
Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping
Yajing ZHAO, Yan CHEN, Kepi CHEN
Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (4) : 422-427.
Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping
In this paper, the effects of doping with GeO2 on the synthesis temperature, phase structure and morphology of (K0.5Na0.5)NbO3 (KNN) ceramic powders were studied using XRD and SEM. The results show that KNN powders with good crystallinity and compositional homogeneity can be obtained after calcination at up to 900°C for 2 h. Introducing 0.5 mol.% GeO2 into the starting mixture improved the synthesis of the KNN powders and allowed the calcination temperature to be decreased to 800°C, which can be ascribed to the formation of the liquid phase during the synthesis.
lead-free piezoelectrics / potassium sodium niobate / synthesis / acceptor doping
[1] |
Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics. New York: Academic Press, 1971
|
[2] |
Safari A, Akdogan E K, eds. Piezoelectric and Acoustic Materials for Transducer Applications. New York: Springer, 2008
|
[3] |
Tichý J, Erhart J, Kittinger E,
|
[4] |
Uchino K. Ferroelectric Devices. 2nd ed. New York: CRC Press, 2009
|
[5] |
Saito Y, Takao H, Tani T,
CrossRef
Pubmed
Google scholar
|
[6] |
Shrout T R, Zhang S J. Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics, 2007, 19(1): 113–126
CrossRef
Google scholar
|
[7] |
Panda P K. Review: environmental friendly lead-free piezoelectric materials. Journal of Materials Science, 2009, 44(19): 5049–5062
CrossRef
Google scholar
|
[8] |
Rodel J, Jo W, Seifert K T P,
CrossRef
Google scholar
|
[9] |
Rodel J, Webber K G, Dittmer R,
CrossRef
Google scholar
|
[10] |
Li J F, Wang K, Zhu F Y,
CrossRef
Google scholar
|
[11] |
Wu J, Xiao D, Zhu J. Potassium‒sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chemical Reviews, 2015, 115(7): 2559–2595
CrossRef
Pubmed
Google scholar
|
[12] |
Wang X, Wu J, Xiao D,
CrossRef
Pubmed
Google scholar
|
[13] |
Wang X, Wu J, Xiao D,
CrossRef
Google scholar
|
[14] |
Matsubara M, Yamaguchi T, Kikuta K,
CrossRef
Google scholar
|
[15] |
Park S H, Ahn C W, Nahm S,
CrossRef
Google scholar
|
[16] |
Matsubara M, Yamaguchi T, Kikuta K,
CrossRef
Google scholar
|
[17] |
Matsubara M, Yamaguchi T, Sakamoto W,
CrossRef
Google scholar
|
[18] |
Park H Y, Choi J Y, Choi M K,
CrossRef
Google scholar
|
[19] |
Rubio-Marcos F, Romero J J, Navarro-Rojero M G,
CrossRef
Google scholar
|
[20] |
Alkoy E M, Papila M. Microstructural features and electrical properties of copper oxide added potassium sodium niobate ceramics. Ceramics International, 2010, 36(6): 1921–1927
CrossRef
Google scholar
|
[21] |
Rubio-Marcos F, Marchet P, Vendrell X,
CrossRef
Google scholar
|
[22] |
Chen K P, Zhang F L, Zhou J Q,
CrossRef
Google scholar
|
[23] |
Chen K P, Zhou J Q, Zhang F L,
CrossRef
Google scholar
|
[24] |
Chen K P, Zhang F L, Jiao Y L,
CrossRef
Google scholar
|
[25] |
Feizpour M, Ebadzadeh T, Jenko D. Synthesis and characterization of lead-free piezoelectric (K0.50Na0.50)NbO3 powder produced at lower calcination temperatures: A comparative study with a calcination temperature of 850°C. Journal of the European Ceramic Society, 2016, 36(7): 1595–1603
CrossRef
Google scholar
|
[26] |
Chen K P, Tang J, Chen Y. Compositional inhomogeneity and segregation in (K0.5Na0.5)NbO3 ceramics. Ceramics International, 2016, 42(8): 9949–9954
CrossRef
Google scholar
|
[27] |
Chen K P, Zhang F L, Li D S,
CrossRef
Google scholar
|
[28] |
Murthy M K, Aguayo J. Studies in germanium oxide systems: II, phase equilibria in the system Na2O‒GeO2. Journal of the American Ceramic Society, 1964, 47(9): 444–447
CrossRef
Google scholar
|
[29] |
Murthy M K, Long L, Ip J. Studies in germanium oxide systems: IV, phase equilibria in the system K2O‒GeO2. Journal of the American Ceramic Society, 1968, 51(11): 661–662
CrossRef
Google scholar
|
[30] |
Bomlai P, Wichianrat P, Muensit S,
CrossRef
Google scholar
|
[31] |
Guo Y P, Kakimoto K, Ohsato H. Structure and electrical properties of lead-free (Na0.5K0.5)NbO3‒BaTiO3 ceramics. Japanese Journal of Applied Physics, 2004, 43(9B): 6662–6666
CrossRef
Google scholar
|
[32] |
Dai Y J, Zhang X W, Zhou G Y. Phase transitional behavior in K0.5Na0.5NbO3‒LiTaO3 ceramics. Applied Physics Letters, 2007, 90(26): 262903
CrossRef
Google scholar
|
[33] |
Dai Y J, Zhang X W, Chen K P. Morphotropic phase boundary and electrical properties of K1−xNaxNbO3 lead-free ceramics. Applied Physics Letters, 2009, 94(4): 042905
CrossRef
Google scholar
|
/
〈 |
|
〉 |