis spent coffee grounds as raw material for the production of fatty acid methyl ester. Energy Conversion and Management, 240, 114216.

[75]

Ramón-Gonçalves, M., Gómez-Mejía, E., Rosales-Conrado, N., León-González, M. E., & Madrid, Y. (2019). Extraction, identification and quantification of polyphenols from spent coffee grounds by chromatographic methods and chemometric analyses. Waste Management, 96, 15–24.

[76]

Reichardt, N., Gniechwitz, D., Steinhart, H., Bunzel, M., & Blaut, M. (2009). Characterization of high molecular weight coffee fractions and their fermentation by human intestinal microbiota. Molecular Nutrition & Food Research, 53(2), 287–299.

[77]

Rios, M. B., Iriondo-De Hond, A., Iriondo-De Hond, M., Herrera, T., Velasco, D., Gómez-Alonso, S., Callejo, M. J., & Del Castillo, M. D. (2020). Effect of coffee cascara dietary fiber on the physicochemical, nutritional and sensory properties of a gluten-free bread formulation. Molecules, 25(6), 1358.

[78]

Rufián-Henares, J. A., & de la Cueva, S. P. (2009). Antimicrobial activity of coffee melanoidins, A study of their metal-chelating properties. Journal of Agricultural and Food Chemistry, 57(2), 432–438.

[79]

Santanatoglia, A., Alessandroni, L., Fioretti, L., Sagratini, G., Vittori, S., Maggi, F., & Caprioli, G. (2023a). Discrimination of filter coffee extraction methods of a medium roasted specialty coffee based on volatile profiles and sensorial traits. Foods, 12(17), 3199.

[80]

Santanatoglia, A., Angeloni, S., Bartolucci, D., Fioretti, L., Sagratini, G., Vittori, S., & Caprioli, G. (2023d). Effect of brewing methods on acrylamide content and antioxidant activity studying eight different filter coffee preparation. Antioxidants, 12(10), 1888.

[81]

Santanatoglia, A., Angeloni, S., Fiorito, M., Fioretti, L., Ricciutelli, M., Sagratini, G., Vittori, S., & Caprioli, G. (2024). Development of new analytical methods for the quantification of organic acids, chlorogenic acids and caffeine in espresso coffee by using solid-phase extraction (SPE) and high-performance liquid chromatography-diode array detector (HPLC-DAD). Journal of Food Composition and Analysis, 125, 105732.

[82]

Santanatoglia, A., Caprioli, G., Cespi, M., Ciarlantini, D., Cognigni, L., Fioretti, L., Maggi, F., Mustafa, A. M., Nzekoue, F., & Vittori, S. (2023b). A comprehensive comparative study among the newly developed Pure Brew method and classical ones for filter coffee production. LWT-Food Science and Technology, 175, 114471.

[83]

Santanatoglia, A., Cespi, M., Perinelli, D. R., Fioretti, L., Sagratini, G., Vittori, S., & Caprioli, G. (2023c). Impact of the human factor on the reproducibility of different coffee brewing methods. Journal of Food Composition and Analysis, 124, 105698.

[84]

Santanatoglia, A., Nzekoue, F. K., Sagratini, G., Ricciutelli, M., Vittori, S., & Caprioli, G. (2023f). Development and application of a novel analytical method for the determination of 8 plant sterols/stanols in 22 legumes samples. Journal of Food Composition and Analysis, 118, 105195.

[85]

Saud, S., & Salamatullah, A. M. (2021). Relationship between the chemical composition and the biological functions of coffee. Molecules, 26(24), 7634.

[86]

Schäfer, J., Sattler, M., Iqbal, Y., Lewandowski, I., & Bunzel, M. (2019). Characterization of Miscanthus cell wall polymers. Gcb Bioenergy, 11(1), 191–205.

[87]

Severini, C., Caporizzi, R., Fiore, A. G., Ricci, I., Onur, O. M., & Derossi, A. (2020). Reuse of spent espresso coffee as sustainable source of fibre and antioxidants. A map on functional, microstructure and sensory effects of novel enriched muffins. Lwt, 119, 108877.

[88]

Simões, J., Nunes, F. M., Domingues, M. R., & Coimbra, M. A. (2013). Extractability and structure of spent coffee ground polysaccharides by roasting pre-treatments. Carbohydrate Polymers, 97(1), 81–89.

[89]

Simões, J., Nunes, F. M., Maria do Rosário, M. D., & Coimbra, M. A. (2010). Structural features of partially acetylated coffee galactomannans presenting immunostimulatory activity. Carbohydrate Polymers, 79(2), 397–402.

[90]

Tea and Coffee. (2023). Accessed 4 August 2023.

[91]

Torres-Valenzuela, L. S., Ballesteros-Gomez, A., Sanin, A., & Rubio, S. (2019). Valorization of spent coffee grounds by supramolecular solvent extraction. Separation and Purification Technology, 228, 115759.

[92]

Toschi, T. G., Cardenia, V., Bonaga, G., Mandrioli, M., & Rodriguez-Estrada, M. T. (2014). Coffee silverskin: Characterization, possible uses, and safety aspects. Journal of Agricultural and Food Chemistry, 62(44), 10836–10844.

[93]

Vázquez-Sánchez, K., Martinez-Saez, N., Rebollo-Hernanz, M., Del Castillo, M. D., Gaytán-Martínez, M., & Campos-Vega, R. (2018). In vitro health promoting properties of antioxidant dietary fiber extracted from spent coffee (Coffee arabica L.) grounds. Food Chemistry, 261, 253–259.

[94]

Verzelloni, E., Tagliazucchi, D., Del Rio, D., Calani, L., & Conte, A. (2011). Antiglycative and antioxidative properties of coffee fractions. Food Chemistry, 124(4), 1430–1435.

[95]

Vitaglione, P., Morisco, F., Mazzone, G., Amoruso, D. C., Ribecco, M. T., Romano, A., Fogliano, V., Caporaso, N., & D'Argenio, G. (2010). Coffee reduces liver damage in a rat model of steatohepatitis: The underlying mechanisms and the role of polyphenols and melanoidins. Hepatology, 52(5), 1652–1661.

[96]

Wei, F., Furihata, K., Koda, M., Hu, F., Miyakawa, T., & Tanokura, M. (2012). Roasting process of coffee beans as studied by nuclear magnetic resonance: Time course of changes in composition. Journal of Agricultural and Food Chemistry, 60(4), 1005–1012.

[97]

Wongsiridetchai, C., Jonjaroen, V., Sawangwan, T., Charoenrat, T., & Chantorn, S. (2021). Evaluation of prebiotic mannooligosaccharides obtained from spent coffee grounds for nutraceutical application. LWT-Food Science and Technology, 148, 111717.

[98]

Zengin, G., Sinan, K. I., Mahomoodally, M. F., Angeloni, S., Mustafa, A. M., Vittori, S., Maggi, F., & Caprioli, G. (2020). Chemical composition, antioxidant and enzyme inhibitory properties of different extracts obtained from spent coffee ground and coffee silverskin. Foods, 9(6), 713.

[99]

Zhang, S., Yang, J., Wang, S., Rupasinghe, H. V., & He, Q. S. (2021). Experimental exploration of processes for deriving multiple products from spent coffee grounds. Food and Bioproducts Processing, 128, 21–29.

[100]

Zhou, J., Chan, L., & Zhou, S. (2012). Trigonelline: A plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Current Medicinal Chemistry, 19(21), 3523–3531.

RIGHTS & PERMISSIONS

2024 The Authors. Future Postharvest and Food published by John Wiley & Sons Australia, Ltd on behalf of International Association of Dietetic Nutrition and Safety.

AI Summary AI Mindmap
PDF

253

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/