Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping

Yajing ZHAO , Yan CHEN , Kepi CHEN

Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (4) : 422 -427.

PDF (283KB)
Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (4) : 422 -427. DOI: 10.1007/s11706-016-0362-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping

Author information +
History +
PDF (283KB)

Abstract

In this paper, the effects of doping with GeO2 on the synthesis temperature, phase structure and morphology of (K0.5Na0.5)NbO3 (KNN) ceramic powders were studied using XRD and SEM. The results show that KNN powders with good crystallinity and compositional homogeneity can be obtained after calcination at up to 900°C for 2 h. Introducing 0.5 mol.% GeO2 into the starting mixture improved the synthesis of the KNN powders and allowed the calcination temperature to be decreased to 800°C, which can be ascribed to the formation of the liquid phase during the synthesis.

Keywords

lead-free piezoelectrics / potassium sodium niobate / synthesis / acceptor doping

Cite this article

Download citation ▾
Yajing ZHAO, Yan CHEN, Kepi CHEN. Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping. Front. Mater. Sci., 2016, 10(4): 422-427 DOI:10.1007/s11706-016-0362-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics. New York: Academic Press, 1971

[2]

Safari A, Akdogan E K, eds. Piezoelectric and Acoustic Materials for Transducer Applications. New York: Springer, 2008

[3]

Tichý J, Erhart J, Kittinger E, . Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials. Berlin: Springer, 2010

[4]

Uchino K. Ferroelectric Devices. 2nd ed. New York: CRC Press, 2009

[5]

Saito Y, Takao H, Tani T, . Lead-free piezoceramics. Nature, 2004, 432(7013): 84–87

[6]

Shrout T R, Zhang S J. Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics, 2007, 19(1): 113–126

[7]

Panda P K. Review: environmental friendly lead-free piezoelectric materials. Journal of Materials Science, 2009, 44(19): 5049–5062

[8]

Rodel J, Jo W, Seifert K T P, . Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153–1177

[9]

Rodel J, Webber K G, Dittmer R, . Transferring lead-free piezoelectric ceramics into application. Journal of the European Ceramic Society, 2015, 35(6): 1659–1681

[10]

Li J F, Wang K, Zhu F Y, . (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. Journal of the American Ceramic Society, 2013, 96(12): 3677–3696

[11]

Wu J, Xiao D, Zhu J. Potassium‒sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chemical Reviews, 2015, 115(7): 2559–2595

[12]

Wang X, Wu J, Xiao D, . Giant piezoelectricity in potassium‒sodium niobate lead-free ceramics. Journal of the American Chemical Society, 2014, 136(7): 2905–2910

[13]

Wang X, Wu J, Xiao D, . Large d33 in (K,Na)(Nb,Ta,Sb)O3‒(Bi,Na,K)ZrO3 lead-free ceramics. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(12): 4122–4126

[14]

Matsubara M, Yamaguchi T, Kikuta K, . Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid. Japanese Journal of Applied Physics, 2004, 43(10): 7159–7163

[15]

Park S H, Ahn C W, Nahm S, . Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Japanese Journal of Applied Physics, 2004, 43(8B): L1072–L1074

[16]

Matsubara M, Yamaguchi T, Kikuta K, . Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Japanese Journal of Applied Physics, 2005, 44(1A): 258–263

[17]

Matsubara M, Yamaguchi T, Sakamoto W, . Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. Journal of the American Ceramic Society, 2005, 88(5): 1190–1196

[18]

Park H Y, Choi J Y, Choi M K, . Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. Journal of the American Ceramic Society, 2008, 91(7): 2374–2377

[19]

Rubio-Marcos F, Romero J J, Navarro-Rojero M G, . Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. Journal of the European Ceramic Society, 2009, 29(14): 3045–3052

[20]

Alkoy E M, Papila M. Microstructural features and electrical properties of copper oxide added potassium sodium niobate ceramics. Ceramics International, 2010, 36(6): 1921–1927

[21]

Rubio-Marcos F, Marchet P, Vendrell X, . Effect of MnO doping on the structure, microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. Journal of Alloys and Compounds, 2011, 509(35): 8804–8811

[22]

Chen K P, Zhang F L, Zhou J Q, . Effect of borax addition on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics. Ceramics International, 2015, 41(8): 10232–10236

[23]

Chen K P, Zhou J Q, Zhang F L, . Screening sintering aids for (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2015, 98(6): 1698–1701

[24]

Chen K P, Zhang F L, Jiao Y L, . Effects of GeO2 addition on sintering and properties of (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2016, 99(5): 1681–1686

[25]

Feizpour M, Ebadzadeh T, Jenko D. Synthesis and characterization of lead-free piezoelectric (K0.50Na0.50)NbO3 powder produced at lower calcination temperatures: A comparative study with a calcination temperature of 850°C. Journal of the European Ceramic Society, 2016, 36(7): 1595–1603

[26]

Chen K P, Tang J, Chen Y. Compositional inhomogeneity and segregation in (K0.5Na0.5)NbO3 ceramics. Ceramics International, 2016, 42(8): 9949–9954

[27]

Chen K P, Zhang F L, Li D S, . Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ceramics International, 2016, 42(2): 2899–2903

[28]

Murthy M K, Aguayo J. Studies in germanium oxide systems: II, phase equilibria in the system Na2O‒GeO2. Journal of the American Ceramic Society, 1964, 47(9): 444–447

[29]

Murthy M K, Long L, Ip J. Studies in germanium oxide systems: IV, phase equilibria in the system K2O‒GeO2. Journal of the American Ceramic Society, 1968, 51(11): 661–662

[30]

Bomlai P, Wichianrat P, Muensit S, . Effect of calcination conditions and excess alkali carbonate on the phase formation and particle morphology of Na0.5K0.5NbO3 powders. Journal of the American Ceramic Society, 2007, 90(5): 1650–1655

[31]

Guo Y P, Kakimoto K, Ohsato H. Structure and electrical properties of lead-free (Na0.5K0.5)NbO3‒BaTiO3 ceramics. Japanese Journal of Applied Physics, 2004, 43(9B): 6662–6666

[32]

Dai Y J, Zhang X W, Zhou G Y. Phase transitional behavior in K0.5Na0.5NbO3‒LiTaO3 ceramics. Applied Physics Letters, 2007, 90(26): 262903

[33]

Dai Y J, Zhang X W, Chen K P. Morphotropic phase boundary and electrical properties of K1−xNaxNbO3 lead-free ceramics. Applied Physics Letters, 2009, 94(4): 042905

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (283KB)

917

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/