Cellulose nanofibers, nanocrystals, and bacterial nanocellulose: Fabrication, characterization, and their most recent applications

Hadis Rostamabadi , Yograj Bist , Yogesh Kumar , Meral Yildirim-Yalcin , Tugce Ceyhan , Seid Reza Falsafi

Future Postharvest and Food ›› 2024, Vol. 1 ›› Issue (1) : 5 -33.

PDF
Future Postharvest and Food ›› 2024, Vol. 1 ›› Issue (1) : 5 -33. DOI: 10.1002/fpf2.12001
REVIEW

Cellulose nanofibers, nanocrystals, and bacterial nanocellulose: Fabrication, characterization, and their most recent applications

Author information +
History +
PDF

Abstract

In nature, cellulose is present in fibrillar structures with alternative crystalline and amorphous fragments. The application of various chemical treatments (acid hydrolysis, enzymolysis, and oxidation) could lead to the extraction and purification of crystalline compartments in the form of cellulose nanocrystals. On the other hand, applying harsh mechanical treatments (milling, ultrasonication, high-pressure processing, grinding, microfluidization, etc.) could result in the degradation of cellulose macrostructures into nano-fibrillated segments without depletion of the amorphous fractions. These structures are called cellulose nanofibers. Bacterial nanocelluloses (BNCs) are another nanostructure of cellulose that is generated through the bottom–up technique. BNCs are the purest forms of cellulose nanostructures (CNSs). Hitherto, various spectroscopy and microscopy characterization techniques have been developed for in-depth investigation of CNSs. The valuable information obtained via such instrumental techniques has opened windows on new horizons for the application of CNSs in novel realms. Nowadays, CNSs have found a seat in biomedical, packaging, emulsification, water filtration, and textile applications. In this review, after describing various forms of CNSs and their fabrication methods, the most recent techniques that have been utilized for the characterization of these structures plus their current application in different realms are comprehensively overviewed.

Keywords

bacterial nanocellulose / cellulose / cellulose nanocrystal / cellulose nanofiber

Cite this article

Download citation ▾
Hadis Rostamabadi, Yograj Bist, Yogesh Kumar, Meral Yildirim-Yalcin, Tugce Ceyhan, Seid Reza Falsafi. Cellulose nanofibers, nanocrystals, and bacterial nanocellulose: Fabrication, characterization, and their most recent applications. Future Postharvest and Food, 2024, 1(1): 5-33 DOI:10.1002/fpf2.12001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdullah , Weiss, J., Ahmad, T., Zhang, C., & Zhang, H. (2020). A review of recent progress on high internal-phase Pickering emulsions in food science. Trends in Food Science & Technology, 106, 91–103.

[2]

Ahankari, S., George, T., Subhedar, A., & Kar, K. K. (2020). Nanocellulose as a sustainable material for water purification. SPE Polymers, 1(2), 69–80.

[3]

Ahankari, S. S., Subhedar, A. R., Bhadauria, S. S., & Dufresne, A. (2021). Nanocellulose in food packaging: A review. Carbohydrate Polymers, 255, 117479.

[4]

Amalraj, A., Gopi, S., Thomas, S., & Haponiuk, J. T. (2018). Cellulose nanomaterials in biomedical, food, and nutraceutical applications: A review. Macromolecular Symposia, 380(1), 1800115.

[5]

Amoroso, L., De France, K. J., Milz, C. I., Siqueira, G., Zimmermann, T., & Nystrom, G. (2021). Sustainable cellulose nanofiber films from carrot pomace as sprayable coatings for food packaging applications. ACS Sustainable Chemistry & Engineering, 10(1), 342–352.

[6]

Andrade, M. S., Ishikawa, O. H., Costfhuma, R. S., Seixas, M. V., Rodrigues, R. C., & Moura, E. A. (2022). Development of sustainable food packaging material based on biodegradable polymer reinforced with cellulose nanocrystals. Food Packaging and Shelf Life, 31, 100807.

[7]

Arun, R., Shruthy, R., Preetha, R., & Sreejit, V. (2022). Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging. Chemosphere, 291, 132786.

[8]

Ataide, J. A., de Carvalho, N. M., Rebelo, M. de A., Chaud, M. V., Grotto, D., Gerenutti, M., Rai, M., Mazzola, P. G., & Jozala, A. F. (2017). Bacterial nanocellulose loaded with bromelain: Assessment of antimicrobial, antioxidant and physical-chemical properties. Scientific Reports, 7(1), Article 1.

[9]

Babaee, M., Jonoobi, M., Hamzeh, Y., & Ashori, A. (2015). Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydrate Polymers, 132, 1–8.

[10]

Bai, L., Huan, S., Xiang, W., & Rojas, O. J. (2018). Pickering emulsions by combining cellulose nanofibrils and nanocrystals: Phase behavior and depletion stabilization. Green Chemistry, 20(7), 1571–1582.

[11]

Bano, S., & Negi, Y. S. (2017). Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydrate Polymers, 157, 1041–1049.

[12]

Barbash, V. A., & Yashchenko, O. V. (2020). Preparation and application of nanocellulose from non-wood plants to improve the quality of paper and cardboard. Applied Nanoscience, 10(8), 2705–2716.

[13]

Bardet, R., & Bras, J. (2014). Cellulose nanofibers and their use in paper industry. In Handbook of green materıals: 1 bionanomaterials: Separation processes, characterization and properties (pp. 207–232). World Scientific.

[14]

Berglund, L., Noël, M., Aitomäki, Y., Öman, T., & Oksman, K. (2016). Production potential of cellulose nanofibers from industrial residues: Efficiency and nanofiber characteristics. Industrial Crops and Products, 92, 84–92.

[15]

Blanco, A., Monte, M. C., Campano, C., Balea, A., Merayo, N., & Negro, C. (2018). Chapter 5 - Nanocellulose for industrial use: Cellulose nanofibers (CNF), cellulose nanocrystals (CNC), and bacterial cellulose (BC). In C. Mustansar Hussain (Ed.), Handbook of nanomaterials for industrial applications (pp. 74–126). Elsevier.

[16]

Brown, A. J. (1886). XLIII.—On an acetic ferment which forms cellulose. Journal of the Chemical Society Transactions, 49(0), 432–439.

[17]

Chen, Q.-H., Zheng, J., Xu, Y.-T., Yin, S.-W., Liu, F., & Tang, C.-H. (2018). Surface modification improves fabrication of Pickering high internal phase emulsions stabilized by cellulose nanocrystals. Food Hydrocolloids, 75, 125–130.

[18]

Costa, A. L. R., Gomes, A., Tibolla, H., Menegalli, F. C., & Cunha, R. L. (2018). Cellulose nanofibers from banana peels as a Pickering emulsifier: High-energy emulsification processes. Carbohydrate Polymers, 194, 122–131.

[19]

Dai, H., Wu, J., Zhang, H., Chen, Y., Ma, L., Huang, H., Huang, Y., & Zhang, Y. (2020). Recent advances on cellulose nanocrystals for Pickering emulsions: Development and challenge. Trends in Food Science & Technology, 102, 16–29.

[20]

Deepa, B., Abraham, E., Pothan, L. A., Cordeiro, N., Faria, M., & Thomas, S. (2016). Biodegradable nanocomposite films based on sodium alginate and cellulose nanofibrils. Materials, 9(1), 50.

[21]

de Oliveira, J. P., Bruni, G. P., El Halal, S. L. M., Bertoldi, F. C., Dias, A. R. G., & da Rosa Zavareze, E. (2019). Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging. International Journal of Biological Macromolecules, 124, 175–184.

[22]

de Souza, A. G., Rocha, D. B., Kano, F. S., & dos Santos Rosa, D. (2019). Valorization of industrial paper waste by isolating cellulose nanostructures with different pretreatment methods. Resources, Conservation and Recycling, 143, 133–142.

[23]

Du, H., Liu, C., Wang, D., Zhang, Y., Yu, G., Si, C., Li, B., Mu, X., & Peng, H. (2017). Sustainable preparation and characterization of thermally stable and functional cellulose nanocrystals and nanofibrils via formic acid hydrolysis. Biomedical Materials, 2, 4.

[24]

Du, H., Liu, W., Zhang, M., Si, C., Zhang, X., & Li, B. (2019). Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydrate Polymers, 209, 130–144.

[25]

Ferrer, A., Pal, L., & Hubbe, M. (2017). Nanocellulose in packaging: Advances in barrier layer technologies. Industrial Crops and Products, 95, 574–582.

[26]

Fujisawa, S., Togawa, E., & Kuroda, K. (2017). Nanocellulose-stabilized Pickering emulsions and their applications. Science and Technology of Advanced Materials, 18(1), 959–971.

[27]

Ganesan, A., & Jaiganesh, R. (2022). A review on fabrication methods of nanofibers and a special focus on application of cellulose nanofibers. Carbohydrate Polymer Technologies and Applications, 4, 100262.

[28]

Ganguly, K., Patel, D. K., Dutta, S. D., Shin, W. C., & Lim, K. T. (2020). Stimuli-responsive self-assembly of cellulose nanocrystals (CNCs): Structures, functions, and biomedical applications. International Journal of Biological Macromolecules, 155, 456–469.

[29]

Gao, H., Sun, Q., Han, Z., Li, J., Liao, B., Hu, L., Huang, J., Zou, C., Jia, C., Huang, J., Chang, Z., Jiang, D., & Jin, M. (2020). Comparison of bacterial nanocellulose produced by different strains under static and agitated culture conditions. Carbohydrate Polymers, 227, 115323.

[30]

George, J., & Sabapathi, S. N. (2015). Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnology, Science and Applications, 45–54.

[31]

Ghaderi, M., Mousavi, M., Yousefi, H., & Labbafi, M. (2014). All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydrate Polymers, 104, 59–65.

[32]

Ghanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Thermoplastic starch foamed composites reinforced with cellulose nanofibers: Thermal and mechanical properties. Carbohydrate Polymers, 197, 305–311.

[33]

Guo, L., Liang, Z., Yang, L., Du, W., Yu, T., Tang, H., Li, C., & Qiu, H. (2021). The role of natural polymers in bone tissue engineering. Journal of Controlled Release, 338, 571–582.

[34]

Guo, Y., Zhang, X., Hao, W., Xie, Y., Chen, L., Li, Z., Zhu, B., & Feng, X. (2018). Nano-bacterial cellulose/soy protein isolate complex gel as fat substitutes in ice cream model. Carbohydrate Polymers, 198, 620–630.

[35]

Halloub, A., Raji, M., Essabir, H., Chakchak, H., Bensalah, M. O., Bouhfid, R., & Qaiss, A. e. k. (2022). Intelligent food packaging film containing lignin and cellulose nanocrystals for shelf life extension of food. Carbohydrate Polymers, 296, 119972.

[36]

Herrick, F. W., Casebier, R. L., Hamilton, J. K., & Sandberg, K. R. (1983). Microfibrillated cellulose: Morphology and accessibility. In J. Appl. Polym. Sci.: Appl. Polym. Symp.; (United States) (Vol. 37, No. CONF-8205234-Vol. 2). ITT Rayonier Inc.

[37]

Hu, D., Jiang, R., Wang, N., Xu, H., Wang, Y. G., & Ouyang, X. K. (2019). Adsorption of diclofenac sodium on bilayer amino-functionalized cellulose nanocrystals/chitosan composite. Journal of Hazardous Materials, 369, 483–493.

[38]

Huang, C. F., Tu, C. W., Lee, R. H., Yang, C. H., Hung, W. C., & Lin, K. Y. A. (2019). Study of various diameter and functionality of TEMPO-oxidized cellulose nanofibers on paraquat adsorptions. Polymer Degradation and Stability, 161, 206–212.

[39]

Jenol, M. A., Norrrahim, M. N. F., & Nurazzi, N. M. (2022). Nanocellulose nanocomposites in textiles. In S. M. Sapuan, M. N. F. Norrrahim, R. A. Ilyas, & C. Soutis (Eds.), Industrial applications of nanocellulose and its nanocomposites (pp. 397–408). Woodhead Publishing. Elsevier.

[40]

Jia, Z., Dumont, M.-J., & Orsat, V. (2016). Encapsulation of phenolic compounds present in plants using protein matrices. Food Bioscience, 15, 87–104.

[41]

Kallel, F., Bettaieb, F., Khiari, R., García, A., Bras, J., & Chaabouni, S. E. (2016). Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Industrial Crops and Products, 87, 287–296.

[42]

Kang, X., Kuga, S., Wang, C., Zhao, Y., Wu, M., & Huang, Y. (2018). Green preparation of cellulose nanocrystal and its application. ACS Sustainable Chemistry & Engineering, 6(3), 2954–2960.

[43]

Khan, H., Saroha, V., Raghuvanshi, S., Bharti, A. K., & Dutt, D. (2021). Valorization of fruit processing waste to produce high value-added bacterial nanocellulose by a novel strain Komagataeibacter xylinus IITR DKH20. Carbohydrate Polymers, 260, 117807.

[44]

Kim, H. C., Kim, D., Lee, J. Y., Zhai, L., & Kim, J. (2019). Effect of wet spinning and stretching to enhance mechanical properties of cellulose nanofiber filament. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(3), 567–575.

[45]

Kondo, T., Rytczak, P., & Bielecki, S. (2016). Chapter 4—Bacterial nanocellulose characterization. In M. Gama, F. Dourado, & S. Bielecki (Eds.), Bacterial nanocellulose (pp. 59–71). Elsevier.

[46]

Lan, T., Liu, H., Li, H., Qin, Y., & Yue, G. (2020). Preparation and characterization of lignin-containing nanofibrillated cellulose. Bioresources, 15(3), 4689–4698.

[47]

Leite, A. L. M. P., Zanon, C. D., & Menegalli, F. C. (2017). Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings. Carbohydrate Polymers, 157, 962–970.

[48]

Li, B., Xu, W., Kronlund, D., Määttänen, A., Liu, J., Smått, J.-H., Peltonen, J., Willför, S., Mu, X., & Xu, C. (2015). Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohydrate Polymers, 133, 605–612.

[49]

Li, X., Li, J., Gong, J., Kuang, Y., Mo, L., & Song, T. (2018). Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water Pickering emulsions. Carbohydrate Polymers, 183, 303–310.

[50]

Lin, D., Liu, Z., Shen, R., Chen, S., & Yang, X. (2020). Bacterial cellulose in food industry: Current research and future prospects. International Journal of Biological Macromolecules, 158, 1007–1019.

[51]

Liu, W., Du, H., Zhang, M., Liu, K., Liu, H., Xie, H., Zhang, X., & Si, C. (2020). Bacterial cellulose-based composite scaffolds for biomedical applications: A review. ACS Sustainable Chemistry & Engineering, 8(20), 7536–7562.

[52]

Liu, X., Sun, H., Mu, T., Fauconnier, M. L., & Li, M. (2023). Preparation of cellulose nanofibers from potato residues by ultrasonication combined with high-pressure homogenization. Food Chemistry, 413, 135675.

[53]

Liu, Y., Wang, H., Yu, G., Yu, Q., Li, B., & Mu, X. (2014). A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydrate Polymers, 110, 415–422.

[54]

Liu, Z., Lin, D., Shen, R., & Yang, X. (2021). Bacterial cellulose nanofibers improved the emulsifying capacity of soy protein isolate as a stabilizer for Pickering high internal-phase emulsions. Food Hydrocolloids, 112, 106279.

[55]

Lu, J., Jin, R. N., Liu, C., Wang, Y. F., & Ouyang, X. K. (2016). Magnetic carboxylated cellulose nanocrystals as adsorbent for the removal of Pb (II) from aqueous solution. International Journal of Biological Macromolecules, 93, 547–556.

[56]

Ludwicka, K., Kaczmarek, M., & Białkowska, A. (2020). Bacterial nanocellulose—A biobased polymer for active and intelligent food packaging applications: Recent advances and developments. Polymers, 12(10), 2209.

[57]

Luo, H., Cha, R., Li, J., Hao, W., Zhang, Y., & Zhou, F. (2019). Advances in tissue engineering of nanocellulose-based scaffolds: A review. Carbohydrate Polymers, 224, 115144.

[58]

Mali, P., & Sherje, A. P. (2022). Cellulose nanocrystals: Fundamentals and biomedical applications. Carbohydrate Polymers, 275, 118668.

[59]

Manzato, L., Rabelo, L. C. A., De Souza, S. M., Da Silva, C. G., Sanches, E. A., Rabelo, D., Mariuba, L., & Simonsen, J. (2017). New approach for extraction of cellulose from tucumã's endocarp and its structural characterization. Journal of Molecular Structure, 1143, 229–234.

[60]

Mbituyimana, B., Liu, L., Ye, W., Boni, B. O. O., Zhang, K., Chen, J., Thomas, S., Vasilievich, R. V., Shi, Z., & Yang, G. (2021). Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Carbohydrate Polymers, 273, 118565.

[61]

Miao, J., Yu, Y., Jiang, Z., & Zhang, L. (2016). One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose, 23(2), 1209–1219.

[62]

Moohan, J., Stewart, S. A., Espinosa, E., Rosal, A., Rodríguez, A., Larrañeta, E., Donnelly, R. F., Domínguez-Robles, J., & Domínguez-Robles, J. (2019). Cellulose nanofibers and other biopolymers for biomedical applications. A review. Applied Sciences, 10(1), 65.

[63]

Mu, R., Hong, X., Ni, Y., Li, Y., Pang, J., Wang, Q., Xiao, J., & Zheng, Y. (2019). Recent trends and applications of cellulose nanocrystals in food industry. Trends in Food Science & Technology, 93, 136–144.

[64]

Murugarren, N., Roig-Sanchez, S., Antón-Sales, I., Malandain, N., Xu, K., Solano, E., Reparaz, J. S., & Laromaine, A. (2022). Highly aligned bacterial nanocellulose films obtained during static biosynthesis in a reproducible and straightforward approach. Advanced Science, 9(26), 2201947.

[65]

Oun, A. A., & Rhim, J.-W. (2016). Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydrate Polymers, 150, 187–200.

[66]

Pandi, N., Sonawane, S. H., & Anand Kishore, K. (2021). Synthesis of cellulose nanocrystals (CNCs) from cotton using ultrasound-assisted acid hydrolysis. Ultrasonics Sonochemistry, 70, 105353.

[67]

Park, H., Otte, A., & Park, K. (2022). Evolution of drug delivery systems: From 1950 to 2020 and beyond. Journal of Controlled Release, 342, 53–65.

[68]

Park, N.-M., Choi, S., Oh, J. E., & Hwang, D. Y. (2019). Facile extraction of cellulose nanocrystals. Carbohydrate Polymers, 223, 115114.

[69]

Patel, D. K., Dutta, S. D., & Lim, K. T. (2019). Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification. RSC Advances, 9(33), 19143–19162.

[70]

Pereira, B., & Arantes, V. (2020). Production of cellulose nanocrystals integrated into a biochemical sugar platform process via enzymatic hydrolysis at high solid loading. Industrial Crops and Products, 152, 112377.

[71]

Picheth, G. F., Pirich, C. L., Sierakowski, M. R., Woehl, M. A., Sakakibara, C. N., de Souza, C. F., Martin, A. A., da Silva, R., & de Freitas, R. A. (2017). Bacterial cellulose in biomedical applications: A review. International Journal of Biological Macromolecules, 104, 97–106.

[72]

Prakash, J., Venkataprasanna, K. S., Bharath, G., Banat, F., Niranjan, R., & Venkatasubbu, G. D. (2021). In-vitro evaluation of electrospun cellulose acetate nanofiber containing Graphene oxide/TiO2/Curcumin for wound healing application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627, 127166.

[73]

Qiao, A., Cui, M., Huang, R., Ding, G., Qi, W., He, Z., Klemeš, J. J., & Su, R. (2021). Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohydrate Polymers, 272, 118471.

[74]

Rana, A. K., Frollini, E., & Thakur, V. K. (2021). Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization. International Journal of Biological Macromolecules, 182, 1554–1581.

[75]

Rånby, B. G. (1951). Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discussions of the Faraday Society, 11(0), 158–164.

[76]

Rasouli, R., Barhoum, A., Bechelany, M., & Dufresne, A. (2019). Nanofibers for biomedical and healthcare applications. Macromolecular Bioscience, 19(2), 1800256.

[77]

Razalli, R. L., Abdi, M. M., Tahir, P. M., Moradbak, A., Sulaiman, Y., & Heng, L. Y. (2017). Polyaniline-modified nanocellulose prepared from Semantan bamboo by chemical polymerization: Preparation and characterization. RSC Advances, 7(41), 25191–25198.

[78]

Ren, R.-W., Chen, X.-Q., & Shen, W.-H. (2022). Preparation and separation of pure spherical cellulose nanocrystals from microcrystalline cellulose by complex enzymatic hydrolysis. International Journal of Biological Macromolecules, 202, 1–10.

[79]

Robles, E., Fernández-Rodríguez, J., Barbosa, A. M., Gordobil, O., Carreño, N. L., & Labidi, J. (2018). Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes. Carbohydrate Polymers, 183, 294–302.

[80]

Saba, N., Safwan, A., Sanyang, M. L., Mohammad, F., Pervaiz, M., Jawaid, M., Alothman, O., & Sain, M. (2017). Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. International Journal of Biological Macromolecules, 102, 822–828.

[81]

Sainorudin, M. H., Abdullah, N. A., Asmal Rani, M. S., Mohammad, M., Mahizan, M., Shadan, N., Abd Kadir, N. H., Yaakob, Z., El-Denglawey, A., & Alam, M. (2021). Structural characterization of microcrystalline and nanocrystalline cellulose from Ananas comosus L. leaves: Cytocompatibility and molecular docking studies. Nanotechnology Reviews, 10(1), 793–806.

[82]

Salam, A., Lucia, L. A., & Jameel, H. (2013). A novel cellulose nanocrystals-based approach to improve the mechanical properties of recycled paper. ACS Sustainable Chemistry & Engineering, 1(12), 1584–1592.

[83]

Sánchez-Gutiérrez, M., Espinosa, E., Bascón-Villegas, I., Pérez-Rodríguez, F., Carrasco, E., & Rodríguez, A. (2020). Production of cellulose nanofibers from olive tree harvest—A residue with wide applications. Agronomy, 10(5), Article 5.

[84]

Sankhla, S., Sardar, H. H., & Neogi, S. (2021). Greener extraction of highly crystalline and thermally stable cellulose micro-fibers from sugarcane bagasse for cellulose nano-fibrils preparation. Carbohydrate Polymers, 251, 117030.

[85]

Seddiqi, H., Oliaei, E., Honarkar, H., Jin, J., Geonzon, L. C., Bacabac, R. G., & Klein-Nulend, J. (2021). Cellulose and its derivatives: Towards biomedical applications. Cellulose, 28(4), 1893–1931.

[86]

Sharma, C., & Bhardwaj, N. K. (2019). Bacterial nanocellulose: Present status, biomedical applications and future perspectives. Materials Science and Engineering: C, 104, 109963.

[87]

Sharma, P. R., Sharma, S. K., Lindström, T., & Hsiao, B. S. (2020). Nanocellulose-enabled membranes for water purification: Perspectives. Advanced Sustainable Systems, 4(5), 1900114.

[88]

Singh, M., Pahal, V., & Ahuja, D. (2020). Isolation and characterization of microfibrillated cellulose and nanofibrillated cellulose with “biomechanical hotspots”. Carbohydrate Polymers, 234, 115827.

[89]

Siqueira, G., Oksman, K., Tadokoro, S. K., & Mathew, A. P. (2016). Re-dispersible carrot nanofibers with high mechanical properties and reinforcing capacity for use in composite materials. Composites Science and Technology, 123, 49–56.

[90]

Sirvio, J. A., Visanko, M., & Liimatainen, H. (2016). Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromolecules, 17(9), 3025–3032.

[91]

Skočaj, M. (2019). Bacterial nanocellulose in papermaking. Cellulose, 26(11), 6477–6488.

[92]

Sofla, M. R. K., Brown, R. J., Tsuzuki, T., & Rainey, T. J. (2016). A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(3), 035004.

[93]

Song, K., Zhu, X., Zhu, W., & Li, X. (2019). Preparation and characterization of cellulose nanocrystal extracted from Calotropis procera biomass. Bioresources and Bioprocessing, 6(1), 1–8.

[94]

Spagnuolo, L., D'Orsi, R., & Operamolla, A. (2022). Nanocellulose for paper and textile coating: The importance of surface chemistry. ChemPlusChem, 87(8), e202200204.

[95]

Spence, K. L., Venditti, R. A., Rojas, O. J., Habibi, Y., & Pawlak, J. J. (2010). The effect of chemical composition on microfibrillar cellulose films from wood pulps: Water interactions and physical properties for packaging applications. Cellulose, 17(4), 835–848.

[96]

Stanislas, T. T., Tendo, J. F., Ojo, E. B., Ngasoh, O. F., Onwualu, P. A., Njeugna, E., & Junior, H. S. (2022). Production and characterization of pulp and nanofibrillated cellulose from selected tropical plants. Journal of Natural Fibers, 19(5), 1592–1608.

[97]

Surendran, G., & Sherje, A. P. (2022). Cellulose nanofibers and composites: An insight on basics and biomedical applications. Journal of Drug Delivery Science and Technology, 75, 103601.

[98]

Tan, C., & McClements, D. J. (2021). Application of advanced emulsion technology in the food industry: A review and critical evaluation. Foods, 10(4), 812.

[99]

Thakur, M., Sharma, A., Ahlawat, V., Bhattacharya, M., & Goswami, S. (2020). Process optimization for the production of cellulose nanocrystals from rice straw derived α-cellulose. Materials Science for Energy Technologies, 3, 328–334.

[100]

Thambiraj, S., & Ravi Shankaran, D. (2017). Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton. Applied Surface Science, 412, 405–416.

[101]

Tibolla, H., Pelissari, F. M., Martins, J. T., Vicente, A. A., & Menegalli, F. C. (2018). Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment. Food Hydrocolloids, 75, 192–201.

[102]

Tong, W. Y., bin Abdullah, A. Y. K., binti Rozman, N. A. S., bin Wahid, M. I. A., Hossain, M. S., Ring, L. C., Lazim, Y., & Tan, W. N. (2018). Antimicrobial wound dressing film utilizing cellulose nanocrystal as drug delivery system for curcumin. Cellulose, 25(1), 631–638.

[103]

Trilokesh, C., & Uppuluri, K. B. (2019). Isolation and characterization of cellulose nanocrystals from jackfruit peel. Scientific Reports, 9(1), Article 1.

[104]

Tripathi, G., Park, M., Lim, H., & Lee, B. T. (2023). Natural TEMPO oxidized cellulose nano fiber/alginate/dSECM hybrid aerogel with improved wound healing and hemostatic ability. International Journal of Biological Macromolecules, 243, 125226.

[105]

Turbak, A. F., Snyder, F. W., & Sandberg, K. R. (1983). Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential. Journal of Applied Polymer Science. Applied polymer symposium, 37(9), 815–827.

[106]

Varanasi, S., Henzel, L., Mendoza, L., Prathapan, R., Batchelor, W., Tabor, R., & Garnier, G. (2018). Pickering emulsions electrostatically stabilized by cellulose nanocrystals. Frontiers in Chemistry, 6, 409.

[107]

Vasconcelos, N. F., Feitosa, J. P. A., da Gama, F. M. P., Morais, J. P. S., Andrade, F. K., de Souza Filho, M. de S. M., & Rosa, M. de F. (2017). Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features. Carbohydrate Polymers, 155, 425–431.

[108]

Ventura-Cruz, S., & Tecante, A. (2019). Extraction and characterization of cellulose nanofibers from Rose stems (Rosa spp.). Carbohydrate Polymers, 220, 53–59.

[109]

Voisin, H., Bergström, L., Liu, P., & Mathew, A. P. (2017). Nanocellulose-based materials for water purification. Nanomaterials, 7(3), 57.

[110]

Wang, D. (2019). A critical review of cellulose-based nanomaterials for water purification in industrial processes. Cellulose, 26(2), 687–701.

[111]

Wang, L., Chen, C., Wang, J., Gardner, D. J., & Tajvidi, M. (2020). Cellulose nanofibrils versus cellulose nanocrystals: Comparison of performance in flexible multilayer films for packaging applications. Food Packaging and Shelf Life, 23, 100464.

[112]

Wang, Y., Wang, W., Jia, H., Gao, G., Wang, X., Zhang, X., & Wang, Y. (2018). Using cellulose nanofibers and its palm oil Pickering emulsion as fat substitutes in emulsified sausage. Journal of Food Science, 83(6), 1740–1747.

[113]

Wen, J., Zhang, W., Xu, Y., Yu, Y., Lin, X., Fu, M., Liu, H., Peng, J., & Zhao, Z. (2023). Cellulose nanofiber from pomelo spongy tissue as a novel particle stabilizer for Pickering emulsion. International Journal of Biological Macromolecules, 224, 1439–1449.

[114]

Wong, S. K., Mohd Ali, M. I. A., Low, L. E., Supramaniam, J., Manickam, S., Wong, T. W., Garnier, G., & Tang, S. Y. (2023). Transforming the chemical functionality of nanocellulose for applications in food Pickering emulsions: A critical review. Food Reviews International, 1–25.

[115]

Wood, J., van der Gast, C., Rivett, D., Verran, J., & Redfern, J. (2022). Reproducibility of bacterial cellulose nanofibers over sub-cultured generations for the development of novel textiles. Frontiers in Bioengineering and Biotechnology, 10, 561.

[116]

Wu, R.-Q., Li, Z.-X., Yang, J.-P., Xing, X.-H., Shao, D.-Y., & Xing, K.-L. (2010). Mutagenesis induced by high hydrostatic pressure treatment: A useful method to improve the bacterial cellulose yield of a Gluconoacetobacter xylinus strain. Cellulose, 17(2), 399–405.

[117]

Xie, H., Du, H., Yang, X., & Si, C. (2018). Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. International Journal of Polymer Science, 2018, 1–25.

[118]

Xu, X., Liu, F., Jiang, L., Zhu, J. Y., Haagenson, D., & Wiesenborn, D. P. (2013). Cellulose nanocrystals vs. cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents. ACS Applied Materials & Interfaces, 5(8), 2999–3009.

[119]

Yang, J., Zhang, L., Wang, P., & Zhou, J. (2022). Cellulose nanofibers prepared from pulp through ultrasound treatment followed semi-dry esterification and their application for transparent and anti-fingerprint coating. Progress in Organic Coatings, 167, 106844.

[120]

Yokota, S., Kamada, K., Sugiyama, A., & Kondo, T. (2019). Pickering emulsion stabilization by using amphiphilic cellulose nanofibrils prepared by aqueous counter collision. Carbohydrate Polymers, 226, 115293.

[121]

Yuan, Y., Liu, H., Su, J., Qin, X., & Qi, H. (2021). Acetylated cellulose nanofibers fabricated through chemo-mechanical process for stabilizing Pickering emulsion. Cellulose, 28(15), 9677–9687.

[122]

Zhai, X., Lin, D., Liu, D., & Yang, X. (2018). Emulsions stabilized by nanofibers from bacterial cellulose: New potential food-grade Pickering emulsions. Food Research International, 103, 12–20.

[123]

Zhang, G., Wu, F., Ma, T., Zhang, B., Manyande, A., & Du, H. (2019). Preparation and characterization of cellulose nanofibers isolated from lettuce peel. Cellulose Chemistry & Technology, 53(7–8), 677–684.

[124]

Zhang, H., Chen, Y., Wang, S., Ma, L., Yu, Y., Dai, H., & Zhang, Y. (2020). Extraction and comparison of cellulose nanocrystals from lemon (Citrus limon) seeds using sulfuric acid hydrolysis and oxidation methods. Carbohydrate Polymers, 238, 116180.

[125]

Zhang, K., Sun, P., Liu, H., Shang, S., Song, J., & Wang, D. (2016). Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohydrate Polymers, 138, 237–243.

[126]

Zhou, Y., Saito, T., Bergström, L., & Isogai, A. (2018). Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation. Biomacromolecules, 19(2), 633–639.

[127]

Zhu, S., Sun, H., Mu, T., Li, Q., & Richel, A. (2023). Preparation of cellulose nanocrystals from purple sweet potato peels by ultrasound-assisted maleic acid hydrolysis. Food Chemistry, 403, 134496.

RIGHTS & PERMISSIONS

2024 The Authors. Future Postharvest and Food published by John Wiley & Sons Australia, Ltd on behalf of International Association of Dietetic Nutrition and Safety.

AI Summary AI Mindmap
PDF

320

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/