Optical coherence tomography with enhanced contrast using oriented magnetic nanorods

Seyyede Sarvenaz Khatami , Mohammad Ali Ansari , Behnam Shariati Bein Kalaee , Valery V. Tuchin

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (4) : 24

PDF (3255KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (4) : 24 DOI: 10.1007/s12200-025-00167-1
RESEARCH ARTICLE

Optical coherence tomography with enhanced contrast using oriented magnetic nanorods

Author information +
History +
PDF (3255KB)

Abstract

In recent years, the utilization of nanoparticles with varying morphologies in optical coherence tomography (OCT) has gained prominence, primarily aimed at enhancing imaging contrast and depth. Various factors associated with nanoparticles, encompassing their shape, orientation, and distribution within biological tissues, significantly influence OCT performance. A thorough investigation of these parameters has yielded substantial findings, particularly regarding the enhancement of OCT images facilitated by the presence of nanorods (NRs). In this study, we conducted OCT imaging of chicken breast tissue employing Fe3O4 NRs under different polarization states, utilizing solenoids to apply a magnetic field to the nanoparticles. The results demonstrate that orienting nanoparticles can improve the Contrast-to-Noise Ratio (CNR) and signal-to-noise ratio (SNR) of OCT signal more than twofold compared to scenarios lacking specified orientation. Furthermore, this article addresses the challenge of prolonged nanoparticle distribution in tissue when using ultrasound probes, successfully reducing the distribution time from approximately 45 min to about 5 min. The findings presented herein show significant promises for advancing optical coherence tomography across a variety of applications.

Graphical abstract

Keywords

Magnetic nanorods / Optical coherence topography (OCT) / Ultrasound wave / Contrast-to-noise ratio (CNR) / Signal-to-noise ratio (SNR)

Cite this article

Download citation ▾
Seyyede Sarvenaz Khatami, Mohammad Ali Ansari, Behnam Shariati Bein Kalaee, Valery V. Tuchin. Optical coherence tomography with enhanced contrast using oriented magnetic nanorods. Front. Optoelectron., 2025, 18(4): 24 DOI:10.1007/s12200-025-00167-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shariati, B.K. , Ansari, M.A. , Khatami, S.S. , Tuchin, V.V. : Multimodal optical clearing to minimize light attenuation in biological tissues. Sci. Rep. 13 (1), 21509 (2023)

[2]

Huang, Y. , Li, M. , Huang, D. , Qiu, Q. , Lin, W. , Liu, J. , Yang, W. , Yao, Y. , Yan, G. , Qu, N. , Tuchin, V.V. , Fan, S. , Liu, G. , Zhao, Q. , Chen, X. : Depth-resolved enhanced spectral-domain OCT imaging of live mammalian embryos using gold nanoparticles as contrast agent. Small 15 (35), 1902346 (2019)

[3]

Calvert, N.D. , Baxter, J. , Torrens, A.A. , Thompson, J. , Kirby, A. , Walia, J. , Shuhendler, A.J. : NIR-II scattering gold superclusters for intravascular optical coherence tomography molecular imaging. Nat. Nanotechnol. 20 (2), 276- 285 (2025)

[4]

Wang, A. , Qi, W. , Gao, T. , Tang, X. : Molecular contrast optical coherence tomography and its applications in medicine. Int. J. Mol. Sci. 23 (6), 3038 (2022)

[5]

Han, X. , Xu, K. , Taratula, O. , Farsad, K. : Applications of nanoparticles in biomedical imaging. Nanoscale 11 (3), 799- 819 (2019)

[6]

Si, P. , Razmi, N. , Nur, O. , Solanki, S. , Pandey, C.M. , Gupta, R.K. , de la Zerda, A. : Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Adv. 3 (10), 2679- 2698 (2021)

[7]

Liba, O. , SoRelle, E.D. , Sen, D. , de La Zerda, A. : Contrastenhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging. Sci. Rep. 6 (1), 23337 (2016)

[8]

Lankveld, D.P. , Oomen, A.G. , Krystek, P. , Neigh, A. , Troost-de Jong, A. , Noorlander, C.W. , De Jong, W.H. : The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 31 (32), 8350- 8361 (2010)

[9]

Huang, C.C. , Chang, P.Y. , Liu, C.L. , Xu, J.P. , Wu, S.P. , Kuo, W.C. : New insight on optical and magnetic Fe3O4 nanoclusters promising for near infrared theranostic applications. Nanoscale 7 (29), 12689- 12697 (2015)

[10]

Kharey, P. , Indoliya, A. , Gupta, R. , Poddar, R. , Sharma, D. , Gupta, S. : Near-infrared active superparamagnetic iron oxide nanoparticles for magnetomotive optical coherence tomography imaging and magnetic hyperthermia therapeutic applications. J. Magn. Magn. Mater. 549, 169038 (2022)

[11]

Genina, E.A. , Surkov, Y.I. , Serebryakova, I.A. , Bashkatov, A.N. , Tuchin, V.V. , Zharov, V.P. : Rapid ultrasound optical clearing of human light and dark skin. IEEE Trans. Med. Imaging 39 (10), 3198- 3206 (2020)

[12]

Voronin, D.V. , Sindeeva, O.A. , Kurochkin, M.A. , Mayorova, O. , Fedosov, I.V. , Semyachkina-Glushkovskaya, O. , Sukhorukov, G.B. : In vitro and in vivo visualization and trapping of fluorescent magnetic microcapsules in a bloodstream. ACS Appl. Mater. Interfaces 9 (8), 6885- 6893 (2017)

[13]

Das, R. , Alonso, J. , Nemati Porshokouh, Z. , Kalappattil, V. , Torres, D. , Phan, M.H. , Srikanth, H. : Tunable high aspect ratio iron oxide NRs for enhanced hyperthermia. J. Phys. Chem. C 120 (18), 10086- 10093 (2016)

[14]

Yang, Y. , Huang, M. , Qian, J. , Gao, D. , Liang, X. : Tunable Fe3O4 NRs for enhanced magnetic hyperthermia performance. Sci. Rep. 10 (1), 8331 (2020)

[15]

Yin, D. , Gu, Y. , Xue, P. : Speckle-constrained variational methods for image restoration in optical coherence tomography. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 30 (5), 878- 885 (2013)

[16]

Khlebtsov, N.G. , Dykman, L.A. , Khlebtsov, B.N. : Synthesis and plasmonic tuning of gold and gold-silver nanoparticles. Russ. Chem. Rev. 91 (10), RCR5058 (2022)

[17]

Frka-Petesic, B. , Erglis, K. , Berret, J.F. , Cebers, A. , Dupuis, V. , Fresnais, J. , Perzynski, R. : Dynamics of paramagnetic nanostructured rods under rotating field. J. Magn. Magn. Mater. 323 (10), 1309- 1313 (2011)

[18]

Hu, X. , Zhou, Y. , Li, M. , Wu, J. , He, G. , Jiao, N. : Catheter-assisted bioinspired adhesive magnetic soft millirobot for drug delivery. Small 20 (11), 2306510 (2024)

[19]

Chang, W.S. , Ha, J.W. , Slaughter, L.S. , Link, S. : Plasmonic nanorod absorbers as orientation sensors. Proc. Natl. Acad. Sci. U.S.A. 107 (7), 2781- 2786 (2010)

[20]

Del Campo Fonseca, A. , Glück, C. , Droux, J. , Ferry, Y. , Frei, C. , Wegener, S. , Ahmed, D. : Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat. Commun. 14 (1), 5889 (2023)

[21]

Link, S. , El-Sayed, M.A. : Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 54 (1), 331- 366 (2003)

[22]

Feller, D. , Otten, M. , Hildebrandt, M. , Krüsmann, M. , Bryant, G. , Karg, M. : Translational and rotational diffusion coefficients of gold nanorods functionalized with a high molecular weight, thermoresponsive ligand: a depolarized dynamic light scattering study. Soft Matter 17 (15), 4019- 4026 (2021)

[23]

Kashkanova, A.D. , Blessing, M. , Gemeinhardt, A. , Soulat, D. , Sandoghdar, V. : Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nat. Methods 19 (5), 586- 593 (2022)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF (3255KB)

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/