Sleep is a therapeutic window for photostimulation of drainage of aging brain

Terskov Andrey , Adushkina Viktoria , Shirokov Alexander , Navolokin Nikita , Blokhina Inna , Zlatogorskaya Daria , Semiachkina-Glushkovskaia Anastasiia , Konstancia Sonina , Evsyukova Arina , Elizarova Inna , Tuzhilkin Matvey , Dmitrenko Alexander , Dubrovsky Alexander , Myagkov Dmitry , Popov Sergey , Tuktarov Dmitry , Ilyukov Egor , Tzoy Maria , Fedosov Ivan , Semyachkina-Glushkovskaya Oxana

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (4) : 22

PDF (3793KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (4) : 22 DOI: 10.1007/s12200-025-00168-0
RESEARCH ARTICLE

Sleep is a therapeutic window for photostimulation of drainage of aging brain

Author information +
History +
PDF (3793KB)

Abstract

Age is a limiting factor in the efficacy of photobiomodulation (PBM) for brain drainage and cognitive functions. Meningeal lymphatic vessels (MLVs) are "tunnels" for removal of toxins from the brain and the target of PBM. Age-related decline in the MLV functions is one of the mechanisms by which the effects of PBM on brain drainage and cognitive process are limited. Sleep is a time of natural activation of brain drainage. Recent findings have shown that PBM during sleep has greater effects on lymphatic clearance of beta-amyloid and cognitive function in young and middle-age mice. Based on these data, this study tested the hypothesis that sleep enhances the effects of PBM on MLVs and cognitive function in the aging brain. Indeed, the results revealed that PBM during sleep, but not during wakefulness, has stimulatory effects on lymphatic clearance of beta-amyloid from the brain of old mice that improves memory. In sleep deficit experiments, it was found that chronic sleep deprivation is accompanied by suppression of brain drainage and removal of metabolites from the brain, such as beta-amyloid, tau, glutamate, lactate and glucose in young, middle-aged and most significantly in old mice. The course of PBM during sleep contributed better than in wakefulness to the restoration of the brain level of tested metabolites in young and middle-aged mice, while in old mice only PBM during sleep was effective. These results open a new strategy for the use of PBM during sleep to improve the efficacy of PBM on clearance of toxic metabolites from the brain, especially in aged subjects in whom the efficacy of PBM during wakefulness is limited.

Graphical abstract

Keywords

Photobiomodulation / Aging brain / Meningeal lymphatic vessels / Sleep / Brain drainage / Cognitive function

Cite this article

Download citation ▾
Terskov Andrey, Adushkina Viktoria, Shirokov Alexander, Navolokin Nikita, Blokhina Inna, Zlatogorskaya Daria, Semiachkina-Glushkovskaia Anastasiia, Konstancia Sonina, Evsyukova Arina, Elizarova Inna, Tuzhilkin Matvey, Dmitrenko Alexander, Dubrovsky Alexander, Myagkov Dmitry, Popov Sergey, Tuktarov Dmitry, Ilyukov Egor, Tzoy Maria, Fedosov Ivan, Semyachkina-Glushkovskaya Oxana. Sleep is a therapeutic window for photostimulation of drainage of aging brain. Front. Optoelectron., 2025, 18(4): 22 DOI:10.1007/s12200-025-00168-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dominguez, L.J. , Veronese, N. , Vernuccio, L. , Catanese, G. , Inzerillo, F. , Salemi, G. , Barbagallo, M. : Nutrition physical activity, and other lifestyle factors in the prevention of cognitive decline and dementia. Nutrients 13 (11), 4080 (2021)

[2]

Hou, Y. , Dan, X. , Babbar, M. , Wei, Y. , Hasselbalch, S.G. , Croteau, D.L. , Bohr, V.A. : Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15 (10), 565- 581 (2019)

[3]

Grady, C. : The cognitive neuroscience of ageing. Nat. Rev. Neurosci. 13 (7), 491- 505 (2012)

[4]

World Health Organization : Ageing. Available at the website of who.int/health-topics/ageing#tab=tab_1. Accessed 5 May 2025 (2025).

[5]

Pignolo, R.J. : Exceptional human longevity. Mayo Clin. Proc. 94 (1), 110- 124 (2019)

[6]

Luo, G. , Zhang, J. , Song, Z. , Wang, Y. , Wang, X. , Qu, H. , Wang, F. , Liu, C. , Gao, F. : Effectiveness of non-pharmacological therapies on cognitive function in patients with dementia—a network meta-analysis of randomized controlled trials. Front. Aging Neurosci. 15 (2), e1131744 (2023)

[7]

Seibert, M. , Mühlbauer, V. , Holbrook, J. , Voigt-Radloff, S. , Brefka, S. , Dallmeier, D. , Denkinger, M. , Schönfeldt-Lecuona, C. , Klöppel, S. , von Arnim, C.A.F. : Efficacy and safety of pharmacotherapy for Alzheimer's disease and for behavioural and psychological symptoms of dementia in older patients with moderate and severe functional impairments: a systematic review of controlled trials. Alzheimers Res. Ther. 13 (1), 131 (2021)

[8]

Konrat, C. , Boutron, I. , Trinquart, L. , Auleley, G.R. , Ricordeau, P. , Ravaud, P. : Underrepresentation of elderly people in randomised controlled trials. The example of trials of 4 widely prescribed drugs. PLoS ONE 7 (3), e33559 (2012)

[9]

Leinonen, A. , Koponen, M. , Hartikainen, S. : Systematic review: representativeness of participants in RCTs of acetylcholinesterase inhibitors. PLoS ONE 10 (5), e0124500 (2015)

[10]

Schoenmaker, N. , Van Gool, W. : The age gap between patients in clinical studies and in the general population: a pitfall for dementia research. Lancet Neurol. 3 (10), 627- 630 (2004)

[11]

International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. ICH harmonised tripartite Guideline. Studies in support of special populations: Geriatrics E7. 1993. Available at the website of ich. org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Effic acy/E7/Step4/E7_Guideline.pdf. Accessed 8 May 2025 (2025)

[12]

European medicines agency, committee for medicinal products for human use: reflection paper on physical frailty: instruments for baseline characterisation of older populations in clinical trials. 2018. Available at the website of ema.europa.eu/docum ents/scientific-guideline/reflection-paperphysical-frailty-instr uments-baseline-characterisation-older-populationsclinical_en. pdf. Accessed 8 May 2025 (2025)

[13]

Singh, S. , Bajorek, B. : Defining 'elderly' in clinical practice guidelines for pharmacotherapy. Pharm. Pract. (Granada) 12 (4), 489 (2014)

[14]

Kroger, E. , Mouls, M. , Wilchesky, M. , Berkers, M. , Carmichael, P.H. , van Marum, R. , Souverein, P. , Egberts, T. , Laroche, M.L. : Adverse drug reactions reported with cholinesterase inhibitors: an analysis of 16 years of individual case safety reports from VigiBase. Ann. Pharmacother. 49 (11), 1197- 1206 (2015)

[15]

Turnheim, K. : When drug therapy gets old: pharmacokinetics and pharmacodynamics in the elderly. Exp. Gerontol. 38 (8), 843- 853 (2003)

[16]

Kim, I.H. , Kisseleva, T. , Brenner, D.A. : Aging and liver disease. Curr. Opin. Gastroenterol. 31 (3), 184- 191 (2015)

[17]

American Geriatrics Society Beers Criteria® Update Expert Panel : American Geriatrics Society 2019 updated AGS Beers Criteria® for potentially inappropriate medication use in older adults. J. Am. Geriatr. Soc. 67 (4), 674- 694 (2019)

[18]

Hecker, M. , Frahm, N. , Bachmann, P. , Debus, J.L. , Haker, M.C. , Mashhadiakbar, P. , Langhorst, S.E. , Baldt, J. , Streckenbach, B. , Heidler, F. , Zettl, U.K. : Screening for severe drug-drug interactions in patients with multiple sclerosis: a comparison of three drug interaction databases. Front. Pharmacol. 13 (5), 946351 (2022)

[19]

Su, D. , Su, Y. , Xu, B. , Chhetri, J.K. , Chan, P. : Age as a risk factor for orthostatic hypotension induced by the levodopa challenge test in patients with Parkinson's disease: results from a singlecenter trial. Medicine (Baltimore) 102 (9), e33161 (2023)

[20]

Peretz, C. , Chillag-Talmor, O. , Linn, S. , Gurevich, T. , El-Ad, B. , Silverman, B. , Friedman, N. , Giladi, N. : Parkinson's disease patients first treated at age 75 years or older: a comparative study. Parkinsonism Relat. Disord. 20 (1), 69- 74 (2014)

[21]

Nagayama, H. , Ueda, M. , Kumagai, T. , Tsukamoto, K. , Nishiyama, Y. , Nishimura, S. , Hamamoto, M. , Katayama, Y. : Influence of ageing on the pharmacokinetics of levodopa in elderly patients with Parkinson's disease. Parkinsonism Relat. Disord. 17 (3), 150e2 (2011)

[22]

Rodríguez-Fernández, L. , Zorzo, C. , Arias, J.L. : Photobiomodulation in the aging brain: a systematic review from animal models to humans. Geroscience 46 (6), 6583- 6623 (2024)

[23]

Godaert, L. , Dramé M. : Efficacy of photobiomodulation therapy in older adults: a systematic review. Biomedicines 12 (7), 1409 (2024)

[24]

Gao, Y. , An, R. , Huang, X. , Liu, W. , Yang, C. , Wan, Q. : Effectiveness of photobiomodulation for people with age-related cognitive impairment: a systematic review and meta-analysis. Lasers Med. Sci. 38 (1), 237 (2023)

[25]

Cardoso, F.D.S. , Gonzalez-Lima, F. , Gomes da Silva, S. : Photobiomodulation for the aging brain. Ageing Res. Rev. 70, 101415 (2021)

[26]

Qu, X. , Li, L. , Zhou, X. , Dong, Q. , Liu, H. , Liu, H. , Yang, Q. , Han, Y. , Niu, H. : Repeated transcranial photobiomodulation improves working memory of healthy older adults: behavioral outcomes of poststimulation including a three-week follow up. Neurophotonics 9 (3), 35005 (2022)

[27]

Terskov, A. , Alexander, S. , Inna, B. , Zlatogorskaya, D. , Adushkina, V. , Semiachkina-Glushkovskaia, A. , Atul, K. , Fedosov, I. , Evsukova, A. , Semyachkina-Glushkovskaya, O. : Age as a limiting factor for effectiveness of photostimulation of brain drainage and cognitive functions. Front. Optoelectron. 31 (3), 6 (2025)

[28]

Blivet, G. , Relano-Gines, A. , Wachtel, M. , Touchon, J. : A randomized, double-blind, and sham-controlled trial of an innovative brain-gut photobiomodulation therapy: safety and patient compliance. J. Alzheimers Dis. 90 (2), 811- 822 (2022)

[29]

29 Herkes, G. , McGee, C. , Liebert, A. , Bicknell, B. , Isaac, V. , Kiat, H. , McLachlan, C.S. : A novel transcranial photobiomodulation device to address motor signs of Parkinson's disease: a parallel randomised feasibility study. EClinicalMedicine 66 (1), 102338 (2023)

[30]

Bullock-Saxton, J. , Lehn, A. , Laakso, E.L. : Exploring the effect of combined transcranial and intra-oral photobiomodulation therapy over a four-week period on physical and cognitive outcome measures for people with Parkinson's disease: a randomized double-blind placebo-controlled pilot study. J. Alzheimers Dis. 83 (4), 1499- 1512 (2021)

[31]

Lee, T.L. , Chan, A.S. : Photobiomodulation may enhance cognitive efficiency in older adults: a functional near-infrared spectroscopy study. Front. Aging Neurosci. 20 (6), 1- 10 (2023)

[32]

Cardoso, F.S. , Claudino, J.C. , Gonzalez-Lima, F. , Araújo, B.S. , Lopes-Martins, R.B. , Gomes, S. : Effects of chronic photobiomodulation with transcranial near-infrared laser on brain metabolomics of young and aged rats. Mol. Neurobiol. 58 (5), 2256- 2268 (2021)

[33]

Hosseini, L. , Farazi, N. , Erfani, M. , Mahmoudi, J. , Akbari, M. , Hosseini, S.H. , Sadigh-Eteghad, S. : Effect of transcranial near-infrared photobiomodulation on cognitive outcomes in D-galactose/AlCl(3) induced brain aging in BALB/c mice. Lasers Med. Sci. 37 (3), 1787- 1798 (2022)

[34]

Sipion, M. , Ferreira, M.F. , Scholler, J. , Brana, C. , Gora, M. , Kouvas, G. , Barthet, G. , Sobolewski, A. : A randomized, blinded study of photobiomodulation in a mouse model of Alzheimer's disease showed no preventive effect. Sci. Rep. 13 (1), 1- 10 (2023)

[35]

Buendía, D. , Guncay, T. , Oyanedel, M. , Lemus, M. , Weinstein, A. , Ardiles, A.O. , Marcos, J. , Fernandes, A. , Zangaro, R. , Munoz, P. : The transcranial light therapy improves synaptic plasticity in the Alzheimer's disease mouse model. Brain Sci. 12 (10), 1272 (2022)

[36]

Lutfy, R.H. , Essawy, A.E. , Mohammed, H.S. , Shakweer, M.M. , Salam, S.A. : Transcranial irradiation mitigates paradoxical sleep deprivation effect in an age-dependent manner: role of BDNF and GLP-1. Neurochem. Res. 49 (4), 919- 934 (2024)

[37]

Da Mesquita, S. , Louveau, A. , Vaccari, A. , Smirnov, I. , Cornelison, R.C. , Kingsmore, K.M. , Contarino, C. , Onengut-Gumuscu, S. , Farber, E. , Raper, D. , Viar, K.E. , Powell, R.D. , Baker, W. , Dabhi, N. , Bai, R. , Cao, R. , Hu, S. , Rich, S.S. , Munson, J.M. , Lopes, M.B. , Overall, C.C. , Acton, S.T. , Kipnis, J. : Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature 560 (7717), 185- 191 (2018)

[38]

Semyachkina-Glushkovskaya, O. , Shirokov, A. , Blokhina, I. , Fedosov, I. , Terskov, A. , Dubrovsky, A. , Tsoy, M. , Zlatogosrskaya, D. , Adushkina, V. , Evsukova, A. , Telnova, V. , Tzven, A. , Krupnova, V. , Manzhaeva, M. , Dmitrenko, A. , Penzel, T. , Kurths, J. : Mechanisms of phototherapy of Alzheimer's disease during sleep and wakefulness: the role of the meningeal lymphatics. Front. Optoelectron. 16 (11), 22 (2023)

[39]

Li, D. , Lin, H. , Sun, S. , Liu, S. , Liu, Z. , He, Y. , Zhu, J. , Xu, J. , Semyachkina-Glushkovskaya, O. , Yu, T. , Zhu, D. : Photostimulation of lymphatic clearance of β- amyloid from mouse brain: new strategy for the therapy of Alzheimer's disease. Front. Optoelectron. 16 (1), 45 (2023)

[40]

Li, D. , Liu, S. , Yu, T. , Liu, Z. , Sun, S. , Bragin, D. , Shirokov, A. , Navolokin, N. , Bragina, O. , Hu, Z. , Kurths, J. , Fedosov, I. , Blokhina, I. , Dubrovski, A. , Khorovodov, A. , Terskov, A. , Tzoy, M. , Semyachkina-Glushkovskaya, O. , Zhu, D. : Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage. Nat. Commun. 14 (1), 6104 (2023)

[41]

Blokina, I. , Iluykov, E. , Myagkov, D. , Tuktarov, D. , Popov, S. , Inozemzev, T. , Fedosov, I. , Shirokov, A. , Terskov, A. , Dmitrenko, A. , Evsyukova, A. , Zlatogorskaya, D. , Adushkina, V. , Tuzhilkin, M. , Manzhaeva, M. , Krupnova, V. , Dubrovsky, A. , Elizarova, I. , Tzoy, M. , Semyachkina-Glushkovskaya, O. : Photobiomodulation under electroencephalographic controls of sleep for stimulation of lymphatic removal of toxins from mouse brain. J. Vis. Exp. 28 (208), e67035 (2024)

[42]

Semyachkina-Glushkovskaya, O. , Fedosov, I. , Zaikin, A. , Ageev, V. , Ilyukov, E. , Myagkov, D. , Tuktarov, D. , Blokhina, I. , Shirokov, A. , Terskov, A. , Zlatogorskaya, D. , Adushkina, V. , Evsukova, A. , Dubrovsky, A. , Tsoy, M. , Telnova, V. , Manzhaeva, M. , Dmitrenko, A. , Krupnova, V. , Kurths, J. : Technology of the photobiostimulation of the brain's drainage system during sleep for improvement of learning and memory in male mice. Biomed. Opt. Express 15 (1), 44- 58 (2024)

[43]

43 Liu, S. , Li, D. , Yu, T. , Zhu, J. , Semyachkina-Glushkovskaya, O. , Zhu, D. : Transcranial photobiomodulation improves insulin therapy in diabetic mice: modulation of microglia and the brain drainage system. Commun Biol. 6 (1), 1239 (2023)

[44]

Xie, L. , Kang, H. , Xu, Q. , Chen, M.J. , Liao, Y. , Thiyagarajan, M. , O'Donnell, J. , Christensen, D.J. , Nicholson, C. , Iliff, J.J. , Takano, T. , Deane, R. , Nedergaard, M. : Sleep drives metabolite clearance from the adult brain. Science 342 (6156), 373- 377 (2013)

[45]

Fultz, N.E. , Bonmassar, G. , Setsompop, K. , Stickgold, R.A. , Rosen, B.R. , Polimeni, J.R. , Lewis, L.D. : Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366 (6465), 628- 631 (2019)

[46]

Semyachkina-Glushkovskaya, O. , Postnov, D. , Penzel, T. , Kurths, J. : Sleep as a novel biomarker and a promising therapeutic target for cerebral small vessel disease: a review focusing on Alzheimer's disease and the blood-brain barrier. Int. J. Mol. Sci. 21 (17), 6293 (2020)

[47]

Semyachkina-Glushkovskaya, O. , Fedosov, I. , Penzel, T. , Li, D. , Yu, T. , Telnova, V. , Kaybeleva, E. , Saranceva, E. , Terskov, A. , Khorovodov, A. , Blokhina, I. , Kurths, J. , Zhu, D. : Brain waste removal system and sleep: photobiomodulation as an innovative strategy for night therapy of brain diseases. Int. J. Mol. Sci. 24 (4), 3221 (2023)

[48]

Postnov, D. , Semyachkina-Glushkovskaya, O. , Litvinenko, E. , Kurths, J. , Penzel, T. : Mechanisms of activation of brain's drainage during sleep: the nightlife of astrocytes. Cells 12 (22), 2667 (2023)

[49]

Dutta, S. , Sengupta, P. : Men and mice: relating their ages. Life Sci. 152 (1), 244- 248 (2016)

[50]

McWain, M.A. , Pace, R.L. , Nalan, P.A. , Lester, D.B. : Age dependent effects of social isolation on mesolimbic dopamine release. Exp. Brain Res. 240 (10), 2803- 2815 (2022)

[51]

Devos, S.L. , Miller, T.M. : Direct intraventricular delivery of drugs to the rodent central nervous system. J. Vis. Exp. 12, e50326 (2013)

[52]

Schindelin, J. , Arganda-Carreras, I. , Frise, E. , Kaynig, V. , Longair, M. , Pietzsch, T. , Preibisch, S. , Rueden, C. , Saalfeld, S. , Schmid, B. , Tinevez, J.Y. , White, D.J. , Hartenstein, V. , Eliceiri, K. , Tomancak, P. , Cardona, A. : Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 (7), 676- 682 (2012)

[53]

Semyachkina-Glushkovskaya, O.V. , Karavaev, A.S. , Prokhorov, M.D. , Runnova, A.E. , Borovkova, E.I. , Ishbulatov, Yu.M. , Hramkov, A.N. , Kulminskiy, D.D. , Semenova, N.I. , Sergeev, K.S. , Slepnev, A.V. , Sitnikova, EYu. , Zhuravlev, M.O. , Fedosov, I.V. , Shirokov, A.A. , Blokhina, I.A. , Dubrovski, A.I. , Terskov, A.V. , Khorovodov, A.P. , Ageev, V.B. , Elovenko, D.A. , Evsukova, A.S. , Adushkina, V.V. , Telnova, V.V. , Postnov, D.E. , Penzel, T. , Kurths, J. : EEG biomarkers of activation of the lymphatic drainage system of the brain during sleep and opening of the bloodbrain barrier. Computational Struct. Biotechnol. 21, 758- 768 (2023)

[54]

Holtmaat, A. , Bonhoeffer, T. , Chow, D.K. , Chuckowree, J. , De Paola, V. , Hofer, S.B. , Hübener, M. , Keck, T. , Knott, G. , Lee, W.C. , Mostany, R. , Mrsic-Flogel, T.D. , Nedivi, E. , Portera-Cailliau, C. , Svoboda, K. , Trachtenberg, J.T. , Wilbrecht, L. : Longterm, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4 (8), 1128- 1144 (2009)

[55]

Hablitz, L.M. , Vinitsky, H.S. , Sun, Q. , Staeger, F.F. , Sigurdsson, B. , Mortensen, K.N. , Lilius, T.O. , Nedergaard, M. : Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci. Adv. 5 (2), eaav5447 (2019)

[56]

Zhang, J. , Zhu, Y. , Zhan, G. , Fenik, P. , Panossian, L. , Wang, M.M. , Reid, S. , Lai, D. , Davis, J.G. , Baur, J.A. , Veasey, S. : Extended wakefulness: compromised metabolics in and degeneration of locus ceruleus neurons. J. Neurosci. 34 (12), 4418- 4431 (2014)

[57]

Achariyar, T.M. , Li, B. , Peng, W. , Verghese, P.B. , Shi, Y. , McConnell, E. , Benraiss, A. , Kasper, T. , Song, W. , Takano, T. , Holtzman, D.M. , Nedergaard, M. , Deane, R. : Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol. Neurodegener. 11 (1), 74 (2016)

[58]

Oh, H.J. , Song, M. , Kim, Y.K. , Bae, J.R. , Cha, S.Y. , Bae, J.Y. , Kim, Y. , You, M. , Lee, Y. , Shim, J. , Maeng, S. : Age-related decrease in stress responsiveness and proactive coping in male mice. Front. Aging Neurosci. 10, 128 (2018)

[59]

Kim, S. , Foong, D. , Cooper, M.S. , Seibel, M.J. , Zhou, H. : Comparison of blood sampling methods for plasma corticosterone measurements in mice associated with minimal stressrelated artefacts. Steroids 135, 69- 72 (2018)

[60]

Iber, C. : The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. 1st ed. American Academy of Sleep Medicine. (2007)

[61]

Semyachkina-Glushkovskaya, O. , Penzel, T. , Blokhina, I. , Khorovodov, A. , Fedosov, I. , Yu, T. , Karandin, G. , Evsukova, A. , Elovenko, D. , Adushkina, V. , Shirokov, A. , Dubrovskii, A. , Terskov, A. , Navolokin, N. , Tzoy, M. , Ageev, V. , Agranovich, I. , Telnova, V. , Tsven, A. , Kurths, J. : Night photostimulation of clearance of beta-amyloid from mouse brain: new strategies in preventing Alzheimer's disease. Cells 10 (12), 3289 (2021)

[62]

Jakubcakova, V. , Flachskamm, C. , Landgraf, R. , Kimura, M. : Sleep phenotyping in a mouse model of extreme trait anxiety. PLoS ONE 7 (7), e40625 (2012)

[63]

Lampert, T. , Plano, A. , Austin, J. , Platt, B. : On the identification of sleep stages in mouse electroencephalography timeseries. J. Neurosci. Methods 246, 52- 64 (2015)

[64]

Mang, G. , Franken, P. : Sleep and EEG phenotyping in mice. Curr. Protoc. Mouse Biol. 2 (1), 55- 74 (2012)

[65]

Lederle, L. , Weber, S. , Wright, T. , Feyder, M. , Brigman, J.L. , Crombag, H.S. , Saksida, L.M. , Bussey, T.J. , Holmes, A. : Reward-related behavioral paradigms for addiction research in the mouse: performance of common inbred strains. PLoS ONE 6 (1), e15536 (2011)

[66]

Shirokov, A. , Zlatogosrkaya, D. , Adushkina, V. , Vodovozova, E. , Kardashevskaya, K. , Sultanov, R. , Kasyanov, S. , Blokhina, I. , Terskov, A. , Tzoy, M. , Evsyukova, A. , Dubrovsky, A. , Tuzhilkin, M. , Elezarova, I. , Dmitrenko, A. , Manzhaeva, M. , Krupnova, V. , Semiachkina-Glushkovskaia, A. , Ilyukov, E. , Myagkov, D. , Tuktarov, D. , Popov, S. , Inozemzev, T. , Navolokin, N. , Fedosov, I. , Semyachkina-Glushkovskaya, O. : Plasmalogens improve lymphatic clearance of amyloid beta from mouse brain and cognitive functions. Int. J. Mol. Sci. 25 (23), 12552 (2024)

[67]

MLA style: Ivan Pavlov - Biographical. NobelPrize.org. Nobel Prize Outreach 2025. Available at the website of nobelprize. org/prizes/medicine/1904/pavlov/biographica. Accessed 26 Jul 2025 (2025)

[68]

Pavlov, P.I. : Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Ann. Neurosci. 17 (3), 136- 141 (2010)

[69]

Dudai, Y. , Karni, A. , Born, J. : The consolidation and transformation of memory. Neuron 88 (1), 20- 32 (2015)

[70]

Squire, L.R. , Genzel, L. , Wixted, J.T. , Morris, R.G. : Memory consolidation. Cold Spring Harb. Perspect. Biol. 7 (8), a021766 (2015)

[71]

Harnett, A. , Knight, N. : Pavlovian conditioned diminution of the neurobehavioral response to threat. Neurosci. Biobehav. Rev. 84, 218- 224 (2018)

[72]

Oniani, T.N. , Lortkipanidze, N.D. : Some aspects of conditioned reflex activity during sleep. Acta Neurobiol. Exp. (Warsz.) 44, 187- 203 (1994)

[73]

Baerends, E. , Soud, K. , Folke, J. , Pedersen, A.K. , Henmar, S. , Konrad, L. , Lycas, M.D. , Mori, Y. , Pakkenberg, B. , Woldbye, D. , Dmytriyeva, O. , Pankratova, S. : Modeling the early stages of Alzheimer's disease by administering intracerebroventricular injections of human native Aβ oligomers to rats. Acta Neuropathol. Commun. 10 (1), 113 (2022)

[74]

Ahn, J.H. , Cho, H. , Kim, J.H. , Kim, S.H. , Ham, J.S. , Park, I. , Suh, S.H. , Hong, S.P. , Song, J.H. , Hong, Y.K. , Jeong, Y. , Park, S.H. , Koh, G.Y. : Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572 (7767), 62- 66 (2019)

[75]

Sabine, A. , Agalarov, Y. , Maby-El Hajjami, H. , Jaquet, M. , Hägerling, R. , Pollmann, C. , Bebber, D. , Pfenniger, A. , Miura, N. , Dormond, O. , Calmes, J.M. , Adams, R.H. , Mäkinen, T. , Kiefer, F. , Kwak, B.R. , Petrova, T.V. : Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev. Cell 22 (2), 430- 445 (2012)

[76]

Sweet, D.T. , Jiménez, J.M. , Chang, J. , Hess, P.R. , Mericko-Ishizuka, P. , Fu, J. , Xia, L. , Davies, P.F. , Kahn, M.L. : Lymph flow regulates collecting lymphatic vessel maturation in vivo. J. Clin. Invest. 125 (8), 2995- 3007 (2015)

[77]

Sabine, A. , Bovay, E. , Demir, C.S. , Kimura, W. , Jaquet, M. , Agalarov, Y. , Zangger, N. , Scallan, J.P. , Graber, W. , Gulpinar, E. , Kwak, B.R. , Mäkinen, T. , Martinez-Corral, I. , Ortega, S. , Delorenzi, M. , Kiefer, F. , Davis, M.J. , Djonov, V. , Miura, N. , Petrova, T.V. : FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. J. Clin. Invest. 125 (10), 3861- 3877 (2015)

[78]

Cho, H. , Kim, J. , Ahn, J.H. , Hong, Y.K. , Mäkinen, T. , Lim, D.S. , Koh, G.Y. : YAP and TAZ negatively regulate Prox1 during developmental and pathologic lymphangiogenesis. Circ. Res. 124 (2), 225- 242 (2019)

[79]

Dupont, G. , Iwanaga, J. , Yilmaz, E. , Tubbs, R.S. : Connections between amyloid beta and the meningeal lymphatics as a possible route for clearance and therapeutics. Lymphat. Res. Biol. 18 (1), 2- 6 (2020)

[80]

Guo, X. , Zhang, G. , Peng, Q. , Huang, L. , Zhang, Z. , Zhang, Z. : Emerging roles of meningeal lymphatic vessels in Alzheimer's disease. J. Alzheimers Dis. 94 (s1), S355- S366 (2023)

[81]

Da Mesquita, S. , Papadopoulos, Z. , Dykstra, T. , Brase, L. , Farias, F.G. , Wall, M. , Jiang, H. , Kodira, C.D. , de Lima, K.A. , Herz, J. , Louveau, A. , Goldman, D.H. , Salvador, A.F. , Onengut-Gumuscu, S. , Farber, E. , Dabhi, N. , Kennedy, T. , Milam, M.G. , Baker, W. , Smirnov, I. , Rich, S.S. , Benitez, B.A. , Karch, C.M. , Perrin, R.J. , Farlow, M. , Chhatwal, J.P. , Holtzman, D.M. , Cruchaga, C. , Harari, O. , Kipnis, J. : Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature 593 (7858), 255- 260 (2021)

[82]

Graham, M. , Mellinghoff, I. : Meningeal lymphatics prime tumor immunity in glioblastoma. Cancer Cell 39 (3), 304- 306 (2021)

[83]

Li, X. , Qi, L. , Yang, D. , Hao, S.J. , Zhang, F. , Zhu, X. , Sun, Y. , Chen, C. , Ye, J. , Yang, J. , Zhao, L. , Altmann, D.M. , Cao, S. , Wang, H. , Wei, B. : Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. Nat. Neurosci. 25 (5), 577- 587 (2022)

[84]

Lan, Y. , Wang, H. , Chen, A. , Zhang, J. : Update on the current knowledge of lymphatic drainage system and its emerging roles in glioma management. Immunology 168 (2), 233- 247 (2023)

[85]

Liu, X. , Gao, C. , Yuan, J. , Xiang, T. , Gong, Z. , Luo, H. , Jiang, W. , Song, Y. , Huang, J. , Quan, W. , Wang, D. , Tian, Y. , Ge, X. , Lei, P. , Zhang, J. , Jiang, R. : Subdural haematomas drain into the extracranial lymphatic system through the meningeal lymphatic vessels. Acta Neuropathol. Commun. 8 (1), 16 (2020)

[86]

Bolte, A.C. , Dutta, A.B. , Hurt, M.E. , Smirnov, I. , Kovacs, M.A. , McKee, C.A. , Ennerfelt, H.E. , Shapiro, D. , Nguyen, B.H. , Frost, E.L. , Lammert, C.R. , Kipnis, J. , Lukens, J.R. : Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat. Commun. 11 (1), 4524 (2020)

[87]

Ma, Q. , Schlegel, F. , Bachmann, S.B. , Schneider, H. , Decker, Y. , Rudin, M. , Weller, M. , Proulx, S.T. , Detmar, M. : Lymphatic outflow of cerebrospinal fluid is reduced in glioma. Sci. Rep. 9 (1), 14815 (2019)

[88]

Semyachkina-Glushkovskaya, O. , Shirokov, A. , Blokhina, I. , Telnova, V. , Vodovozova, E. , Alekseeva, A. , Boldyrev, I. , Fedosov, I. , Dubrovsky, A. , Khorovodov, A. , Terskov, A. , Evsukova, A. , Elovenko, D. , Adushkina, V. , Tzoy, M. , Agranovich, I. , Kurths, J. , Rafailov, E. : Intranasal delivery of liposomes to glioblastoma by photostimulation of the lymphatic system. Pharmaceutics 15 (1), 36 (2022)

[89]

Hu, X. , Deng, Q. , Ma, L. , Li, Q. , Chen, Y. , Liao, Y. , Zhou, F. , Zhang, C. , Shao, L. , Feng, J. , He, T. , Ning, W. , Kong, Y. , Huo, Y. , He, A. , Liu, B. , Zhang, J. , Adams, R. , He, Y. , Tang, F. , Bian, X. , Luo, J. : Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 30 (3), 229- 243 (2020)

[90]

Fehervari, Z. : Brain lymphatic (dys)function. Nat. Immunol. 19, 901 (2018)

[91]

Ingiosi, A.M. , Hayworth, C.R. , Harvey, D.O. , Singletary, K.G. , Rempe, M.J. , Wisor, J.P. , Frank, M.G. : A role for astroglial calcium in mammalian sleep and sleep regulation. Curr. Biol. 30 (22), 4373- 4383.e7 (2020)

[92]

Semyachkina-Glushkovskaya, O.V. , Postnov, D.E. , Khorovodov, A.P. , Navolokin, N.A. , Kurthz, J.H.G. : Lymphatic drainage system of the brain: a new player in neuroscience. J. Evol. Biochem. Physiol. 59 (1), 1- 19 (2023)

[93]

Kida, S. , Pantazis, A. , Weller, R. : CSF drains directly from the subarachnoid space into lymphatics in the rat brain Anatomy, histology and immunological significance. Neuropathol. Appl. Neurobiol. 19 (6), 480- 488 (1993)

[94]

Weller, R.O. , Galea, I. , Carare, R.O. , Minagar, A. : Pathophysiology of the lymphatic drainage of the central nervous system: implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology 17 (4), 295- 306 (2010)

[95]

Schley, D. , Carare-Nnadi, R. , Please, C.P. , Perry, V.H. , Weller, R.O. : Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J. Theor. Biol. 238 (4), 962- 974 (2006)

[96]

Hladky, S.B. , Barrand, M.A. : Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11 (1), 26 (2014)

[97]

Koh, L. , Zakharov, A. , Johnston, M. : Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res 2 (1), 6 (2005)

[98]

Louveau, A. , Smirnov, I. , Keyes, T.J. , Eccles, J.D. , Rouhani, S.J. , Peske, J.D. , Derecki, N.C. , Castle, D. , Mandell, J.W. , Lee, K.S. , Harris, T.H. , Kipnis, J. : Structural and functional features of central nervous system lymphatic vessels. Nature 523 (7560), 337- 341 (2015)

[99]

Iliff, J.J. , Wang, M. , Liao, Y. , Plogg, B.A. , Peng, W. , Gundersen, G.A. , Benveniste, H. , Vates, G.E. , Deane, R. , Goldman, S.A. , Nagelhus, E.A. , Nedergaard, M. : A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4 (147), 147ra111 (2012)

[100]

Jessen, N.A. , Munk, A.S. , Lundgaard, I. , Nedergaard, M. : The glymphatic system: a beginner's guide. Neurochem. Res. 40 (12), 2583- 2599 (2015)

[101]

Iliff, J.J. , Wang, M. , Zeppenfeld, D.M. , Venkataraman, A. , Plog, B.A. , Liao, Y. , Deane, R. , Nedergaard, M. : Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J. Neurosci. 33 (46), 18190- 18199 (2013)

[102]

Hladky, S.B. , Barrand, M.A. : The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 19 (1), 9 (2022)

[103]

Semyachkina-Glushkovskaya, O. , Postnov, D. , Kurths, J. : Blood-brain barrier, lymphatic clearance, and recovery: Ariadne's thread in labyrinths of hypotheses. Int. J. Mol. Sci. 19 (12), 3818 (2018)

[104]

Dupont, G. , Schmidt, C. , Yilmaz, E. , Oskouian, R.J. , Macchi, V. , de Caro, R. , Tubbs, R.S. : Our current understanding of the lymphatics of the brain and spinal cord. Clin. Anat. 32 (1), 117- 121 (2019)

[105]

Smith, A.J. , Jin, B.J. , Verkman, A.S. : Muddying the water in brain edema? Trends Neurosci. 38 (6), 331- 332 (2015)

[106]

Abbott, N.J. , Pizzo, M.E. , Preston, J.E. , Janigro, D. , Thorne, R.G. : The role of brain barriers in fluid movement in the CNS: is there a "glymphatic" system? Acta Neuropathol. 135 (3), 387- 407 (2018)

[107]

Prineas, J.W. : Multiple sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science 203, 1123- 1125 (1979)

[108]

Mezey, E. , Szalayova, I. , Hogden, C.T. , Brady, A. , Dosa, A. , Sotonui, P. , Palkovits, M. : An immunohistochemical study of lymphatic elements in the human brain. Proc. Natl. Acad. Sci. U. S. A. 118 (3), 1- 12 (2021)

[109]

Chang, J. , Guo, B. , Gao, Y. , Li, W. , Tong, X. , Feng, Y. , Abumaria, N. : Characteristic features of deep brain lymphatic vessels and their regulation by chronic stress. Research 6, Article0120 (2023)

[110]

Semyachkina-Glushkovskaya, O. , Fedosov, I. , Navolokin, N. , Shirokov, A. , Maslyakova, G. , Bucharskaya, A. , Blokhina, I. , Terskov, A. , Khorovodov, A. , Postnov, D. , Kurths, J. : Pilot identification of the Live-1/Prox-1 expressing lymphatic vessels and lymphatic elements in the unaffected and affected human brain. bioRxiv (2021)

[111]

Hablitz, L.M. , Plá V. , Giannetto, M. , Vinitsky, H.S. , Stæger, F.F. , Metcalfe, T. , Nguyen, R. , Benrais, A. , Nedergaard, M. : Circadian control of brain glymphatic and lymphatic fluid flow. Nat. Commun. 11 (1), 4411 (2020)

[112]

Haleh, S. , Hirac, G. , Frédéric, P. : Optical properties of mice skull bone in the 455-705 nm range. J. Biomed. Opt. (2017)

[113]

Semyachkina-Glushkovskaya, O. , Bragin, D. , Bragina, O. , Socolovski, S. , Shirokov, A. , Fedosov, I. , Ageev, V. , Blokhina, I. , Dubrovsky, A. , Telnova, V. , Terskov, A. , Khorovodov, A. , Elovenko, D. , Evsukova, A. , Zhoy, M. , Agranovich, I. , Vodovozova, E. , Alekseeva, A. , Kurths, J. , Rafailov, E. : Low-level laser treatment induces the blood-brain barrier opening and the brain drainage system activation: delivery of liposomes into mouse glioblastoma. Pharmaceutics 15 (2), 567 (2023)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF (3793KB)

83

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/