Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping

Yajing ZHAO, Yan CHEN, Kepi CHEN

Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (4) : 422-427.

PDF(283 KB)
PDF(283 KB)
Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (4) : 422-427. DOI: 10.1007/s11706-016-0362-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping

Author information +
History +

Abstract

In this paper, the effects of doping with GeO2 on the synthesis temperature, phase structure and morphology of (K0.5Na0.5)NbO3 (KNN) ceramic powders were studied using XRD and SEM. The results show that KNN powders with good crystallinity and compositional homogeneity can be obtained after calcination at up to 900°C for 2 h. Introducing 0.5 mol.% GeO2 into the starting mixture improved the synthesis of the KNN powders and allowed the calcination temperature to be decreased to 800°C, which can be ascribed to the formation of the liquid phase during the synthesis.

Keywords

lead-free piezoelectrics / potassium sodium niobate / synthesis / acceptor doping

Cite this article

Download citation ▾
Yajing ZHAO, Yan CHEN, Kepi CHEN. Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping. Front. Mater. Sci., 2016, 10(4): 422‒427 https://doi.org/10.1007/s11706-016-0362-8

References

[1]
Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics. New York: Academic Press, 1971
[2]
Safari A, Akdogan E K, eds. Piezoelectric and Acoustic Materials for Transducer Applications. New York: Springer, 2008
[3]
Tichý J, Erhart J, Kittinger E, . Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials. Berlin: Springer, 2010
[4]
Uchino K. Ferroelectric Devices. 2nd ed. New York: CRC Press, 2009
[5]
Saito Y, Takao H, Tani T, . Lead-free piezoceramics. Nature, 2004, 432(7013): 84–87
CrossRef Pubmed Google scholar
[6]
Shrout T R, Zhang S J. Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics, 2007, 19(1): 113–126
CrossRef Google scholar
[7]
Panda P K. Review: environmental friendly lead-free piezoelectric materials. Journal of Materials Science, 2009, 44(19): 5049–5062
CrossRef Google scholar
[8]
Rodel J, Jo W, Seifert K T P, . Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153–1177
CrossRef Google scholar
[9]
Rodel J, Webber K G, Dittmer R, . Transferring lead-free piezoelectric ceramics into application. Journal of the European Ceramic Society, 2015, 35(6): 1659–1681
CrossRef Google scholar
[10]
Li J F, Wang K, Zhu F Y, . (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. Journal of the American Ceramic Society, 2013, 96(12): 3677–3696
CrossRef Google scholar
[11]
Wu J, Xiao D, Zhu J. Potassium‒sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chemical Reviews, 2015, 115(7): 2559–2595
CrossRef Pubmed Google scholar
[12]
Wang X, Wu J, Xiao D, . Giant piezoelectricity in potassium‒sodium niobate lead-free ceramics. Journal of the American Chemical Society, 2014, 136(7): 2905–2910
CrossRef Pubmed Google scholar
[13]
Wang X, Wu J, Xiao D, . Large d33 in (K,Na)(Nb,Ta,Sb)O3‒(Bi,Na,K)ZrO3 lead-free ceramics. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(12): 4122–4126
CrossRef Google scholar
[14]
Matsubara M, Yamaguchi T, Kikuta K, . Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid. Japanese Journal of Applied Physics, 2004, 43(10): 7159–7163
CrossRef Google scholar
[15]
Park S H, Ahn C W, Nahm S, . Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Japanese Journal of Applied Physics, 2004, 43(8B): L1072–L1074
CrossRef Google scholar
[16]
Matsubara M, Yamaguchi T, Kikuta K, . Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Japanese Journal of Applied Physics, 2005, 44(1A): 258–263
CrossRef Google scholar
[17]
Matsubara M, Yamaguchi T, Sakamoto W, . Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. Journal of the American Ceramic Society, 2005, 88(5): 1190–1196
CrossRef Google scholar
[18]
Park H Y, Choi J Y, Choi M K, . Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. Journal of the American Ceramic Society, 2008, 91(7): 2374–2377
CrossRef Google scholar
[19]
Rubio-Marcos F, Romero J J, Navarro-Rojero M G, . Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. Journal of the European Ceramic Society, 2009, 29(14): 3045–3052
CrossRef Google scholar
[20]
Alkoy E M, Papila M. Microstructural features and electrical properties of copper oxide added potassium sodium niobate ceramics. Ceramics International, 2010, 36(6): 1921–1927
CrossRef Google scholar
[21]
Rubio-Marcos F, Marchet P, Vendrell X, . Effect of MnO doping on the structure, microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. Journal of Alloys and Compounds, 2011, 509(35): 8804–8811
CrossRef Google scholar
[22]
Chen K P, Zhang F L, Zhou J Q, . Effect of borax addition on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics. Ceramics International, 2015, 41(8): 10232–10236
CrossRef Google scholar
[23]
Chen K P, Zhou J Q, Zhang F L, . Screening sintering aids for (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2015, 98(6): 1698–1701
CrossRef Google scholar
[24]
Chen K P, Zhang F L, Jiao Y L, . Effects of GeO2 addition on sintering and properties of (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2016, 99(5): 1681–1686
CrossRef Google scholar
[25]
Feizpour M, Ebadzadeh T, Jenko D. Synthesis and characterization of lead-free piezoelectric (K0.50Na0.50)NbO3 powder produced at lower calcination temperatures: A comparative study with a calcination temperature of 850°C. Journal of the European Ceramic Society, 2016, 36(7): 1595–1603
CrossRef Google scholar
[26]
Chen K P, Tang J, Chen Y. Compositional inhomogeneity and segregation in (K0.5Na0.5)NbO3 ceramics. Ceramics International, 2016, 42(8): 9949–9954
CrossRef Google scholar
[27]
Chen K P, Zhang F L, Li D S, . Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ceramics International, 2016, 42(2): 2899–2903
CrossRef Google scholar
[28]
Murthy M K, Aguayo J. Studies in germanium oxide systems: II, phase equilibria in the system Na2O‒GeO2. Journal of the American Ceramic Society, 1964, 47(9): 444–447
CrossRef Google scholar
[29]
Murthy M K, Long L, Ip J. Studies in germanium oxide systems: IV, phase equilibria in the system K2O‒GeO2. Journal of the American Ceramic Society, 1968, 51(11): 661–662
CrossRef Google scholar
[30]
Bomlai P, Wichianrat P, Muensit S, . Effect of calcination conditions and excess alkali carbonate on the phase formation and particle morphology of Na0.5K0.5NbO3 powders. Journal of the American Ceramic Society, 2007, 90(5): 1650–1655
CrossRef Google scholar
[31]
Guo Y P, Kakimoto K, Ohsato H. Structure and electrical properties of lead-free (Na0.5K0.5)NbO3‒BaTiO3 ceramics. Japanese Journal of Applied Physics, 2004, 43(9B): 6662–6666
CrossRef Google scholar
[32]
Dai Y J, Zhang X W, Zhou G Y. Phase transitional behavior in K0.5Na0.5NbO3‒LiTaO3 ceramics. Applied Physics Letters, 2007, 90(26): 262903
CrossRef Google scholar
[33]
Dai Y J, Zhang X W, Chen K P. Morphotropic phase boundary and electrical properties of K1−xNaxNbO3 lead-free ceramics. Applied Physics Letters, 2009, 94(4): 042905
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21371056) and the Fundamental Research Funds for the Central Universities.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(283 KB)

Accesses

Citations

Detail

Sections
Recommended

/