WGM microprobe device for high-sensitivity ultrasound detection and vibration spectrum measurement

Jialve Sun , Shengnan Huangfu , Tinglan Chen , Zijing Cai , Bowen Ruan , Fangxing Zhang

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (3) : 17

PDF (1611KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (3) : 17 DOI: 10.1007/s12200-025-00161-7
RESEARCH ARTICLE

WGM microprobe device for high-sensitivity ultrasound detection and vibration spectrum measurement

Author information +
History +
PDF (1611KB)

Abstract

Whispering-gallery-mode (WGM) microcavities have emerged as a promising alternative to traditional ultrasound probes, offering high sensitivity and wide bandwidth. In our research, we propose a novel silica WGM microprobe device, with impressive Q factors up to 107. The side-coupled approach and special encapsulation design make the device compact, robust, and capable of utilizing in both gaseous and liquid environments. We have successfully conducted photoacoustic (PA) imaging on various samples using this device which demonstrates a high sensitivity of 5.4 mPa/√Hz and a broad bandwidth of 41 MHz at –6 dB for ultrasound. And it is capable of capturing the vibration spectrum of microparticles up to a few hundred megahertz. Our compact and lightweight device exhibits significant application potential in PA endoscopic detection, nearfield ultrasound sensing and other aspects.

Graphical abstract

Keywords

Whispering-gallery-mode (WGM) microprobe / Ultrasound detection / Photoacoustic imaging / Vibration spectroscopy

Cite this article

Download citation ▾
Jialve Sun, Shengnan Huangfu, Tinglan Chen, Zijing Cai, Bowen Ruan, Fangxing Zhang. WGM microprobe device for high-sensitivity ultrasound detection and vibration spectrum measurement. Front. Optoelectron., 2025, 18(3): 17 DOI:10.1007/s12200-025-00161-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Powers, J., Kremkau, F.: Medical ultrasound systems. Interface Focus 1(4), 477–489 (2011)

[2]

Wells, P.N.T.: Biomedical Ultrasonics. Academic Press (1977)

[3]

Wang, L.V., Yao, J.: A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 13(8), 627–638 (2016)

[4]

Wang, L.V., Hu, S.: Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075), 1458–1462 (2012)

[5]

Shaloo, M., Schnall, M., Klein, T., Huber, N., Reitinger, B.: A review of non-destructive testing (NDT) techniques for defect detection: application to fusion welding and future wire arc additive manufacturing processes. Materials (Basel) 15(10), 3697 (2022)

[6]

Drinkwater, B.W., Wilcox, P.D.: Ultrasonic arrays for non-destructive evaluation: a review. NDT Int. 39(7), 525–541 (2006)

[7]

Li, H., Dong, B., Zhang, Z., Zhang, H.F., Sun, C.: A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci. Rep. 4(1), 4496 (2014)

[8]

Zhang, C., Ling, T., Chen, S.L., Guo, L.J.: Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging. ACS Photonics 1(11), 1093–1098 (2014)

[9]

Westerveld, W.J., Mahmud-Ul-Hasan, M., Shnaiderman, R., Ntziachristos, V., Rottenberg, X., Severi, S., Rochus, V.: Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics. Nat. Photonics 15(5), 341–345 (2021)

[10]

Zhang, E., Laufer, J., Beard, P.: Backward-mode multiwavelength photoacoustic scanner using a planar Fabry–Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl. Opt. 47(4), 561–577 (2008)

[11]

Guggenheim, J.A., Li, J., Allen, T.J., Colchester, R.J., Noimark, S., Ogunlade, O., Parkin, I.P., Papakonstantinou, I., Desjardins, A.E., Zhang, E.Z., Beard, P.C.: Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics 11(11), 714–719 (2017)

[12]

Jathoul, A.P., Laufer, J., Ogunlade, O., Treeby, B., Cox, B., Zhang, E., Johnson, P., Pizzey, A.R., Philip, B., Marafioti, T., Lythgoe, M.F., Pedley, R.B., Pule, M.A., Beard, P.: Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photonics 9(4), 239–246 (2015)

[13]

Hazan, Y., Levi, A., Nagli, M., Rosenthal, A.: Silicon-photonics acoustic detector for optoacoustic micro-tomography. Nat. Commun. 13(1), 1488 (2022)

[14]

Wissmeyer, G., Pleitez, M.A., Rosenthal, A., Ntziachristos, V.: Looking at sound: optoacoustics with all-optical ultrasound detection. Light Sci. Appl. 7(1), 53 (2018)

[15]

Zhang, Z., Dong, B., Li, H., Zhou, F., Zhang, H.F., Sun, C.: Theoretical and experimental studies of distance dependent response of micro-ring resonator-based ultrasonic detectors for photoacoustic microscopy. J. Appl. Phys. 116(14), 144501 (2014)

[16]

Ding, Z., Sun, J., Li, C., Shi, Y.: Broadband ultrasound detection using silicon micro-ring resonators. J. Lightwave Technol. 41(6), 1906–1910 (2023)

[17]

Zhang, C., Chen, S.L., Ling, T., Guo, L.J.: Imprinted polymer microrings as high-performance ultrasound detectors in photoacoustic imaging. J. Lightwave Technol. 33(20), 4318–4328 (2015)

[18]

Li, H., Dong, B., Zhang, X., Shu, X., Chen, X., Hai, R., Czaplewski, D.A., Zhang, H.F., Sun, C.: Disposable ultrasound-sensing chronic cranial window by soft nanoimprinting lithography. Nat. Commun. 10(1), 4277 (2019)

[19]

Tang, S., Zhang, M., Sun, J., Meng, J.W., Xiong, X., Gong, Q., Jin, D., Yang, Q.F., Xiao, Y.: Single-particle photoacoustic vibrational spectroscopy using optical microresonators. Nat. Photonics 17(11), 951–956 (2023)

[20]

Zhao, S., Tao, W., He, Q., Zhao, H., Cao, W.: A non-invasive photoacoustic and ultrasonic method for the measurement of glucose solution concentration. AIP Adv. 7(3), 035313 (2017)

[21]

Tan, T., Yuan, Z., Zhang, H., Yan, G., Zhou, S., An, N., Peng, B., Soavi, G., Rao, Y., Yao, B.: Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun. 12(1), 6716 (2021)

[22]

Guo, Y., Li, Z., An, N., Guo, Y., Wang, Y., Yuan, Y., Zhang, H., Tan, T., Wu, C., Peng, B., Soavi, G., Rao, Y., Yao, B.: A monolithic graphene-functionalized microlaser for multispecies gas detection. Adv. Mater. 34(51), 2207777 (2022)

[23]

Sun, J., Meng, J., Tang, S., Li, C.: An encapsulated optical microsphere sensor for ultrasound detection and photoacoustic imaging. Sci. China Phys. Mech. Astron. 65(2), 224211 (2022)

[24]

Sun, J., Tang, S.J., Meng, J.W., Li, C.: Whispering-gallery optical microprobe for photoacoustic imaging. Photon. Res. 11(11), A65 (2023)

[25]

Kuang, L., Sun, J., Huangfu, S., Chen, T., Cai, Z., Xu, T., Zhang, X., Ni, B., Zhang, F.: Polymer microbottle with flexible tunability for ultrasensitive ultrasound sensing. Sci. China Phys. Mech. Astron. 68(3), 234211 (2025)

[26]

Tayebi, M., O’Rorke, R., Wong, H.C., Low, H.Y., Han, J., Collins, D.J., Ai, Y.: Massively multiplexed submicron particle patterning in acoustically driven oscillating nanocavities. Small 16(17), e2000462 (2020)

[27]

Keshtgar, H., Streib, S., Kamra, A., Blanter, Y.M., Bauer, G.E.W.: Magnetomechanical coupling and ferromagnetic resonance in magnetic nanoparticles. Phys. Rev. B 95(13), 134447 (2017)

[28]

Zinin, P.V., Allen, J.S., III., Levin, V.M.: Mechanical resonances of bacteria cells. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061907 (2005)

[29]

Dykeman, E.C., Sankey, O.F.: Low frequency mechanical modes of viral capsids: an atomistic approach. Phys. Rev. Lett. 100(2), 028101 (2008)

[30]

Sun, J., Hou, F., Feng, S., Li, C.: Integrated optical microrings on fiber facet for broadband ultrasound detection. Adv. Sens. Res. 3, 2400076 (2024)

RIGHTS & PERMISSIONS

The Author(s) 2025

AI Summary AI Mindmap
PDF (1611KB)

1021

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/