Rapid prediction of complex nonlinear dynamics in Kerr resonators using the recurrent neural network

Tianye Huang , Lin Chen , Mingkong Lu , Jianxing Pan , Chaoyu Xu , Pei Wang , Perry Ping Shum

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (4) : 19

PDF (1357KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (4) : 19 DOI: 10.1007/s12200-025-00164-4
RESEARCH ARTICLE

Rapid prediction of complex nonlinear dynamics in Kerr resonators using the recurrent neural network

Author information +
History +
PDF (1357KB)

Abstract

Kerr resonator is one of the most popular platforms to produce optical frequency comb and temporal cavity soliton. As an essential method for investigating the nonlinear dynamics of Kerr resonators, traditional numerical simulations rely on solving the Lugiato-Lefever equation (LLE) using the split-step Fourier method (SSFM), which is computationally intensive and time-consuming. To address this challenge, this study proposes a recurrent neural network model with prior information feedback, enabling efficient and accurate prediction of soliton dynamics in Kerr resonator. With the acceleration of graphics processing unit (GPU), the computational efficiency improved by 20 times. We compared various recurrent neural networks and found that the gated recurrent unit (GRU) network demonstrated superior performance in this task. This work highlights the potential of artificial intelligence (AI) for modeling nonlinear optical dynamics in Kerr resonator, paving the way for designing optical frequency comb and generating ultrafast pulse.

Graphical abstract

Keywords

Kerr ring resonators / Cavity soliton (CS) / Recurrent neural network (RNN) / Nonlinear / Dynamics

Cite this article

Download citation ▾
Tianye Huang, Lin Chen, Mingkong Lu, Jianxing Pan, Chaoyu Xu, Pei Wang, Perry Ping Shum. Rapid prediction of complex nonlinear dynamics in Kerr resonators using the recurrent neural network. Front. Optoelectron., 2025, 18(4): 19 DOI:10.1007/s12200-025-00164-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wabnitz, S. : Suppression of interactions in a phase-locked soliton optical memory. Opt. Lett. 18 (8), 601- 603 (1993)

[2]

Brasch, V. , Geiselmann, M. , Herr, T. , Lihachev, G. , Pfeiffer, M.H.P. , Gorodetsky, M.L. , Kippenberg, T.J. : Photonic chip-based optical frequency comb using soliton cherenkov radiation. Science 351 (6271), 357- 360 (2016)

[3]

Leo, F. , Gelens, L. , Emplit, P. , Haelterman, M. , Coen, S. : Dynamics of one-dimensional Kerr cavity solitons. Opt. Express 21 (7), 9180- 9191 (2013)

[4]

Jang, J.K. , Erkintalo, M. , Murdoch, S.G. , Coen, S. : Ultraweak long-range interactions of solitons observed over astronomical distances. Nat. Photonics 7 (8), 657- 663 (2013)

[5]

Erkintalo, M. , Luo, K. , Jang, J.K. , Coen, S. , Murdoch, S.G. : Bunching of temporal cavity solitons via forward Brillouin scattering. New J. Phys. 17 (11), 115009 (2015)

[6]

Yi, X. , Yang, Q.F. , Yang, K.Y. , Suh, M.G. , Vahala, K. : Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2 (12), 1078- 1085 (2015)

[7]

Joshi, C. , Jang, J.K. , Luke, K. , Ji, X. , Miller, S.A. , Klenner, A. , Okawachi, Y. , Lipson, M. , Gaeta, A.L. : Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41 (11), 2565- 2568 (2016)

[8]

Marin-Palomo, P. , Kemal, J.N. , Karpov, M. , Kordts, A. , Pfeifle, J. , Pfeiffer, M.H.P. , Trocha, P. , Wolf, S. , Brasch, V. , Anderson, M.H. , Rosenberger, R. , Vijayan, K. , Freude, W. , Kippenberg, T.J. , Koos, C. : Microresonator-based solitons for massively parallel coherent optical communications. Nature 546 (7657), 274- 279 (2017)

[9]

Pfeiffer, M.H.P. , Herkommer, C. , Liu, J. , Guo, H. , Karpov, M. , Lucas, E. , Zervas, M. , Kippenberg, T.J. : Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4 (7), 684- 691 (2017)

[10]

Obrzud, E. , Lecomte, S. , Herr, T. : Temporal solitons in microresonators driven by optical pulses. Nat. Photonics 11 (9), 600- 607 (2017)

[11]

Coen, S. , Randle, H.G. , Sylvestre, T. , Erkintalo, M. : Modeling of octave-spanning Kerr frequency combs using a generalized meanfield Lugiato-Lefever model. Opt. Lett. 38 (1), 37- 39 (2013)

[12]

Chembo, Y.K. , Menyuk, C.R. : Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A 87 (5), 053852 (2013)

[13]

Parra-Rivas, P. , Gomila, D. , Matías, M.A. , Colet, P. , Gelens, L. : Effects of inhomogeneities and drift on the dynamics of temporal solitons in fiber cavities and microresonators. Opt. Express 22 (25), 30943- 30954 (2014)

[14]

Godey, C. , Balakireva, I.V. , Coillet, A. , Chembo, Y.K. : Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89 (6), 063814 (2014)

[15]

Hendry, I. , Chen, W. , Wang, Y. , Garbin, B. , Javaloyes, J. , Oppo, G.L. , Coen, S. , Murdoch, S.G. , Erkintalo, M. : Spontaneous symmetry breaking and trapping of temporal Kerr cavity solitons by pulsed or amplitude-modulated driving fields. Phys. Rev. A 97 (5), 053834 (2018)

[16]

Genty, G. , Salmela, L. , Dudley, J. , Brunner, D. , Kokhanovskiy, A. , Kobtsev, S. , Turitsyn, S. : Machine learning and applications in ultrafast photonics. Nat. Photonics 15 (2), 91- 101 (2021)

[17]

O'Shea, T. , Hoydis, J. : An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw. 3 (4), 563- 575 (2017)

[18]

Wang, D. , Zhang, M. : Artificial intelligence in optical communications:from machine learning to deep learning. Front. Commun. Netw. 2, 656786 (2021)

[19]

Yao, T. , Huang, T. , Yan, B. , Ge, M. , Yin, J. , Peng, C. , Li, L. , Sun, W. , Ping Shum, P. : Inverse design of dispersion for photonic devices based on LSTM and gradient-free optimization algorithms hybridization. J. Opt. Soc. Am. B 40 (6), 1525- 1532 (2023)

[20]

Yao, T. , Huang, T. , Zeng, X. , Wu, Z. , Zhang, J. , Luo, D. , Zhang, X. , Wang, Y. , Cheng, Z. , Li, X. , Han, L. , Shum, P.P. : Multimode waveguide analyses and design based on the FC-LSTM hybrid network. J. Opt. Soc. Am. B 39 (10), 2564- 2572 (2022)

[21]

Andral, U. , Fodil, R. , Amrani, F. , Billard, F. , Hertz, E. , Grelu, P. : Fiber laser mode locked through an evolutionary algorithm. Optica 2 (4), 275- 278 (2015)

[22]

Winters, D. , Kirchner, M. , Backus, S. , Kapteyn, H. : Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser. Opt. Express 25 (26), 33216 (2017)

[23]

Woodward, R.I. , Kelleher, E.J.R. : Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers. Opt. Lett. 42 (15), 2952- 2955 (2017)

[24]

Pu, G. , Yi, L. , Zhang, L. , Hu, W. : Intelligent programmable modelocked fiber laser with a human-like algorithm. Optica 6 (3), 362- 369 (2019)

[25]

Reyes Vera, E. , Valencia-Arias, A. , García Pineda, V. , AuroraVigo, E. , Vásquez, H. , Sánchez, G. : Machine learning applications in optical fiber sensing: a research agenda. Sensors 24 (7), 2200 (2024)

[26]

Wetzstein, G. , Ozcan, A. , Gigan, S. , Fan, S. , Englund, D. , Soljačić M. , Denz, C. , Miller, D.A.B. , Psaltis, D. : Inference in artificial intelligence with deep optics and photonics. Nat. 588 (7836), 39- 47 (2020)

[27]

Salmela, L. , Tsipinakis, N. , Foi, A. , Billet, C. , Dudley, J. , Genty, G. : Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network. Nat. Mach. Intell. 3 (4), 344- 354 (2021)

[28]

Salmela, L. , Hary, M. , Mabed, M. , Foi, A. , Dudley, J. , Genty, G. : Feed-forward neural network as nonlinear dynamics integrator for supercontinuum generation. Opt. Lett. 47 (7), 1741 (2022)

[29]

Pu, G. , Liu, R. , Yang, H. , Xu, Y. , Hu, W. , Hu, M. , Yi, L. : Fast predicting the complex nonlinear dynamics of mode-locked fiber laser by a recurrent neural network with prior information feeding. Laser Photon. Rev. 17 (6), 2200363 (2023)

[30]

Wang, Y. , Garbin, B. , Leo, F. , Coen, S. , Erkintalo, M. , Murdoch, S.G. : Addressing temporal Kerr cavity solitons with a single pulse of intensity modulation. Opt. Lett. 43 (13), 3192- 3195 (2018)

[31]

Moille, G. , Leonhardt, M. , Paligora, D. , Englebert, N. , Leo, F. , Fatome, J. , Srinivasan, K. , Erkintalo, M. : Parametrically driven pure-Kerr temporal solitons in a chip-integrated microcavity. Nat. Photonics 18 (6), 617- 624 (2024)

[32]

LeCun, Y. , Kavukcuoglu, K. , Farabet, C. : Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems 30 253- 256 (2010)

[33]

Khan, A. , Sohail, A. , Zahoora, U. , Qureshi, A.S. : A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53 (8), 5455- 5516 (2020)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF (1357KB)

400

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/