Advances in tissue optical clearing for 3D imaging in large animal

Yating Deng , Jianyi Xu , Tingting Yu , Dan Zhu

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (3) : 18

PDF (8485KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (3) : 18 DOI: 10.1007/s12200-025-00162-6
REVIEW ARTICLE

Advances in tissue optical clearing for 3D imaging in large animal

Author information +
History +
PDF (8485KB)

Abstract

Three-dimensional reconstruction of tissue architecture is crucial for biomedical research. Tissue optical clearing technology overcomes light scattering limitations in biological tissues, providing an essential tool for high-resolution three-dimensional imaging. Given the high degree of similarity between large model animals (e.g., pigs, non-human primates) and humans in terms of anatomical structure, physiologic function, and disease mechanisms, the application of this technology in these models holds significant value for biomedical research. While well-established tissue clearing protocols exist for tissue sections, whole organs, and even entire bodies in rodents, scaling up to large animal specimens presents substantial challenges due to dimensional effects and compositional variations. This review systematically examines the methodological translation from rodent to large animals, particularly on species-specific differences in brain architecture and parenchymal organ composition that critically impact clearing efficiency. We comprehensively summarize recent applications in large animals, focusing on representative areas including neural circuit mapping, sensory organ imaging, and other related research domains, while proposing optimization strategies to overcome cross-species compatibility barriers. We hope this review will serve as a valuable reference for advancing tissue optical clearing applications in large-animal biomedical research.

Graphical abstract

Keywords

Tissue optical clearing / Optical imaging / Large animal / Biological tissues

Cite this article

Download citation ▾
Yating Deng, Jianyi Xu, Tingting Yu, Dan Zhu. Advances in tissue optical clearing for 3D imaging in large animal. Front. Optoelectron., 2025, 18(3): 18 DOI:10.1007/s12200-025-00162-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu, X., Su, J., Zhu, R., Li, K., Zhao, X., Fan, J., Mao, F.: From morphology to single-cell molecules: high-resolution 3D histology in biomedicine. Mol. Cancer 24(1), 63 (2025)

[2]

Kremer, A., Lippens, S., Bartunkova, S., Asselbergh, B., Blanpain, C., Fendrych, M., Goossens, A., Holt, M., Janssens, S., Krols, M., Larsimont, J.C., Mc Guire, C., Nowack, M.K., Saelens, X., Schertel, A., Schepens, B., Slezak, M., Timmerman, V., Theunis, C., Van Brempt, R., Visser, Y., Guérin, C.J.: Developing 3D SEM in a broad biological context. J. Microsc. 259(2), 80–96 (2015)

[3]

Zhao, J., Yu, X., Shentu, X., Li, D.: The application and development of electron microscopy for three-dimensional reconstruction in life science: a review. Cell Tissue Res. 396(1), 1–18 (2024)

[4]

Ercius, P., Alaidi, O., Rames, M.J., Ren, G.: Electron tomography: a three-dimensional analytic tool for hard and soft materials research. Adv. Mater. 27(38), 5638–5663 (2015)

[5]

Liu, L., Chen, A., Li, Y., Mulder, J., Heyn, H., Xu, X.: Spatiotemporal omics for biology and medicine. Cell 187(17), 4488–4519 (2024)

[6]

Pirovano, G., Roberts, S., Kossatz, S., Reiner, T.: Optical imaging modalities: principles and applications in preclinical research and clinical settings. J. Nucl. Med. 61(10), 1419–1427 (2020)

[7]

Ntziachristos, V.: Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7(8), 603–614 (2010)

[8]

Nwaneshiudu, A., Kuschal, C., Sakamoto, F.H., Anderson, R.R., Schwarzenberger, K., Young, R.C.: Introduction to confocal microscopy. J. Invest. Dermatol. 132(12), e3 (2012)

[9]

Helmchen, F., Denk, W.: Deep tissue two-photon microscopy. Nat. Methods 2(12), 932–940 (2005)

[10]

Olarte, O.E., Andilla, J., Gualda, E.J., Loza-Alvarez, P.: Light-sheet microscopy: a tutorial. Adv. Opt. Photonics 10(1), 111–179 (2018)

[11]

Yoon, S., Cheon, S.Y., Park, S., Lee, D., Lee, Y., Han, S., Kim, M., Koo, H.: Recent advances in optical imaging through deep tissue: imaging probes and techniques. Biomater. Res. 26(1), 57 (2022)

[12]

Zhu, D., Larin, K.V., Luo, Q., Tuchin, V.V.: Recent progress in tissue optical clearing. Laser Photonics Rev. 7(5), 732–757 (2013)

[13]

Yu, T., Zhu, J., Li, D., Zhu, D.: Physical and chemical mechanisms of tissue optical clearing. iScience 24(3), 102178 (2021)

[14]

Li, D., Lin, H., Sun, S., Liu, S., Liu, Z., He, Y., Zhu, J., Xu, J., Semyachkina-Glushkovskaya, O., Yu, T., Zhu, D.: Photostimulation of lymphatic clearance of β-amyloid from mouse brain: a new strategy for the therapy of Alzheimer’s disease. Front. Optoelectron. 16(1), 45 (2023)

[15]

Yu, T., Qi, Y., Gong, H., Luo, Q., Zhu, D.: Optical clearing for multiscale biological tissues. J. Biophotonics 11(2), e201700187 (2018)

[16]

Silvestri, L., Costantini, I., Sacconi, L., Pavone, F.S.: Clearing of fixed tissue: a review from a microscopist’s perspective. J. Biomed. Opt. 21(8), 081205 (2016)

[17]

Yu, T., Zhong, X., Li, D., Zhu, J., Tuchin, V.V., Zhu, D.: Delivery and kinetics of immersion optical clearing agents in tissues: optical imaging from ex vivo to in vivo. Adv. Drug Deliv. Rev. 215, 115470 (2024)

[18]

Mukherjee, P., Roy, S., Ghosh, D., Nandi, S.K.: Role of animal models in biomedical research: a review. Lab. Anim. Res. 38(1), 18 (2022)

[19]

Tsang, H.G., Rashdan, N.A., Whitelaw, C.B., Corcoran, B.M., Summers, K.M., MacRae, V.E.: Large animal models of cardiovascular disease. Cell Biochem. Funct. 34(3), 113–132 (2016)

[20]

Vink, R.: Large animal models of traumatic brain injury. J. Neurosci. Res. 96(4), 527–535 (2018)

[21]

Flynn, J.L., Gideon, H.P., Mattila, J.T., Lin, P.L.: Immunology studies in non-human primate models of tuberculosis. Immunol. Rev. 264(1), 60–73 (2015)

[22]

Lunney, J.K., Van Goor, A., Walker, K.E., Hailstock, T., Franklin, J., Dai, C.: Importance of the pig as a human biomedical model. Sci. Transl. Med. 13(621), eabd5758 (2021)

[23]

Tuchin, V.V.: Tissue optics and photonics: biological tissue structures. J. Biomed. Photonics Eng. 1(1), 3–21 (2015)

[24]

Zhu, D., Tuchin, V.: Tissue optical clearing imaging from ex vivo toward in vivo. BME Front 5, 0058 (2024)

[25]

Mai, H., Lu, D.: Tissue clearing and its applications in human tissues: a review. View 5(2), 20230046 (2024)

[26]

Costantini, I., Cicchi, R., Silvestri, L., Vanzi, F., Pavone, F.S.: In-vivo and ex-vivo optical clearing methods for biological tissues: review. Biomed. Opt. Express 10(10), 5251–5267 (2019)

[27]

Bashkatov, A.N., Berezin, K.V., Dvoretskiy, K.N., Chernavina, M.L., Genina, E.A., Genin, V.D., Kochubey, V.I., Lazareva, E.N., Pravdin, A.B., Shvachkina, M.E., Timoshina, P.A., Tuchina, D.K., Yakovlev, D.D., Yakovlev, D.A., Yanina, I.Y., Zhernovaya, O.S., Tuchin, V.V.: Measurement of tissue optical properties in the context of tissue optical clearing. J. Biomed. Opt. 23(9), 091416 (2018)

[28]

Tuchin, V.V., Maksimova, I.L., Zimnyakov, D.A., Kon, I.L., Mavlyutov, A.H., Mishin, A.A.: Light propagation in tissues with controlled optical properties. J. Biomed. Opt. 2(4), 401–417 (1997)

[29]

Ke, M.T., Fujimoto, S., Imai, T.: SeeDB: a simple and morphology- preserving optical clearing agent for neuronal circuit reconstruction. Nat. Neurosci. 16(8), 1154–1161 (2013)

[30]

Ke, M.T., Nakai, Y., Fujimoto, S., Takayama, R., Yoshida, S., Kitajima, T.S., Sato, M., Imai, T.: Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent. Cell Rep. 14(11), 2718–2732 (2016)

[31]

Richardson, D.S., Lichtman, J.W.: Clarifying tissue clearing. Cell 162(2), 246–257 (2015)

[32]

Hama, H., Hioki, H., Namiki, K., Hoshida, T., Kurokawa, H., Ishidate, F., Kaneko, T., Akagi, T., Saito, T., Saido, T., Miyawaki, A.: ScaleS: an optical clearing palette for biological imaging. Nat. Neurosci. 18(10), 1518–1529 (2015)

[33]

Aoyagi, Y., Kawakami, R., Osanai, H., Hibi, T., Nemoto, T.: A rapid optical clearing protocol using 2,2′-thiodiethanol for microscopic observation of fixed mouse brain. PLoS ONE 10(1), e0116280 (2015)

[34]

Ertürk, A., Becker, K., Jährling, N., Mauch, C.P., Hojer, C.D., Egen, J.G., Hellal, F., Bradke, F., Sheng, M., Dodt, H.U.: Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat. Protoc. 7(11), 1983–1995 (2012)

[35]

Pan, C., Cai, R., Quacquarelli, F.P., Ghasemigharagoz, A., Lourbopoulos, A., Matryba, P., Plesnila, N., Dichgans, M., Hellal, F., Erturk, A.: Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat. Methods 13(10), 859–867 (2016)

[36]

Qi, Y., Yu, T., Xu, J., Wan, P., Ma, Y., Zhu, J., Li, Y., Gong, H., Luo, Q., Zhu, D.: FDISCO: advanced solvent-based clearing method for imaging whole organs. Sci. Adv. 5(1), eaau8355 (2019)

[37]

Renier, N., Wu, Z., Simon, D.J., Yang, J., Ariel, P., Tessier-Lavigne, M.: iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159(4), 896–910 (2014)

[38]

Renier, N., Adams, E.L., Kirst, C., Wu, Z., Azevedo, R., Kohl, J., Autry, A.E., Kadiri, L., Umadevi Venkataraju, K., Zhou, Y., Wang, V.X., Tang, C.Y., Olsen, O., Dulac, C., Osten, P., Tessier-Lavigne, M.: Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165(7), 1789–1802 (2016)

[39]

Jing, D., Zhang, S., Luo, W., Gao, X., Men, Y., Ma, C., Liu, X., Yi, Y., Bugde, A., Zhou, B.O., Zhao, Z., Yuan, Q., Feng, J.Q., Gao, L., Ge, W.P., Zhao, H.: Tissue clearing of both hard and soft tissue organs with the PEGASOS method. Cell Res. 28(8), 803–818 (2018)

[40]

Hahn, C., Becker, K., Saghafi, S., Pende, M., Avdibašić A., Foroughipour, M., Heinz, D.E., Wotjak, C.T., Dodt, H.U.: High-resolution imaging of fluorescent whole mouse brains using stabilised organic media (sDISCO). J. Biophotonics 12(8), e201800368 (2019)

[41]

Zhu, J., Ma, Y., Xu, J., Li, Y., Wan, P., Qi, Y., Yu, T., Zhu, D.: Dec-DISCO: decolorization DISCO clearing for seeing through the biological architectures of heme-rich organs. Biomed. Opt. Express 12(9), 5499–5513 (2021)

[42]

Zhu, J., Liu, X., Liu, Z., Deng, Y., Xu, J., Liu, K., Zhang, R., Meng, X., Fei, P., Yu, T., Zhu, D.: Solid: minimizing tissue distortion for brain-wide profiling of diverse architectures. Nat. Commun. 15(1), 8303 (2024)

[43]

Deng, Y., Zhu, J., Liu, X., Dai, J., Yu, T., Zhu, D.: A robust vessel-labeling pipeline with high tissue clearing compatibility for 3D mapping of vascular networks. iScience 27(5), 109730 (2024)

[44]

Zhu, J., Liu, X., Xu, J., Liu, Z., Deng, Y., Dai, J., Yu, T., Zhu, D.: Protocol for fine casting, imaging, and analysis of murine vascular networks with VALID. STAR Protoc 4(3), 102441 (2023)

[45]

Zhu, J., Liu, X., Xu, J., Deng, Y., Wang, P., Liu, Z., Yang, Q., Li, D., Yu, T., Zhu, D.: A versatile vessel casting method for fine mapping of vascular networks using a hydrogel-based lipophilic dye solution. Cell Rep. Methods 3(2), 100407 (2023)

[46]

Susaki, E.A., Tainaka, K., Perrin, D., Yukinaga, H., Kuno, A., Ueda, H.R.: Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat. Protoc. 10(11), 1709–1727 (2015)

[47]

Murakami, T.C., Mano, T., Saikawa, S., Horiguchi, S.A., Shigeta, D., Baba, K., Sekiya, H., Shimizu, Y., Tanaka, K.F., Kiyonari, H., Iino, M., Mochizuki, H., Tainaka, K., Ueda, H.R.: A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nat. Neurosci. 21(4), 625–637 (2018)

[48]

Matsumoto, K., Mitani, T.T., Horiguchi, S.A., Kaneshiro, J., Murakami, T.C., Mano, T., Fujishima, H., Konno, A., Watanabe, T.M., Hirai, H., Ueda, H.R.: Advanced cubic tissue clearing for whole-organ cell profiling. Nat. Protoc. 14(12), 3506–3537 (2019)

[49]

Susaki, E.A., Tainaka, K., Perrin, D., Kishino, F., Tawara, T., Watanabe, T.M., Yokoyama, C., Onoe, H., Eguchi, M., Yamaguchi, S., Abe, T., Kiyonari, H., Shimizu, Y., Miyawaki, A., Yokota, H., Ueda, H.R.: Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157(3), 726–739 (2014)

[50]

Kosmidis, S., Negrean, A., Dranovsky, A., Losonczy, A., Kandel, E.R.: A fast, aqueous, reversible three-day tissue clearing method for adult and embryonic mouse brain and whole body. Cell Rep. Methods 1(7), 100090 (2021)

[51]

Hsu, C.W., Cerda, J., 3rd., Kirk, J.M., Turner, W.D., Rasmussen, T.L., Flores Suarez, C.P., Dickinson, M.E., Wythe, J.D.: EZ Clear for simple, rapid, and robust mouse whole organ clearing. Elife 11, e77419 (2022)

[52]

Zhu, J., Yu, T., Li, Y., Xu, J., Qi, Y., Yao, Y., Ma, Y., Wan, P., Chen, Z., Li, X., Gong, H., Luo, Q., Zhu, D.: MACS: rapid aqueous clearing system for 3D mapping of intact organs. Adv. Sci. (Weinh.) 7(8), 1903185 (2020)

[53]

Murray, E., Cho, J.H., Goodwin, D., Ku, T., Swaney, J., Kim, S.Y., Choi, H., Park, Y.G., Park, J.Y., Hubbert, A., McCue, M., Vassallo, S., Bakh, N., Frosch, M.P., Wedeen, V.J., Seung, H.S., Chung, K.: Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163(6), 1500–1514 (2015)

[54]

Park, Y.G., Sohn, C.H., Chen, R., McCue, M., Yun, D.H., Drummond, G.T., Ku, T., Evans, N.B., Oak, H.C., Trieu, W., Choi, H., Jin, X., Lilascharoen, V., Wang, J., Truttmann, M.C., Qi, H.W., Ploegh, H.L., Golub, T.R., Chen, S.C., Frosch, M.P., Kulik, H.J., Lim, B.K., Chung, K.: Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat. Biotechnol. 37(1), 73–83 (2019)

[55]

Kuwajima, T., Sitko, A.A., Bhansali, P., Jurgens, C., Guido, W., Mason, C.: Cleart: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development 140(6), 1364–1368 (2013)

[56]

Cai, R., Kolabas, Z.I., Pan, C., Mai, H., Zhao, S., Kaltenecker, D., Voigt, F.F., Molbay, M., Ohn, T.L., Vincke, C., Todorov, M.I., Helmchen, F., Van Ginderachter, J.A., Ertürk, A.: Whole-mouse clearing and imaging at the cellular level with vDISCO. Nat. Protoc. 18(4), 1197–1242 (2023)

[57]

Mai, H., Luo, J., Hoeher, L., Al-Maskari, R., Horvath, I., Chen, Y., Kofler, F., Piraud, M., Paetzold, J.C., Modamio, J., Todorov, M., Elsner, M., Hellal, F., Erturk, A.: Whole-body cellular mapping in mouse using standard IgG antibodies. Nat. Biotechnol. 42(4), 617–627 (2024)

[58]

Chung, K., Wallace, J., Kim, S.Y., Kalyanasundaram, S., Andalman, A.S., Davidson, T.J., Mirzabekov, J.J., Zalocusky, K.A., Mattis, J., Denisin, A.K., Pak, S., Bernstein, H., Ramakrishnan, C., Grosenick, L., Gradinaru, V., Deisseroth, K.: Structural and molecular interrogation of intact biological systems. Nature 497(7449), 332–337 (2013)

[59]

Cai, R., Pan, C., Ghasemigharagoz, A., Todorov, M.I., Förstera, B., Zhao, S., Bhatia, H.S., Parra-Damas, A., Mrowka, L., Theodorou, D., Rempfler, M., Xavier, A.L.R., Kress, B.T., Benakis, C., Steinke, H., Liebscher, S., Bechmann, I., Liesz, A., Menze, B., Kerschensteiner, M., Nedergaard, M., Ertürk, A.: Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. Nat. Neurosci. 22(2), 317–327 (2019)

[60]

Nudell, V., Wang, Y., Pang, Z., Lal, N.K., Huang, M., Shaabani, N., Kanim, W., Teijaro, J., Maximov, A., Ye, L.: HYBRiD: hydrogel-reinforced DISCO for clearing mammalian bodies. Nat. Methods 19(4), 479–485 (2022)

[61]

Wang, Y., Ye, L.: TESOS: an integrated approach for uniform mesoscale imaging. Cell Res. 34(2), 93–94 (2024)

[62]

Yi, Y., Li, Y., Zhang, S., Men, Y., Wang, Y., Jing, D., Ding, J., Zhu, Q., Chen, Z., Chen, X., Li, J.L., Wang, Y., Wang, J., Peng, H., Zhang, L., Luo, W., Feng, J.Q., He, Y., Ge, W.P., Zhao, H.: Mapping of individual sensory nerve axons from digits to spinal cord with the transparent embedding solvent system. Cell Res. 34(2), 124–139 (2024)

[63]

Tainaka, K., Kubota, S.I., Suyama, T.Q., Susaki, E.A., Perrin, D., Ukai-Tadenuma, M., Ukai, H., Ueda, H.R.: Whole-body imaging with single-cell resolution by tissue decolorization. Cell 159(4), 911–924 (2014)

[64]

Yang, B., Treweek, J.B., Kulkarni, R.P., Deverman, B.E., Chen, C.K., Lubeck, E., Shah, S., Cai, L., Gradinaru, V.: Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158(4), 945–958 (2014)

[65]

Lee, E., Choi, J., Jo, Y., Kim, J.Y., Jang, Y.J., Lee, H.M., Kim, S.Y., Lee, H.J., Cho, K., Jung, N., Hur, E.M., Jeong, S.J., Moon, C., Choe, Y., Rhyu, I.J., Kim, H., Sun, W.: ACT-PRESTO: rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci. Rep. 6(1), 18631 (2016)

[66]

Milani-Nejad, N., Janssen, P.M.: Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol. Ther. 141(3), 235–249 (2014)

[67]

Cai, B., Wang, N.: Large animal stroke models vs. rodent stroke models, pros and cons, and combination? Acta Neurochir. Suppl. (Wien) 121, 77–81 (2016)

[68]

Boraschi, D., Italiani, P.: Model validity in nanoimmunosafety: advantages and disadvantages of in vivo vs in vitro models, and human vs animal models. Curr. Bionanotechnol. 2(2), 71–76 (2017)

[69]

Burmeister, D.M., Supp, D.M., Clark, R.A., Tredget, E.E., Powell, H.M., Enkhbaatar, P., Bohannon, J.K., Cancio, L.C., Hill, D.M., Nygaard, R.M.: Advantages and disadvantages of using small and large animals in burn research: proceedings of the 2021 research special interest group. J. Burn Care Res. 43(5), 1032–1041 (2022)

[70]

Yin, P., Li, S., Li, X.J., Yang, W.: New pathogenic insights from large animal models of neurodegenerative diseases. Protein Cell 13(10), 707–720 (2022)

[71]

Ulyanova, A.V., Koch, P.F., Cottone, C., Grovola, M.R., Adam, C.D., Browne, K.D., Weber, M.T., Russo, R.J., Gagnon, K.G., Smith, D.H., Isaac Chen, H., Johnson, V.E., Kacy Cullen, D., Wolf, J.A.: Electrophysiological signature reveals laminar structure of the porcine hippocampus. eNeuro 5(5), ENEURO.0102-18.2018 (2018)

[72]

Yen, C., Hsieh, P.C.: Pathology of permanent, LAD-ligation induced myocardial infarction differs across small (mice, rat) and large (pig) animal models. Frontiers bioengineering conference abstract: 10th world biomaterials congress 142 (2016)

[73]

Foquet, L., Hermsen, C.C., van Gemert, G.J., Libbrecht, L., Sauerwein, R., Meuleman, P., Leroux-Roels, G.: Molecular detection and quantification of Plasmodium falciparuminfected human hepatocytes in chimeric immune-deficient mice. Malar. J. 12(1), 430 (2013)

[74]

Kamimura, K., Suda, T., Xu, W., Zhang, G., Liu, D.: Imageguided, lobe-specific hydrodynamic gene delivery to swine liver. Mol. Ther. 17(3), 491–499 (2009)

[75]

Ventura-Antunes, L., Mota, B., Herculano-Houzel, S.: Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains. Front. Neuroanat. 7, 3 (2013)

[76]

Chan, R.B., Oliveira, T.G., Cortes, E.P., Honig, L.S., Duff, K.E., Small, S.A., Wenk, M.R., Shui, G., Di Paolo, G.: Comparative lipidomic analysis of mouse and human brain with Alzheimer disease. J. Biol. Chem. 287(4), 2678–2688 (2012)

[77]

Cayre, M., Falque, M., Mercier, O., Magalon, K., Durbec, P.: Myelin repair: from animal models to humans. Front. Cell. Neurosci. 15, 604865 (2021)

[78]

Wenzel, N., Blasczyk, R., Figueiredo, C.: Animal models in allogenic solid organ transplantation. Transplantology 2(4), 412–424 (2021)

[79]

Perkins, L.E.L.: Animal models of vascular stenting. Drug Discov. Today Dis. Models 24, 31–36 (2017)

[80]

Badea, A., Ali-Sharief, A.A., Johnson, G.A.: Morphometric analysis of the C57BL/6J mouse brain. Neuroimage 37(3), 683–693 (2007)

[81]

Piekarski, D.J., Zahr, N.M., Zhao, Q., Ferizi, U., Pohl, K.M., Sullivan, E.V., Pfefferbaum, A.: White matter microstructural integrity continues to develop from adolescence to young adulthood in mice and humans: same phenotype, different mechanism. Neuroimage Rep. 3(3), 100179 (2023)

[82]

Zhang, K., Sejnowski, T.J.: A universal scaling law between gray matter and white matter of cerebral cortex. Proc. Natl. Acad. Sci. U. S. A. 97(10), 5621–5626 (2000)

[83]

Ozarkar, S.S., Patel, R.K.R., Vulli, T., Friar, C.A., Burette, A.C., Philpot, B.D.: Regional analysis of myelin basic protein across postnatal brain development of C57BL/6J mice. Front. Neuroanat. 19, 1535745 (2025)

[84]

Hammelrath, L., Škokić S., Khmelinskii, A., Hess, A., van der Knaap, N., Staring, M., Lelieveldt, B.P.F., Wiedermann, D., Hoehn, M.: Morphological maturation of the mouse brain: an in vivo MRI and histology investigation. Neuroimage 125, 144–152 (2016)

[85]

Mota, B., Dos Santos, S.E., Ventura-Antunes, L., Jardim- Messeder, D., Neves, K., Kazu, R.S., Noctor, S., Lambert, K., Bertelsen, M.F., Manger, P.R., Sherwood, C.C., Kaas, J.H., Herculano-Houzel, S.: White matter volume and white/gray matter ratio in mammalian species as a consequence of the universal scaling of cortical folding. Proc. Natl. Acad. Sci. U. S. A. 116(30), 15253–15261 (2019)

[86]

Krafft, P.R., Bailey, E.L., Lekic, T., Rolland, W.B., Altay, O., Tang, J., Wardlaw, J.M., Zhang, J.H., Sudlow, C.L.: Etiology of stroke and choice of models. Int. J. Stroke 7(5), 398–406 (2012)

[87]

De Maio, A., Huang, Y., Lin, F.H., Stefanovic, B., Stanisz, G.J., O’Reilly, M.A.: Evaluation of focused ultrasound modulation of the blood-brain barrier in gray and white matter. J. Control. Release 381, 113631 (2025)

[88]

Fitzner, D., Bader, J.M., Penkert, H., Bergner, C.G., Su, M., Weil, M.T., Surma, M.A., Mann, M., Klose, C., Simons, M.: Celltype- and brain-region-resolved mouse brain lipidome. Cell Rep. 32(11), 108132 (2020)

[89]

Chanted, J., Panpipat, W., Panya, A., Phonsatta, N., Cheong, L.Z., Chaijan, M.: Compositional features and nutritional value of pig brain: potential and challenges as a sustainable source of nutrients. Foods 10(12), 2943 (2021)

[90]

Osetrova, M., Tkachev, A., Mair, W., Guijarro Larraz, P., Efimova, O., Kurochkin, I., Stekolshchikova, E., Anikanov, N., Foo, J.C., Cazenave-Gassiot, A., Mitina, A., Ogurtsova, P., Guo, S., Potashnikova, D.M., Gulin, A.A., Vasin, A.A., Sarycheva, A., Vladimirov, G., Fedorova, M., Kostyukevich, Y., Nikolaev, E., Wenk, M.R., Khrameeva, E.E., Khaitovich, P.: Lipidome atlas of the adult human brain. Nat. Commun. 15(1), 4455 (2024)

[91]

Saliani, A., Perraud, B., Duval, T., Stikov, N., Rossignol, S., Cohen-Adad, J.: Axon and myelin morphology in animal and human spinal cord. Front. Neuroanat. 11, 129 (2017)

[92]

Inouye, H., Kirschner, D.A.: Evolution of myelin ultrastructure and the major structural myelin proteins. Brain Res. 1641(Pt A), 43–63 (2016)

[93]

Kirschner, D.A., Blaurock, A.E.: Organization, phylogenetic variations, and dynamic transitions of myelin, pp. 3–78. Routledge (2023)

[94]

Friedrich, P., Fraenz, C., Schlüter, C., Ocklenburg, S., Mädler, B., Güntürkün, O., Genç E.: The relationship between axon density, myelination, and fractional anisotropy in the human corpus callosum. Cereb. Cortex 30(4), 2042–2056 (2020)

[95]

Lynn, J.D., Anand, C., Arshad, M., Homayouni, R., Rosenberg, D.R., Ofen, N., Raz, N., Stanley, J.A.: Microstructure of human corpus callosum across the lifespan: regional variations in axon caliber, density, and myelin content. Cereb. Cortex 31(2), 1032–1045 (2021)

[96]

Weickenmeier, J., de Rooij, R., Budday, S., Steinmann, P., Ovaert, T.C., Kuhl, E.: Brain stiffness increases with myelin content. Acta Biomater. 42, 265–272 (2016)

[97]

Guertler, C.A., Okamoto, R.J., Schmidt, J.L., Badachhape, A.A., Johnson, C.L., Bayly, P.V.: Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography. J. Biomed. Opt. 69, 10–18 (2018)

[98]

Heath, D.E., Cooper, S.L.: The development of polymeric biomaterials inspired by the extracellular matrix. J. Biomater. Sci. Polym. Ed. 28(10–12), 1051–1069 (2017)

[99]

Wälchli, T., Bisschop, J., Miettinen, A., Ulmann-Schuler, A., Hintermüller, C., Meyer, E.P., Krucker, T., Wälchli, R., Monnier, P.P., Carmeliet, P., Vogel, J., Stampanoni, M.: Hierarchical imaging and computational analysis of three-dimensional vascular network architecture in the entire postnatal and adult mouse brain. Nat. Protoc. 16(10), 4564–4610 (2021)

[100]

Simchick, G., Shen, A., Campbell, B., Park, H.J., West, F.D., Zhao, Q.: Pig brains have homologous resting-state networks with human brains. Brain Connect. 9(7), 566–579 (2019)

[101]

Duvernoy, H.M., Delon, S., Vannson, J.L.: Cortical blood vessels of the human brain. Brain Res. Bull. 7(5), 519–579 (1981)

[102]

Bernier, M., Cunnane, S.C., Whittingstall, K.: The morphology of the human cerebrovascular system. Hum. Brain Mapp. 39(12), 4962–4975 (2018)

[103]

Pabst, R.: The pig as a model for immunology research. Cell Tissue Res. 380(2), 287–304 (2020)

[104]

Sykes, M., Sachs, D.H.: Transplanting organs from pigs to humans. Sci. Immunol. 4(41), eaau6298 (2019)

[105]

Viggars, M.R., Sutherland, H., Cardozo, C.P., Jarvis, J.C.: Conserved and species-specific transcriptional responses to daily programmed resistance exercise in rat and mouse. FASEB J. 37(12), e23299 (2023)

[106]

Statzer, C., Ewald, C.Y.: The extracellular matrix phenome across species. Matrix Biol. Plus 8, 100039 (2020)

[107]

Cox, L.A., Olivier, M., Spradling-Reeves, K., Karere, G.M., Comuzzie, A.G., VandeBerg, J.L.: Nonhuman primates and translational research—cardiovascular disease. ILAR J. 58(2), 235–250 (2017)

[108]

Swartz, D.D., Andreadis, S.T.: Animal models for vascular tissue-engineering. Curr. Opin. Biotechnol. 24(5), 916–925 (2013)

[109]

Nakano, M., Oenzil, F., Mizuno, T., Gotoh, S.: Age-related changes in the lipofuscin accumulation of brain and heart. Gerontology 41(Suppl 2), 69–80 (1995)

[110]

Cnop, M., Hughes, S.J., Igoillo-Esteve, M., Hoppa, M.B., Sayyed, F., van de Laar, L., Gunter, J.H., de Koning, E.J., Walls, G.V., Gray, D.W., Johnson, P.R., Hansen, B.C., Morris, J.F., Pipeleers- Marichal, M., Cnop, I., Clark, A.: The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia 53(2), 321–330 (2010)

[111]

Zissler, A., Stoiber, W., Geissenberger, J., Steinbacher, P., Monticelli, F.C., Pittner, S.: Influencing factors on postmortem protein degradation for PMI estimation: a systematic review. Diagnostics 11(7), 1146 (2021)

[112]

Liebmann, T., Renier, N., Bettayeb, K., Greengard, P., Tessier- Lavigne, M., Flajolet, M.: Three-dimensional study of Alzheimer’s disease hallmarks using the iDISCO clearing method. Cell Rep. 16(4), 1138–1152 (2016)

[113]

Chen, L., Li, G., Li, Y., Li, Y., Zhu, H., Tang, L., French, P., McGinty, J., Ruan, S.: Ubasm: an effective balanced optical clearing method for intact biomedical imaging. Sci. Rep. 7(1), 12218 (2017)

[114]

Liu, A.K.L., Hurry, M.E., Ng, O.T.W., DeFelice, J., Lai, H.M., Pearce, R.K., Wong, G.T.C., Chang, R.C.C., Gentleman, S.M.: Bringing clarity to the human brain: visualization of Lewy pathology in three dimensions. Neuropathol. Appl. Neurobiol. 42(6), 573–587 (2016)

[115]

Morawski, M., Kirilina, E., Scherf, N., Jäger, C., Reimann, K., Trampel, R., Gavriilidis, F., Geyer, S., Biedermann, B., Arendt, T., Weiskopf, N.: Developing 3D microscopy with CLARITY on human brain tissue: towards a tool for informing and validating MRI-based histology. Neuroimage 182, 417–428 (2018)

[116]

Hildebrand, S., Schueth, A., Herrler, A., Galuske, R., Roebroeck, A.: Scalable labeling for cytoarchitectonic characterization of large optically cleared human neocortex samples. Sci. Rep. 9(1), 10880 (2019)

[117]

Lai, H.M., Liu, A.K.L., Ng, H.H.M., Goldfinger, M.H., Chau, T.W., DeFelice, J., Tilley, B.S., Wong, W.M., Wu, W., Gentleman, S.M.: Next generation histology methods for three-dimensional imaging of fresh and archival human brain tissues. Nat. Commun. 9(1), 1066 (2018)

[118]

Hildebrand, S., Schueth, A., Wangenheim, K.V., Mattheyer, C., Pampaloni, F., Bratzke, H., Roebroeck, A.F., Galuske, R.A.W.: hFRUIT: An optimized agent for optical clearing of DiI-stained adult human brain tissue. Sci. Rep. 10(1), 9950 (2020)

[119]

Ku, T., Guan, W., Evans, N.B., Sohn, C.H., Albanese, A., Kim, J.G., Frosch, M.P., Chung, K.: Elasticizing tissues for reversible shape transformation and accelerated molecular labeling. Nat. Methods 17(6), 609–613 (2020)

[120]

Zhao, S., Todorov, M.I., Cai, R., Maskari, R.A., Steinke, H., Kemter, E., Mai, H., Rong, Z., Warmer, M., Stanic, K., Schoppe, O., Paetzold, J.C., Gesierich, B., Wong, M.N., Huber, T.B., Duering, M., Bruns, O.T., Menze, B., Lipfert, J., Puelles, V.G., Wolf, E., Bechmann, I., Erturk, A.: Cellular and molecular probing of intact human organs. Cell 180(4), 796-812.e19 (2020)

[121]

Furuta, T., Yamauchi, K., Okamoto, S., Takahashi, M., Kakuta, S., Ishida, Y., Takenaka, A., Yoshida, A., Uchiyama, Y., Koike, M., Isa, K., Isa, T., Hioki, H.: Multi-scale light microscopy/electron microscopy neuronal imaging from brain to synapse with a tissue clearing method, ScaleSF. iScience 25(1), 103601 (2022)

[122]

Xu, F., Shen, Y., Ding, L., Yang, C.Y., Tan, H., Wang, H., Zhu, Q., Xu, R., Wu, F., Xiao, Y., Xu, C., Li, Q., Su, P., Zhang, L.I., Dong, H.W., Desimone, R., Xu, F., Hu, X., Lau, P.M., Bi, G.Q.: High-throughput mapping of a whole rhesus monkey brain at micrometer resolution. Nat. Biotechnol. 39(12), 1521–1528 (2021)

[123]

Soderblom, C., Lee, D.H., Dawood, A., Carballosa, M., Santamaria, J.A., Benavides, F.D., Jergova, S., Grumbles, R.M., Thomas, C.K., Park, K.K., Guest, J.D., Lemmon, V.P., Lee, J.K., Tsoulfas, P.: 3D imaging of axons in transparent spinal cords from rodents and nonhuman primates. eNeuro 2(2), ENEURO.0001-15.2015 (2015)

[124]

Moore, A.M., Lucas, K.A., Goodman, R.L., Coolen, L.M., Lehman, M.N.: Three-dimensional imaging of KNDy neurons in the mammalian brain using optical tissue clearing and multiplelabel immunocytochemistry. Sci. Rep. 8(1), 2242 (2018)

[125]

Li, S., Shen, Y., Chen, Y., Hong, Z., Zhang, L., Ding, L., Yang, C.Y., Qi, X., Shen, Q., Xiao, Y., Lau, P.M., Lu, Z., Xu, F., Bi, G.Q.: Single-neuron reconstruction of the macaque primary motor cortex reveals the diversity of neuronal morphology. Neurosci. Bull. 41(3), 525–530 (2025)

[126]

Susaki, E.A., Shimizu, C., Kuno, A., Tainaka, K., Li, X., Nishi, K., Morishima, K., Ono, H., Ode, K.L., Saeki, Y., Miyamichi, K., Isa, K., Yokoyama, C., Kitaura, H., Ikemura, M., Ushiku, T., Shimizu, Y., Saito, T., Saido, T.C., Fukayama, M., Onoe, H., Touhara, K., Isa, T., Kakita, A., Shibayama, M., Ueda, H.R.: Versatile whole-organ/body staining and imaging based on electrolyte- gel properties of biological tissues. Nat. Commun. 11(1), 1982 (2020)

[127]

Yun, D.H., Park, Y.G., Cho, J.H., Kamentsky, L., Evans, N.B., DiNapoli, N., Xie, K., Choi, S.W., Albanese, A., Tian, Y., Sohn, C.H., Zhang, Q., Kim, M.E., Swaney, J., Guan, W., Park, J., Drummond, G., Choi, H., Ruelas, L., Feng, G., Chung, K.: Uniform volumetric single-cell processing for organ-scale molecular phenotyping. Nat. Biotechnol. (2025)

[128]

Leuze, C., Goubran, M., Barakovic, M., Aswendt, M., Tian, Q., Hsueh, B., Crow, A., Weber, E.M.M., Steinberg, G.K., Zeineh, M., Plowey, E.D., Daducci, A., Innocenti, G., Thiran, J.P., Deisseroth, K., McNab, J.A.: Comparison of diffusion MRI and CLARITY fiber orientation estimates in both gray and white matter regions of human and primate brain. Neuroimage 228, 117692 (2021)

[129]

Yun, D.H., Park, Y.G., Cho, J.H., Kamentsky, L., Evans, N.B., Albanese, A., Xie, K., Swaney, J., Sohn, C.H., Tian, Y.: Ultrafast immunostaining of organ-scale tissues for scalable proteomic phenotyping. BioRxiv, 660373 (2019)

[130]

Moatti, A., Cai, Y., Li, C., Sattler, T., Edwards, L., Piedrahita, J., Ligler, F.S., Greenbaum, A.: Three-dimensional imaging of intact porcine cochlea using tissue clearing and custom-built light-sheet microscopy. Biomed. Opt. Expr. 11(11), 6181–6196 (2020)

[131]

Moatti, A., Cai, Y., Li, C., Popowski, K.D., Cheng, K., Ligler, F.S., Greenbaum, A.: Tissue clearing and three-dimensional imaging of the whole cochlea and vestibular system from multiple large-animal models. STAR Protoc. 4(2), 102220 (2023)

[132]

Ye, Y., Dinh Duong, T.A., Saito, K., Shinmyo, Y., Ichikawa, Y., Higashide, T., Kagami, K., Fujiwara, H., Sugiyama, K., Kawasaki, H.: Visualization of the retina in intact eyes of mice and ferrets using a tissue clearing method. Transl. Vis. Sci. Technol. 9(3), 1 (2020)

[133]

Martin, J.T., Hartwell, B.L., Kumarapperuma, S.C., Melo, M.B., Carnathan, D.G., Cossette, B.J., Adams, J., Gong, S., Zhang, W., Tokatlian, T., Menis, S., Schiffner, T., Franklin, C.G., Goins, B., Fox, P.T., Silvestri, G., Schief, W.R., Ruprecht, R.M., Irvine, D.J.: Combined PET and whole-tissue imaging of lymphatictargeting vaccines in non-human primates. Biomaterials 275, 120868 (2021)

[134]

Sargent, J.A., Roberts, V., Gaffney, J.E., Frias, A.E.: Clarification and confocal imaging of the nonhuman primate placental microanatomy. Biotechniques 66(2), 79–84 (2019)

[135]

Schwenninger, D., Priebe, H.J., Schneider, M., Runck, H., Guttmann, J.: Optical clearing: impact of optical and dielectric properties of clearing solutions on pulmonary tissue mechanics. J. Appl. Physiol. 123(1), 27–37 (2017)

[136]

Zaeck, L.M., Scheibner, D., Sehl, J., Müller, M., Hoffmann, D., Beer, M., Abdelwhab, E.M., Mettenleiter, T.C., Breithaupt, A., Finke, S.: Light sheet microscopy-assisted 3D analysis of SARSCoV- 2 infection in the respiratory tract of the ferret model. Viruses 13(3), 529 (2021)

[137]

Kim, J.J.H., Parajuli, S., Sinha, A., Mahamdeh, M., van den Boomen, M., Coll-Font, J., Chen, L.S., Fan, Y., Eder, R.A., Phipps, K., Yuan, S., Nguyen, C.: Pocket CLARITY enables distortion-mitigated cardiac microstructural tissue characterization of large-scale specimens. Front. Cardiovasc. Med. 9, 1037500 (2022)

[138]

Theobalt, N., Hofmann, I., Fiedler, S., Renner, S., Dhom, G., Feuchtinger, A., Walch, A., de Hrabĕ Angelis, M., Wolf, E., Wanke, R., Blutke, A.: Unbiased analysis of obesity related, fat depot specific changes of adipocyte volumes and numbers using light sheet fluorescence microscopy. PLoS ONE 16(3), e0248594 (2021)

[139]

Robino, J.J., Pamir, N., Rosario, S., Crawford, L.B., Burwitz, B.J., Roberts, C.T., Jr., Kurre, P., Varlamov, O.: Spatial and biochemical interactions between bone marrow adipose tissue and hematopoietic stem and progenitor cells in rhesus macaques. Bone 133, 115248 (2020)

[140]

Yu, T., Zhu, D.: Strongly absorbing molecules make tissue transparent: a new insight for understanding tissue optical clearing. Light Sci. Appl. 14(1), 10 (2025)

[141]

Schumacher, D., Helma, J., Schneider, A.F.L., Leonhardt, H., Hackenberger, C.P.R.: Nanobodies: chemical functionalization strategies and intracellular applications. Angew. Chem. Int. Ed. Engl. 57(9), 2314–2333 (2018)

[142]

Piña, R., Santos-Díaz, A.I., Orta-Salazar, E., Aguilar-Vazquez, A.R., Mantellero, C.A., Acosta-Galeana, I., Estrada-Mondragon, A., Prior-Gonzalez, M., Martinez-Cruz, J.I., Rosas-Arellano, A.: Ten approaches that improve immunostaining: a review of the latest advances for the optimization of immunofluorescence. Int. J. Mol. Sci. 23(3), 1426 (2022)

[143]

Mino, T., Nonaka, H., Hamachi, I.: Molecular anchoring and fluorescent labeling in animals compatible with tissue clearing for 3D imaging. Curr. Opin. Chem. Biol. 81, 102474 (2024)

[144]

Tamura, I., Sakamoto, D.M., Yi, B., Saito, Y., Yamada, N., Morimoto, J., Takakusagi, Y., Kuroda, M., Kubota, S.I., Yatabe, H., Kobayashi, M., Harada, H., Tainaka, K., Sando, S.: Click3D: click reaction across deep tissues for whole-organ 3D fluorescence imaging. Sci. Adv. 10(29), eado8471 (2024)

[145]

Glaser, A.K., Reder, N.P., Chen, Y., Yin, C., Wei, L., Kang, S., Barner, L.A., Xie, W., McCarty, E.F., Mao, C., Halpern, A.R., Stoltzfus, C.R., Daniels, J.S., Gerner, M.Y., Nicovich, P.R., Vaughan, J.C., True, L.D., Liu, J.T.C.: Multi-immersion open-top light-sheet microscope for high-throughput imaging of cleared tissues. Nat. Commun. 10(1), 2781 (2019)

[146]

Ruan, X., Mueller, M., Liu, G., Görlitz, F., Fu, T.M., Milkie, D.E., Lillvis, J.L., Kuhn, A., Gan Chong, J., Hong, J.L., Herr, C.Y.A., Hercule, W., Nienhaus, M., Killilea, A.N., Betzig, E., Upadhyayula, S.: Image processing tools for petabyte-scale light sheet microscopy data. Nat. Methodsat. Methods 21(12), 2342–2352 (2024)

[147]

Kumari, P., Van Marwick, B., Kern, J., Rädle, M.: A multi-modal light sheet microscope for high-resolution 3D tomographic imaging with enhanced raman scattering and computational denoising. Sensors 25(8), 2386 (2025)

[148]

Zhu, E., Li, Y.R., Margolis, S., Wang, J., Wang, K., Zhang, Y., Wang, S., Park, J., Zheng, C., Yang, L., Chu, A., Zhang, Y., Gao, L., Hsiai, T.K.: Frontiers in artificial intelligence-directed light-sheet microscopy for uncovering biological phenomena and multi-organ imaging. View 5(5), 20230087 (2024)

[149]

Li, C., Rai, M.R., Cai, Y., Ghashghaei, H.T., Greenbaum, A.: Intelligent beam optimization for light-sheet fluorescence microscopy through deep learning. Intell. Comput. 3, 0095 (2024)

[150]

Zhao, Y.J., Yu, T.T., Zhang, C., Li, Z., Luo, Q.M., Xu, T.H., Zhu, D.: Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution. Light Sci. Appl. 7(2), 17153 (2018)

[151]

Li, D., Hu, Z., Zhang, H., Yang, Q., Zhu, L., Liu, Y., Yu, T., Zhu, J., Wu, J., He, J., Fei, P., Xi, W., Qian, J., Zhu, D.: A throughintact-skull (TIS) chronic window technique for cortical structure and function observation in mice. eLight 2(1), 15 (2022)

[152]

Li, D.Y., Xia, Q., Yu, T.T., Zhu, J.T., Zhu, D.: Transmissivedetected laser speckle contrast imaging for blood flow monitoring in thick tissue: from Monte Carlo simulation to experimental demonstration. Light Sci. Appl. 10(1), 241 (2021)

[153]

Liu, Y., Wang, Q., Liu, Y., Wang, Y., Qiu, H., Zhu, D., Gu, Y., Chen, D.: Tissue optical clearing enhances efficacy of vascular targeted photodynamic therapy of mouse dorsal skin. J. Innov. Opt. Health Sci. 17(2), 2350023 (2024)

[154]

Mok, A.T., Wang, T., Zhao, S., Kolkman, K.E., Wu, D., Ouzounov, D.G., Seo, C., Wu, C., Fetcho, J.R., Xu, C.: A large field-of-view, single-cell-resolution two-and three-photon microscope for deep and wide imaging. eLight 4(1), 20 (2024)

[155]

Zhang, M., Li, R., Fu, S., Kumar, S., Mcginty, J., Qin, Y., Chen, L.: Deep learning enhanced light sheet fluorescence microscopy for in vivo 4D imaging of zebrafish heart beating. Light Sci. Appl. 14(1), 92 (2025)

RIGHTS & PERMISSIONS

The Author(s) 2025

AI Summary AI Mindmap
PDF (8485KB)

2842

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/