Recent advances in monolithic-integrated lead-based optoelectronic devices

Shaoheng Xu , Jiajun Luo , Haisheng Song , Jiang Tang

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (3) : 13

PDF (4475KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (3) : 13 DOI: 10.1007/s12200-025-00158-2
PERSPECTIVE

Recent advances in monolithic-integrated lead-based optoelectronic devices

Author information +
History +
PDF (4475KB)

Abstract

Optoelectronic devices, including light sensors and light-emitting diodes, are indispensable for our daily lives. Lead-based optoelectronic materials, including colloidal quantum dots and lead-halide perovskites, have emerged as promising candidates for the next-generation optoelectronic devices. This is primarily attributed to their tailorable optoelectronic properties, industrialization-compatible manufacturing techniques, seamless integration with silicon technology and excellent device performance. In this perspective, we review recent advancements in lead-based optoelectronic devices, specifically focusing on photodetectors and active displays. By discussing the current challenges and limitations of lead-based optoelectronics, we find the exciting potential of on-chip, in-situ fabrication methods for realizing high-performance optoelectronic systems.

Graphical abstract

Keywords

Monolithic integration / Lead-based optoelectronic devices / Infrared image sensor / Active-matrix display

Cite this article

Download citation ▾
Shaoheng Xu, Jiajun Luo, Haisheng Song, Jiang Tang. Recent advances in monolithic-integrated lead-based optoelectronic devices. Front. Optoelectron., 2025, 18(3): 13 DOI:10.1007/s12200-025-00158-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Forrest, S.R.: Optoelectronic integrated circuits. Proc. IEEE 75 (11), 1488–1497 (1987)

[2]

Liu, Y., Wang, S., Liu, H., Peng, L.M.: Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system. Nat. Commun. 8 (1), 15649 (2017)

[3]

Khan, S., Primavera, B.A., Chiles, J., McCaughan, A.N., Buckley, S.M., Tait, A.N., Lita, A., Biesecker, J., Fox, A., Olaya, D., Mirin, R.P., Nam, S.W., Shainline, J.M.: Superconducting optoelectronic single-photon synapses. Nat. Electron. 5 (10), 650–659 (2022)

[4]

He, T., Ma, H., Wang, Z., Li, Q., Liu, S., Duan, S., Xu, T., Wang, J., Wu, H., Zhong, F., Ye, Y., Wu, J., Lin, S., Zhang, K., Martyniuk, P., Rogalski, A., Wang, P., Li, L., Lin, H., Hu, W.: On-chip optoelectronic logic gates operating in the telecom band. Nat. Photonics 18 (1), 60–67 (2024)

[5]

Park, H., Won, H., Lim, C., Zhang, Y., Han, W.S., Bae, S.B., Lee, C.J., Noh, Y., Lee, J., Lee, J., Jung, S., Choi, M., Lee, S., Park, H.: Layer-resolved release of epitaxial layers in III–V heterostructure via a buffer-free mechanical separation technique. Sci. Adv. 8 (3), eabl6406 (2022)

[6]

Kang, S.K., Shih, D.Y., Bernier, W.E.: Flip-Chip Interconnections: Past, Present, and Future, pp. 85–154. Springer, US (2013)

[7]

Qi, L., Li, P., Zhang, X., Wong, K.M., Lau, K.M.: Monolithic full-color active-matrix micro-LED micro-display using InGaN/AlGaInP heterogeneous integration. Light Sci. Appl. 12 (1), 258 (2023)

[8]

Kum, H., Lee, D., Kong, W., Kim, H., Park, Y., Kim, Y., Baek, Y., Bae, S.H., Lee, K., Kim, J.: Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2 (10), 439–450 (2019)

[9]

Avrillier, C., Metzger, P.: Flip-chip bonding: How to meet high accuracy requirements. In: 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition, pp. 1–6 (2017)

[10]

Jung, Y., Ryu, D., Gim, M., Kim, C., Song, Y., Kim, J., Yoon, J., Lee, C.: Development of next generation flip chip interconnection technology using homogenized laser-assisted bonding. In: IEEE 66th Electronic Components and Technology Conference (ECTC), pp. 88–94 (2016)

[11]

Yang, X., Ma, L., Li, L., Luo, M., Wang, X., Gong, Q., Lu, C., Zhu, R.: Towards micro-PeLED displays. Nat. Rev. Mater. 8 (5), 341–353 (2023)

[12]

Huang, Y., Hsiang, E.L., Deng, M.Y., Wu, S.T.: Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light Sci. Appl. 9 (1), 105 (2020)

[13]

Garcia de Arquer, F.P., Armin, A., Meredith, P., Sargent, E.H.: Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2 (3), 16100 (2017)

[14]

Mitchell, G.R., Goldberg, A.E.: Further evidence for the energy gap of lead sulfide. Phys. Rev. 93 (6), 1421 (1954)

[15]

Li, Y., Zhang, G., Liu, Y., Su, L., Luo, Y., Yang, Y., Qiu, J.: Wafer-scale high-detectivity near-infrared PbS detectors fabricated from vapor phase deposition. J. Phys. Chem. C 127 (22), 10784–10791 (2023)

[16]

Qiu, J., Su, L., McDowell, L.L., Phan, Q., Liu, Y., Zhang, G., Yang, Y., Shi, Z.: High-performance uncooled mid-infrared detector based on a polycrystalline PbSe/CdSe heterojunction. ACS Appl. Mater. Interfaces 15 (20), 24541–24548 (2023)

[17]

Qiu, J., Liu, Y., Zhang, G., Shi, K., Li, Y., Luo, Y.: Modified vapor phase deposition technology for high-performance uncooled MIR PbSe detectors. RSC Adv. 11 (55), 34908–34914 (2021)

[18]

Saran, R., Curry, R.J.: Lead sulphide nanocrystal photodetector technologies. Nat. Photonics 10 (2), 81–92 (2016)

[19]

Yin, X., Zhang, C., Guo, Y., Yang, Y., Xing, Y., Que, W.: PbS QD-based photodetectors: Future-oriented near-infrared detection technology. J. Mater. Chem. C Mater. Opt. Electron. Devices 9 (2), 417–438 (2021)

[20]

Emanuele, M., Zach, M.B., Naveen, K., Andras, G.P.A.: Quantum dot-based image sensors for cutting-edge commercial multispectral cameras. Proc. SPIE 9933, 993304 (2016)

[21]

Zach, M.B., Andras, P.A., Erin, H., Bo, C., Andrey, K., Naveen, K., Edward, H.S.: Design and characterization of 1.1 micron pixel image sensor with high near infrared quantum efficiency. Proc. SPIE 10100, 101001B (2017)

[22]

Zach, M.B., Robin, C., Erin, F.H., Emanuele, M., Jet, M., Jae, P., Andras, P.A., Edward, H.S.: Device design for global shutter operation in a 1.1-µm pixel image sensor and its application to near-infrared sensing. Proc. SPIE 10098, 100981L (2017)

[23]

Pejović V., Georgitzikis, E., Lee, J., Lieberman, I., Cheyns, D., Heremans, P., Malinowski, P.E.: Infrared colloidal quantum dot image sensors. IEEE Trans. Electron Dev. 69 (6), 2840–2850 (2022)

[24]

Pejović V., Lee, J., Georgitzikis, E., Li, Y., Kim, J.H., Lieberman, I., Malinowski, P.E., Heremans, P., Cheyns, D.: Thin-film photodetector optimization for high-performance short-wavelength infrared imaging. IEEE Electron Device Lett. 42 (8), 1196–1199 (2021)

[25]

Kovalenko, M.V., Protesescu, L., Bodnarchuk, M.I.: Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358 (6364), 745–750 (2017)

[26]

Miyata, K., Atallah, T.L., Zhu, X.Y.: Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3 (10), e1701469 (2017)

[27]

Jiang, Q., Zhu, K.: Rapid advances enabling high-performance inverted perovskite solar cells. Nat. Rev. Mater. 9 (6), 399–419 (2024)

[28]

Liu, J., Liu, P., Chen, D., Shi, T., Qu, X., Chen, L., Wu, T., Ke, J., Xiong, K., Li, M., Song, H., Wei, W., Cao, J., Zhang, J., Gao, L., Tang, J.: A near-infrared colloidal quantum dot imager with monolithically integrated readout circuitry. Nat. Electron. 5 (7), 443–451 (2022)

[29]

Liu, J., Liu, P., Shi, T., Ke, M., Xiong, K., Liu, Y., Chen, L., Zhang, L., Liang, X., Li, H., Lu, S., Lan, X., Niu, G., Zhang, J., Fei, P., Gao, L., Tang, J.: Flexible and broadband colloidal quantum dots photodiode array for pixel-level X-ray to near-infrared image fusion. Nat. Commun. 14 (1), 5352 (2023)

[30]

Lee, J., Georgitzikis, E., Hermans, Y., Papadopoulos, N., Chandrasekaran, N., Jin, M., Siddik, A.B., De Roose, F., Uytterhoeven, G., Kim, J.H., Puybaret, R., Li, Y., Pejovic, V., Karve, G., Cheyns, D., Genoe, J., Malinowski, P.E., Heremans, P., Myny, K.: Thin-film image sensors with a pinned photodiode structure. Nat. Electron. 6 (8), 590–598 (2023)

[31]

Tang, J., Kemp, K.W., Hoogland, S., Jeong, K.S., Liu, H., Levina, L., Furukawa, M., Wang, X., Debnath, R., Cha, D., Chou, K.W., Fischer, A., Amassian, A., Asbury, J.B., Sargent, E.H.: Colloidalquantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10 (10), 765–771 (2011)

[32]

Zhang, J., Crisp, R.W., Gao, J., Kroupa, D.M., Beard, M.C., Luther, J.M.: Synthetic conditions for high-accuracy size control of PbS quantum dots. J. Phys. Chem. Lett. 6 (10), 1830–1833 (2015)

[33]

Liu, M., Yazdani, N., Yarema, M., Jansen, M., Wood, V., Sargent, E.H.: Colloidal quantum dot electronics. Nat. Electron. 4 (8), 548–558 (2021)

[34]

Wang, W., Zhang, M., Pan, Z., Biesold, G.M., Liang, S., Rao, H., Lin, Z., Zhong, X.: Colloidal inorganic ligand-capped nanocrystals: Fundamentals, status, and insights into advanced functional nanodevices. Chem. Rev. 122 (3), 4091–4162 (2022)

[35]

Vafaie, M., Fan, J.Z., Morteza Najarian, A., Ouellette, O., Sagar, L.K., Bertens, K., Sun, B., Garcia de Arquer, F.P., Sargent, E.H.: Colloidal quantum dot photodetectors with 10-ns response time and 80% quantum efficiency at 1,550 nm. Matter 4 (3), 1042–1053 (2021)

[36]

Deng, Y.H., Pang, C., Kheradmand, E., Leemans, J., Bai, J., Minjauw, M., Liu, J., Molkens, K., Beeckman, J., Detavernier, C., Geiregat, P., Van Thourhout, D., Hens, Z.: Short-wave infrared colloidal QD photodetector with nanosecond response times enabled by ultrathin absorber layers. Adv. Mater. 36 (28), 2402002 (2024)

[37]

Liu, Y., Liu, J., Deng, C., Wang, B., Xia, B., Liang, X., Yang, Y., Li, S., Wang, X., Li, L., Lan, X., Fei, P., Zhang, J., Gao, L., Tang, J.: Planar cation passivation on colloidal quantum dots enables high-performance 0.35–1.8 µm broadband TFT imager. Adv. Mater. 36 (21), 2313811 (2024)

[38]

Jung, B.K., Kim, W., Oh, S.J.: Stable colloidal quantum dotbased infrared photodiode: multiple passivation strategy. J. Korean Ceram. Soc. 58 (5), 521–529 (2021)

[39]

Ouellette, O., Hossain, N., Sutherland, B.R., Kiani, A., Garcia de Arquer, F.P., Tan, H., Chaker, M., Hoogland, S., Sargent, E.H.: Optical resonance engineering for infrared colloidal quantum dot photovoltaics. ACS Energy Lett. 1 (4), 852–857 (2016)

[40]

Ren, Z., Sun, J., Li, H., Mao, P., Wei, Y., Zhong, X., Hu, J., Yang, S., Wang, J.: Bilayer PbS quantum dots for high-performance photodetectors. Adv. Mater. 29 (33), 1702055 (2017)

[41]

Mu, G., Tan, Y., Bi, C., Liu, Y., Hao, Q., Tang, X.: Visible to mid-wave infrared PbS/HgTe colloidal quantum dot imagers. Nat. Photonics 18 (11), 1147–1154 (2024)

[42]

Isshiki, M., Endo, T., Masumoto, K., Usui, Y.: Epitaxial growth of PbS thin films from aqueous solution. J. Electrochem. Soc. 137 (9), 2697–2700 (1990)

[43]

Gadave, K.M., Jodgudri, S.A., Lokhande, C.D.: Chemical deposition of PbS from an acidic bath. Thin Solid Films 245 (1), 7–9 (1994)

[44]

Johnson, T.H.: Lead salt detectors and arrays PbS and PbSe. Proc. SPIE 0443, 60–94 (1983)

[45]

Feng, X., Li, C., Song, J., He, Y., Qu, W., Li, W., Guo, K., Liu, L., Yang, B., Wei, H.: Differential perovskite hemispherical photodetector for intelligent imaging and location tracking. Nat. Commun. 15 (1), 577 (2024)

[46]

Zhou, Y., Sun, Z., Ding, Y., Yuan, Z., Qiu, X., Cao, Y.B., Wan, Z., Long, Z., Poddar, S., Kumar, S., Ye, W., Chan, C.L.J., Zhang, D., Ren, B., Zhang, Q., Kwok, H.S., Li, M.G., Fan, Z.: An ultrawide field-of-view pinhole compound eye using hemispherical nanowire array for robot vision. Sci. Robot. 9 (90), eadi8666 (2024)

[47]

Gu, L., Poddar, S., Lin, Y., Long, Z., Zhang, D., Zhang, Q., Shu, L., Qiu, X., Kam, M., Javey, A., Fan, Z.: A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581 (7808), 278–282 (2020)

[48]

Phan, H.L., Yi, J., Bae, J., Ko, H., Lee, S., Cho, D., Seo, J.M., Koo, K.i.: Artificial compound eye systems and their application: A review. Micromachines (Basel) 12 (7), 847–875 (2021)

[49]

Grosman, A., Manis Levy, H., Sarsui, G.: The role of traps in dark current and photocurrent of chemical bath deposition grown nano-domains PbS/GaAs heterojunction layers. J. Appl. Phys. 129 (21), 214504 (2021)

[50]

Bernabucci, F., Margaritondo, G., Migliorato, P., Perfetti, P.: Near-IR detection by PbS/GaAs heterojunctions. Phys. Status Solidi A Appl. Res. 15 (2), 621–627 (1973)

[51]

Seghaier, S., Kamoun, N., Brini, R., Amara, A.B.: Structural and optical properties of PbS thin films deposited by chemical bath deposition. Mater. Chem. Phys. 97 (1), 71–80 (2006)

[52]

Zhang, G., Li, Y., Liu, Y., Su, L., Luo, Y., Yang, Y., Qiu, J.: Lead selenide thin films and uncooled midinfrared detectors by vapor phase deposition. J. Phys. Chem. Lett. 13 (48), 11176–11182 (2022)

[53]

Liu, X., Li, J., Wang, X., Yang, D.: Inorganic lead-based halide perovskites: from fundamental properties to photovoltaic applications. Mater. Today 61, 191–217 (2022)

[54]

Gao, Y., Li, H., Dai, X., Ying, X., Liu, Z., Qin, J., Guo, J., Han, Z., Zhang, Y., Zhu, M., Wu, X., Cai, Q., Yang, Y., Feng, L., Zhang, X., Huang, J., He, H., Gao, F., Ye, Z.: Microsecond-response perovskite light-emitting diodes for active-matrix displays. Nat. Electron. 7 (6), 487–496 (2024)

[55]

Bao, C., Yuan, Z., Niu, W., Yang, J., Wang, Z., Yu, T., Wang, J., Gao, F.: A multifunctional display based on photo-responsive perovskite light-emitting diodes. Nat. Electron. 7 (5), 375–382 (2024)

[56]

Fakharuddin, A., Gangishetty, M.K., Abdi-Jalebi, M., Chin, S.H., bin Mohd Yusoff, A.R., Congreve, D.N., Tress, W., Deschler, F., Vasilopoulou, M., Bolink, H.J.: Perovskite light-emitting diodes. Nat. Electron. 5 (4), 203–216 (2022)

[57]

Kim, J.S., Heo, J.M., Park, G.S., Woo, S.J., Cho, C., Yun, H.J., Kim, D.H., Park, J., Lee, S.C., Park, S.H., Yoon, E., Greenham, N.C., Lee, T.W.: Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611 (7937), 688–694 (2022)

[58]

Su, W., Yuan, F.: Perovskite nanocrystal LEDs: Large areas for efficient vivid displays. Matter 5 (8), 2450–2452 (2022)

[59]

Kim, J., Roh, J., Park, M., Lee, C.: Recent advances and challenges of colloidal quantum dot light-emitting diodes for display applications. Adv. Mater. 36 (20), 2212220 (2022)

[60]

Kwon, J.I., Park, G., Lee, G.H., Jang, J.H., Sung, N.J., Kim, S.Y., Yoo, J., Lee, K., Ma, H., Karl, M., Shin, T.J., Song, M.H., Yang, J., Choi, M.K.: Ultrahigh-resolution full-color perovskite nanocrystal patterning for ultrathin skin-attachable displays. Sci. Adv. 8 (43), eadd0697 (2024)

[61]

Li, M., Yang, Y., Kuang, Z., Hao, C., Wang, S., Lu, F., Liu, Z., Liu, J., Zeng, L., Cai, Y., Mao, Y., Guo, J., Tian, H., Xing, G., Cao, Y., Ma, C., Wang, N., Peng, Q., Zhu, L., Huang, W., Wang, J.: Acceleration of radiative recombination for efficient perovskite LEDs. Nature 630 (8017), 631–635 (2024)

[62]

Jiang, Y., Sun, C., Xu, J., Li, S., Cui, M., Fu, X., Liu, Y., Liu, Y., Wan, H., Wei, K., Zhou, T., Zhang, W., Yang, Y., Yang, J., Qin, C., Gao, S., Pan, J., Liu, Y., Hoogland, S., Sargent, E.H., Chen, J., Yuan, M.: Synthesis-on-substrate of quantum dot solids. Nature 612 (7941), 679–684 (2022)

[63]

Lian, Y., Wang, Y., Yuan, Y., Ren, Z., Tang, W., Liu, Z., Xing, S., Ji, K., Yuan, B., Yang, Y., Gao, Y., Zhang, S., Zhou, K., Zhang, G., Stranks, S.D., Zhao, B., Di, D.: Downscaling micro- and nano-perovskite LEDs. Nature 640 (8057), 62–68 (2025)

[64]

Luo, J., Li, J., Grater, L., Guo, R., Mohd Yusoff, A.R., Sargent, E., Tang, J.: Vapour-deposited perovskite light-emitting diodes. Nat. Rev. Mater. 9 (4), 282–294 (2024)

[65]

Danglad-Flores, J., Eickelmann, S., Riegler, H.: Evaporation behavior of a thinning liquid film in a spin coating setup: Comparison between calculation and experiment. Eng. Rep. 3 (9), e12390 (2021)

[66]

Yang, J., Kim, M., Lee, S., Yoon, J.W., Shome, S., Bertens, K., Song, H., Lim, S.G., Oh, J.T., Bae, S.Y., Lee, B.R., Yi, W., Sargent, E.H., Choi, H.: Solvent engineering of colloidal quantum dot inks for scalable fabrication of photovoltaics. ACS Appl. Mater. Interfaces 13 (31), 36992–37003 (2021)

[67]

T. Musalek, P. Liška, A. Morsa, J. A. Arregi, M. Kratochvil, D. Sergeev. Achieving different stoichiometries and morphologies in vapor phase deposition of inorganic halide perovskites: Single or dual precursor sources. arXiv.2409.18294 (2024)

[68]

Li, J., Du, P., Guo, Q., Sun, L., Shen, Z., Zhu, J., Dong, C., Wang, L., Zhang, X., Li, L., Yang, C., Pan, J., Liu, Z., Xia, B., Xiao, Z., Du, J., Song, B., Luo, J., Tang, J.: Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nat. Photonics 17 (5), 435–441 (2023)

[69]

Zhu, J., Li, J., Huang, Y., Liu, N., Sun, L., Shen, Z., Yang, C., Liu, F., Song, B., Luo, J., Tang, J.: All-thermally evaporated blue perovskite light-emitting diodes for active-matrix displays. Small Methods 8 (1), 2300712 (2024)

[70]

Chu, S., Chen, W., Fang, Z., Xiao, X., Liu, Y., Chen, J., Huang, J., Xiao, Z.: Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating. Nat. Commun. 12 (1), 147 (2021)

[71]

Kim, Y.H., Park, J., Kim, S., Kim, J.S., Xu, H., Jeong, S.H., Hu, B., Lee, T.W.: Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nat. Nanotechnol. 17 (6), 590–597 (2022)

[72]

Shi, G., Huang, Z., Qiao, R., Chen, W., Li, Z., Li, Y., Mu, K., Si, T., Xiao, Z.: Manipulating solvent fluidic dynamics for large-area perovskite film-formation and white light-emitting diodes. Nat. Commun. 15 (1), 1066 (2024)

[73]

Huang, X., Wu, B., Zheng, N.: Optimizing solvent chemistry for high-quality halide perovskite films. Acc. Mater. Res. 6 (1), 40–51 (2025)

[74]

Dewi, H.A., Erdenebileg, E., De Luca, D., Mhaisalkar, S.G., Bruno, A.: Accelerated MAPbI3 co-evaporation: Productivity gains without compromising performance. ACS Energy Lett. 9 (9), 4319–4322 (2024)

[75]

Yuan, M., Feng, J., Li, H., Gao, H., Qiu, Y., Jiang, L., Wu, Y.: Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays. Nat. Nanotechnol. 20 (3), 381–387 (2025)

[76]

Zhao, X., Tan, Z.K.: Large-area near-infrared perovskite lightemitting diodes. Nat. Photonics 14 (4), 215–218 (2020)

[77]

Shi, G., Wang, H., Zhang, Y., Cheng, C., Zhai, T., Chen, B., Liu, X., Jono, R., Mao, X., Liu, Y., Zhang, X., Ling, X., Zhang, Y., Meng, X., Chen, Y., Duhm, S., Zhang, L., Li, T., Wang, L., Xiong, S., Sagawa, T., Kubo, T., Segawa, H., Shen, Q., Liu, Z., Ma, W.: The effect of water on colloidal quantum dot solar cells. Nat. Commun. 12 (1), 4381 (2021)

[78]

Zherebetskyy, D., Scheele, M., Zhang, Y., Bronstein, N., Thompson, C., Britt, D., Salmeron, M., Alivisatos, P., Wang, L.W.: Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 344 (6190), 1380–1384 (2014)

[79]

Zhu, H., Teale, S., Lintangpradipto, M.N., Mahesh, S., Chen, B., McGehee, M.D., Sargent, E.H., Bakr, O.M.: Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. 8 (9), 569–586 (2023)

[80]

Emery, Q., Remec, M., Paramasivam, G., Janke, S., Dagar, J., Ulbrich, C., Schlatmann, R., Stannowski, B., Unger, E., Khenkin, M.: Encapsulation and outdoor testing of perovskite solar cells: comparing industrially relevant process with a simplified lab procedure. ACS Appl. Mater. Interfaces 14 (4), 5159–5167 (2022)

[81]

Wang, Y., Ahmad, I., Leung, T., Lin, J., Chen, W., Liu, F., Ng, A.M.C., Zhang, Y., Djurišić A.B.: Encapsulation and stability testing of perovskite solar cells for real life applications. ACS Mater. Au 2 (3), 215–236 (2022)

[82]

Sakhatskyi, K., John, R.A., Guerrero, A., Tsarev, S., Sabisch, S., Das, T., Matt, G.J., Yakunin, S., Cherniukh, I., Kotyrba, M., Berezovska, Y., Bodnarchuk, M.I., Chakraborty, S., Bisquert, J., Kovalenko, M.V.: Assessing the drawbacks and benefits of ion migration in lead halide perovskites. ACS Energy Lett. 7 (10), 3401–3414 (2022)

[83]

Le, Z., Liu, A., Reo, Y., Bai, S., Noh, Y.Y., Zhu, H.: Ion migration in tin-halide perovskites. ACS Energy Lett. 9 (4), 1639–1644 (2024)

[84]

Liu, A., Mukhin, I.S., Islamova, R.M., Tian, J.: Flexible perovskite light-emitting diodes: characteristics and performance. Adv. Funct. Mater. 34 (14), 2312209 (2024)

[85]

Cao, Y.B., Zhang, D., Zhang, Q., Qiu, X., Zhou, Y., Poddar, S., Fu, Y., Zhu, Y., Liao, J.F., Shu, L., Ren, B., Ding, Y., Han, B., He, Z., Kuang, D.B., Wang, K., Zeng, H., Fan, Z.: Highefficiency, flexible and large-area red/green/blue all-inorganic metal halide perovskite quantum wires-based light-emitting diodes. Nat. Commun. 14 (1), 4611 (2023)

[86]

Wang, Y., Liu, Z., Huo, N., Li, F., Gu, M., Ling, X.: Roomtemperature direct synthesis of semi-conductive PbS nanocrystal inks for optoelectronic applications. Nat. Commun. 10 (1), 1–8 (2019)

[87]

Liu, S., Hu, L., Huang, S., Zhang, W., Ma, J., Wang, J., Guan, X., Lin, C.H., Kim, J., Wan, T., Lei, Q., Chu, D., Wu, T.: Enhancing the efficiency and stability of PbS quantum dot solar cells through engineering an ultrathin NiO nanocrystalline interlayer. ACS Appl. Mater. Interfaces 12 (41), 46239–46246 (2020)

[88]

Liu, Y., Ma, T., Wang, C., Yang, Z., Zhao, Y., Wu, Z., Chen, C., Bao, Y., Zhai, Y., Jia, T., Chen, C., Zhao, D., Li, X.: Synergistic immobilization of ions in mixed tin-lead and all-perovskite tandem solar cells. Nat. Commun. 16 (1), 1–10 (2025)

[89]

Chun, F., Wang, F.: Recent advances in perovskite-based flexible electro-luminescent devices. ACS Nano 18 (38), 25939–25965 (2024)

[90]

Liu, C., Zhang, D., Sun, J., Li, D., Xiong, Q., Lyu, B., Guo, W., Choy, W.C.H.: Constructing multi-functional polymeric-termination surface enables high-performance flexible perovskite LEDs. Adv. Funct. Mater. 34 (45), 2404791 (2024)

[91]

Lim, K.G., Han, T.H., Lee, T.W.: Engineering electrodes and metal halide perovskite materials for flexible/stretchable perovskite solar cells and light-emitting diodes. Energy Environ. Sci. 14 (4), 2009–2035 (2021)

[92]

Choi, E.Y., Kim, J.H., Kim, B.J., Jang, J.H., Kim, J., Park, N.: Development of moisture-proof polydimethylsiloxane/aluminum oxide film and stability improvement of perovskite solar cells using the film. RSC Adv. 9 (21), 11737–11744 (2019)

[93]

Emery, Q., Dagault, L., Khenkin, M., Kyranaki, N., de Araujo, W.M.B., Erdil, U., Demuylder, M., Cros, S., Schlatmann, R., Stannowski, B., Ulbrich, C.: Tips and tricks for a good encapsulation for perovskite-based solar cells. Prog. Photovolt. Res. Appl. 33 (4), 551–559 (2025)

[94]

Deng, F., Li, S., Sun, X., Li, H., Tao, X.: Full life-cycle lead management and recycling transparent conductors for lowcost perovskite solar cell. ACS Appl. Mater. Interfaces 14 (46), 52163–52172 (2022)

[95]

Chen, S., Deng, Y., Gu, H., Xu, S., Wang, S., Yu, Z., Blum, V., Huang, J.: Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins. Nat. Energy 5 (12), 1003–1011 (2020)

[96]

Li, Z., Wu, X., Wu, S., Gao, D., Dong, H., Huang, F., Hu, X., Jen, A.K.Y., Zhu, Z.: An effective and economical encapsulation method for trapping lead leakage in rigid and flexible perovskite photovoltaics. Nano Energy 93, 106853 (2022)

[97]

Hu, G., Li, Z., Zou, Q., Zhou, S., Liang, S., Huang, L., Duan, H., Hu, J., Hou, H., Xu, L., Chen, C., Tang, J., Yang, J.: Facile recovery of lead in discarded perovskite solar cells via ultrasonic water leaching. Environ. Sci. Technol. Lett., acs.estlett.4c00735 (2025)

[98]

Xiao, X., Xu, N., Tian, X., Zhang, T., Wang, B., Wang, X., Xian, Y., Lu, C., Ou, X., Yan, Y., Sun, L., You, F., Gao, F.: Aqueousbased recycling of perovskite photovoltaics. Nature 638 (8051), 670–675 (2025)

[99]

Leng, K., Fu, W., Liu, Y., Chhowalla, M., Loh, K.P.: From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 5 (7), 482–500 (2020)

[100]

Wang, Y., Peng, L., Schreier, J., Bi, Y., Black, A., Malla, A., Goossens, S., Konstantatos, G.: Silver telluride colloidal quantum dot infrared photodetectors and image sensors. Nat. Photonics 18 (3), 236–242 (2024)

[101]

Shen, Y., Yin, J., Cai, B., Wang, Z., Dong, Y., Xu, X., Zeng, H.: Lead-free, stable, high-efficiency (52%) blue luminescent FA3Bi2Br9 perovskite quantum dots. Nanoscale Horiz. 5 (3), 580–585 (2020)

RIGHTS & PERMISSIONS

The Author(s) 2025

AI Summary AI Mindmap
PDF (4475KB)

597

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/