Analysis of erythrocyte deformation characteristics based on dual-angle Mueller matrix measurement

Shuan Yao , Caizhong Guan , Nan Zeng , Honghui He

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (4) : 23

PDF (4806KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (4) : 23 DOI: 10.1007/s12200-025-00166-2
RESEARCH ARTICLE

Analysis of erythrocyte deformation characteristics based on dual-angle Mueller matrix measurement

Author information +
History +
PDF (4806KB)

Abstract

Red blood cells (RBCs) are vital components of human blood, and their morphological abnormalities serve as reliable indicators of various disease pathophysiologies. As a novel label-free optical technique, Mueller matrix (MM) polarimetry is gaining recognition for its value in disease diagnosis and pathological analysis. In this study, we integrate a dual-angle MM measurement system with single-cell polarized light scattering modeling to establish specific polarization feature parameters (PFPs) characterizing cellular microphysical properties. The PFPs quantitatively describe morphological and optical changes in individual RBCs undergoing complex deformations. Experimental results demonstrate that PFPs can effectively distinguish differences in size, shape, refractive index, and surface spicules between deformed and normal RBCs. Moreover, by incorporating PFPs into a Random Forest classifier, we accurately quantify the proportion of abnormal RBCs in mixed suspensions. This study confirms the capability of polarization measurement for label-free, high-throughput analysis of RBC microphysical properties at the single-cell level.

Graphical abstract

Keywords

Polarization / Red blood cell / Cell deformation / Single-cell analysis

Cite this article

Download citation ▾
Shuan Yao, Caizhong Guan, Nan Zeng, Honghui He. Analysis of erythrocyte deformation characteristics based on dual-angle Mueller matrix measurement. Front. Optoelectron., 2025, 18(4): 23 DOI:10.1007/s12200-025-00166-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jensen, F.B. : The dual roles of red blood cells in tissue oxygen delivery: oxygen carriers and regulators of local blood flow. J. Exp. Biol. 212 (21), 3387- 3393 (2009)

[2]

Kuhn, V. , Diederich, L. , Keller, T.C.S. , IV., Kramer, C.M. , Lückstädt, W. , Panknin, C. , Suvorava, T. , Isakson, B.E. , Kelm, M. , Cortese-Krott,M.M. : Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, anemia. Antioxid. Redox Signal. 26 (13), 718- 742 (2017)

[3]

Ren, Y. , Yan, C. , Yang, H. : Erythrocytes: member of the immune system that should not be ignored. Crit. Rev. Oncol. Hematol. 187, 104039 (2023)

[4]

AlSalhi, S.M. , Devanesan, S. , AlZahrani, E.K. , AlShebly, M. , Al-Qahtani, F. , Farhat, K. , Masilamani, V. : Impact of diabetes mellitus on human erythrocytes: atomic force microscopy and spectral investigations. Int. J. Environ. Res. Public Health 15 (11), 2368 (2018)

[5]

Verma, N. , Liu, M. , Ly, H. , Loria, A. , Campbell, K.S. , Bush, H. , Kern, P.A. , Jose, P.A. , Taegtmeyer, H. , Bers, D.M. , Despa, S. , Goldstein, L.B. , Murray, A.J. , Despa, F. : Diabetic microcirculatory disturbances and pathologic erythropoiesis are provoked by deposition of amyloid-forming amylin in red blood cells and capillaries. Kidney Int. 97 (1), 143- 155 (2020)

[6]

Wang, Y. , Yang, P. , Yan, Z. , Liu, Z. , Ma, Q. , Zhang, Z. , Wang, Y. , Su, Y. : The relationship between erythrocytes and diabetes mellitus. J. Diabetes Res. 2021 (1), 6656062 (2021)

[7]

Mills, J. , Diez-Silva, M. , Quinn, D.J. , Dao, M. , Lang, M.J. , Tan, K.S.W. , Lim, C.T. , Milon, G. , David, P.H. , Mercereau-Puijalon, O. , Bonnefoy, S. , Suresh, S. : Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 104 (22), 9213- 9217 (2007)

[8]

Guo, Q. , Reiling, S.J. , Rohrbach, P. , Ma, H. : Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum. Lab Chip 12 (6), 1143- 1150 (2012)

[9]

Depond, M. , Henry, B. , Buffet, P. , Ndour, P.A. : Methods to investigate the deformability of RBC during malaria. Front. Physiol. 10, 1613 (2020)

[10]

Barabino, G.A. , Platt, M.O. , Kaul, D.K. : Sickle cell biomechanics. Annu. Rev. Biomed. Eng. 12 (1), 345- 367 (2010)

[11]

Tyas, D.A. , Hartati, S. , Harjoko, A. , Ratnaningsih, T. : Morphological, texture, and color feature analysis for erythrocyte classification in thalassemia cases. IEEE Access 8, 69849- 69860 (2020)

[12]

Lin, Y.H. , Liao, K.Y. , Sung, K.B. : Automatic detection and characterization of quantitative phase images of thalassemic red blood cells using a mask region-based convolutional neural network. J. Biomed. Opt. 25 (11), 116502 (2020)

[13]

Pretorius, E. , du Plooy, J.N. , Bester, J. : A comprehensive review on eryptosis. Cell. Physiol. Biochem. 39 (5), 1977- 2000 (2016)

[14]

Kim, E. , Park, S. , Hwang, S. , Moon, I. , Javidi, B. : Deep learning-based phenotypic assessment of red cell storage lesions for safe transfusions. IEEE J. Biomed. Health Inform. 26 (3), 1318- 1328 (2022)

[15]

Khairy, K. , Foo, J. , Howard, J. : Shapes of red blood cells: comparison of 3D confocal images with the bilayer-couple model. Cell. Mol. Bioeng. 1 (2-3), 173- 181 (2008)

[16]

Bhowmick, S. , Das, D.K. , Maiti, A.K. , Chakraborty, C. : Structural and textural classification of erythrocytes in anaemic cases: a scanning electron microscopic study. Micron 44, 384- 394 (2013)

[17]

Liu, J. , Tan, Y.Y. , Zheng, W. , Wang, Y. , Ju, L.A. , Su, Q.P. : Nanoscale insights into hematology: super-resolved imaging on blood cell structure, function, and pathology. J. Nanobiotechnology 22 (1), 363 (2024)

[18]

Kim, G. , Jo, Y.J. , Cho, H. , Min, H. , Park, Y.K. : Learning-based screening of hematologic disorders using quantitative phase imaging of individual red blood cells. Biosens. Bioelectron. 123, 69- 76 (2019)

[19]

Yeow, N. , Tabor, R.F. , Garnier, G. : Atomic force microscopy: from red blood cells to immunohaematology. Adv. Colloid Interface Sci. 249, 149- 162 (2017)

[20]

Atkins, C.G., Schulze, H.G., Chen, D., Devine, D.V., Blades, M.W., Turner, R.F.B.: Using Raman spectroscopy to assess hemoglobin oxygenation in red blood cell concentrate: An objective proxy for morphological index to gauge the quality of stored blood? Analyst 142(12), 2199-2210 (2017)

[21]

Dannhauser, D. , Rossi, D. , Causa, F. , Memmolo, P. , Finizio, A. , Wriedt, T. , Hellmers, J. , Eremin, Y. , Ferraro, P. , Netti, P.A. : Optical signature of erythrocytes by light scattering in microfluidic flows. Lab Chip 15 (16), 3278- 3285 (2015)

[22]

Xia, L. , Yao, Y. , Dong, Y. , Wang, M. , Ma, H. , Ma, L. : Mueller polarimetric microscopic images analysis based classification of breast cancer cells. Opt. Commun. 475, 126194 (2020)

[23]

Le, D.L. , Nguyen, D.T. , Le, T.H. , Phan, Q.H. , Pham, T.T.H. : Characterization of healthy and cancerous human skin tissue utilizing Stokes-Mueller polarimetry technique. Opt. Commun. 480, 126460 (2021)

[24]

Amiri, S. , Abedini, M. , Badieyan, S. , Vaezjalali, M. , Akhavan, O. , Sasanpour, P. : Viral infected cells reveal distinct polarization behavior; a polarimetric microscopy analysis on HSV infected Vero and HeLa cells. J. Quant. Spectrosc. Radiat. Transf. 262, 107484 (2021)

[25]

Yao, S. , Zeng, N. , Ma, H. : Characterizing cell morphological changes based on deriving parameters from the Mueller matrix polarimetry. In: Optics in Health Care and Biomedical Optics XIII. SPIE. (2023)

[26]

Karlsson, A. , He, J. , Swartling, J. , Andersson-Engels, S. : Numerical simulations of light scattering by red blood cells. IEEE Trans. Biomed. Eng. 52 (1), 13- 18 (2005)

[27]

Gienger, J. , Gross, H. , Ost, V. , Bär, M. , Neukammer, J. : Assessment of deformation of human red blood cells in flow cytometry: measurement and simulation of bimodal forward scatter distributions. Biomed. Opt. Express 10 (9), 4531- 4550 (2019)

[28]

Karabaliev, M. , Tacheva, B. , Paarvanova, B. , Georgieva, R. : Change in osmotic pressure influences the absorption spectrum of hemoglobin inside red blood cells. Cells 13 (7), 589 (2024)

[29]

Orrico, F. , Laurance, S. , Lopez, A.C. , Lefevre, S.D. , Thomson, L. , Möller, M.N. , Ostuni, M.A. : Oxidative stress in healthy and pathological red blood cells. Biomolecules 13 (8), 1262 (2023)

[30]

Kandrashina, S. , Sherstyukova, E. , Shvedov, M. , Inozemtsev, V. , Timoshenko, R. , Erofeev, A. , Dokukin, M. , Sergunova, V. : The effect of the acid-base imbalance on the shape and structure of red blood cells. Cells 13 (21), 1813 (2024)

[31]

Guan, C. , Zeng, N. , Jiang, Y. , He, H. : Dual-angle Mueller matrix polarimetry for single cell. IEEE Sens. J. 24 (20), 32488- 32498 (2024)

[32]

Breiman, L. : Random forests. Mach. Learn. 45 (1), 5- 32 (2001)

[33]

Wang, W. , Min, L. , Tian, P. , Wu, C. , Liu, J. , Hu, X.H. : Analysis of polarized diffraction images of human red blood cells: a numerical study. Biomed. Opt. Express 13 (3), 1161- 1172 (2022)

[34]

Gilev, K.V. , Eremina, E. , Yurkin, M.A. , Maltsev, V.P. : Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells. Opt. Express 18 (6), 5681- 5690 (2010)

[35]

Friebel, M. , Meinke, M. : Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration. Appl. Opt. 45 (12), 2838- 2842 (2006)

[36]

Sem'yanov, K.A. , Tarasov, P.A. , Soini, J.T. , Petrov, A.K. , Maltsev, V.P. : Calibration-free method to determine the size and hemoglobin concentration of individual red blood cells from light scattering. Appl. Opt. 39 (31), 5884- 5889 (2000)

[37]

Chen, S. , Zeng, N. , Zhan, D. , He, Y. , Ma, H. : Ambient aerosols identification based on polarization indices during a field test. In: Optical Metrology and Inspection for Industrial Applications V. SPIE. (2018)

[38]

Yao, S. , Zhang, H. , Zeng, N. , Ma, H. , He, H. , Jiang, Y. : Polarization characterization of porous particles based on DDA simulation and multi-angle polarization measurements. Materials 17 (8), 1718 (2024)

[39]

Ossikovski, R. , Arteaga, O. : Complete Mueller matrix from a partial polarimetry experiment: the nine-element case. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 36 (3), 403- 415 (2019)

[40]

Melzak, K. , Moreno-Flores, S. , Bieback, K. : Spicule movement on RBCs during echinocyte formation and possible segregation in the RBC membrane. Biochim. Biophys. Acta Biomembr. 1862 (10), 183338 (2020)

[41]

Sinha, A. , Chu, T.T.T. , Dao, M. , Chandramohanadas, R. : Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress. Sci. Rep. 5 (1), 9768 (2015)

[42]

Yang, Q. , Noviana, M. , Zhao, Y. , Chen, D. , Wang, X. : Effect of curcumin extract against oxidative stress on both structure and deformation capability of red blood cell. J. Biomech. 95, 109301 (2019)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF (4806KB)

83

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/