Advancing intraoperative cerebral blood flow monitoring: integrating imaging photoplethysmography and laser speckle contrast imaging in neurosurgery

Alexei A. Kamshilin , Anton N. Konovalov , Fyodor V. Grebenev , Igor O. Kozlov , Dmitry D. Stavtsev , Gennadii A. Piavchenko , Ervin Nippolainen , Valeriy V. Zaytsev , Alexey Y. Sokolov , Dmitry V. Telyshev , Sergei L. Kuznetsov , Roman V. Romashko , Igor V. Meglinski

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (4) : 20

PDF (2310KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (4) : 20 DOI: 10.1007/s12200-025-00163-5
RESEARCH ARTICLE

Advancing intraoperative cerebral blood flow monitoring: integrating imaging photoplethysmography and laser speckle contrast imaging in neurosurgery

Author information +
History +
PDF (2310KB)

Abstract

Intraoperative assessment of cerebral hemodynamics is crucial for the success of neurosurgical interventions. This study evaluates the potential of laser speckle contrast imaging (LSCI) and imaging photoplethysmography (IPPG) for contactless perfusion monitoring during neurosurgery. Despite similarities in their hardware requirements, these techniques rely on fundamentally different principles: light scattering for LSCI and light absorption for IPPG. Comparative experiments were conducted using animals (rats) when assessing the reaction of cerebral hemodynamics to adenosine triphosphate infusion. The results show different spatial and temporal characteristics of the techniques: LSCI predominantly visualizes blood flow in large venous vessels, especially in the sagittal and transverse sinuses, showing a pronounced modulation associated with the heart that cannot be explained by venous blood flow alone. In contrast, IPPG quantifies the dynamics of perfusion changes in the parenchyma, showing minimal signal in large venous vessels. We propose that LSCI signal modulation is significantly influenced by the movement of vessel walls in response to mechanical pressure waves propagating through the parenchyma from nearby arteries. A novel algorithm for LSCI data processing was developed based on this interpretation, producing perfusion indices that align well with IPPG measurements. This study demonstrates that the complementary nature of these techniques (LSCI is sensitive to blood cells displacements, while IPPG detects a change in their density) makes their combined application particularly valuable for comprehensive assessment of cerebral hemodynamics during neurosurgery.

Graphical abstract

Keywords

Neurosurgery / Cerebral perfusion monitoring / Blood flow visualization / Imaging photoplethysmography / Laser speckle contrast imaging

Cite this article

Download citation ▾
Alexei A. Kamshilin, Anton N. Konovalov, Fyodor V. Grebenev, Igor O. Kozlov, Dmitry D. Stavtsev, Gennadii A. Piavchenko, Ervin Nippolainen, Valeriy V. Zaytsev, Alexey Y. Sokolov, Dmitry V. Telyshev, Sergei L. Kuznetsov, Roman V. Romashko, Igor V. Meglinski. Advancing intraoperative cerebral blood flow monitoring: integrating imaging photoplethysmography and laser speckle contrast imaging in neurosurgery. Front. Optoelectron., 2025, 18(4): 20 DOI:10.1007/s12200-025-00163-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miller, D.R. , Ashour, R. , Sullender, C.T. , Dunn, A.K. : Continuous blood flow visualization with laser speckle contrast imaging during neurovascular surgery. Neurophotonics 9 (2), 21908 (2022)

[2]

Konovalov, A.N. , Gadzhiagaev, V. , Grebenev, F.V. , Stavtsev, D.D. , Piavchenko, G.A. , Gerasimenko, A. , Telyshev, D.V. , Meglinski, I.V. , Eliava, S.S. : Laser speckle contrast imaging in neurosurgery: a systematic review. World Neurosurg. 171, 35- 40 (2023)

[3]

Mangraviti, A. , Volpin, F. , Cha, J. , Cunningham, S.I. , Raje, K. , Brooke, M.J. , Brem, H. , Olivi, A. , Huang, J. , Tyler, B.M. , Rege, A. : Intraoperative laser speckle contrast imaging for real-time visualization of cerebral blood flow in cerebrovascular surgery: results from pre-clinical studies. Sci. Rep. 10 (1), 7614 (2020)

[4]

Richards, L.M. , Kazmi, S.M.S. , Olin, K.E. , Waldron, J.S. , Fox, D.J. ,Jr., Dunn A.K. ,; Intraoperative multi-exposure speckle imaging of cerebral blood flow. J. Cereb. Blood Flow Metab. 37 (9), 3097- 3109 (2017)

[5]

Hecht, N. , Woitzik, J. , König, S. , Horn, P. , Vajkoczy, P. : Laser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures. J. Cereb. Blood Flow Metab. 33 (7), 1000- 1007 (2013)

[6]

Kazmi, S.M.S. , Richards, L.M. , Schrandt, C.J. , Davis, M.A. , Dunn, A.K. : Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow. J. Cereb. Blood Flow Metab. 35 (7), 1076- 1084 (2015)

[7]

Mamontov, O.V. , Shcherbinin, A.V. , Romashko, R.V. , Kamshilin, A.A. : Intraoperative imaging of cortical blood flow by camerabased photoplethysmography at green light. Appl. Sci. (Basel) 10 (18), 6192 (2020)

[8]

Schraven, S.P. , Kossack, B. , Strüder, D. , Jung, M. , Skopnik, L. , Gross, J. , Hilsmann, A. , Eisert, P. , Mlynski, R. , Wisotzky, E.L. : Continuous intraoperative perfusion monitoring of free microvascular anastomosed fasciocutaneous flaps using remote photoplethysmography. Sci. Rep. 13 (1), 1532 (2023)

[9]

Shcherbinin, A.V. , Zaytsev, V.V. , Nippolainen, E. , Sokolov, A.Y. , Kamshilin, A.A. : A new method of intraoperative assessment of the dynamics of cortical blood flow using imaging photoplethysmography. Russ. J. Neurosurg. 26 (3), 43- 56 (2024)

[10]

Heeman, W. , Steenbergen, W. , van Dam, G.M. , Boerma, E.C. : Clinical applications of laser speckle contrast imaging: a review. J. Biomed. Opt. 24 (8), 1- 11 (2019)

[11]

Draijer, M. , Hondebrink, E. , van Leeuwen, T. , Steenbergen, W. : Review of laser speckle contrast techniques for visualizing tissue perfusion. Lasers Med. Sci. 24 (4), 639- 651 (2009)

[12]

Hertzman, A.B. : The blood supply of various skin areas as estimated by the photoelectric plethysmograph. Am. J. Physiol. 124 (2), 328- 340 (1938)

[13]

Kamshilin, A.A. , Mamontov, O.V. : Imaging photoplethysmography and its applications. In: Allen, J., Kyriacou, P.A. (eds.) Photoplethysmography Technology Signal Analysis and Applications. Academic Press, Amsterdam (2022)

[14]

Piavchenko, G. , Kozlov, I. , Dremin, V. , Stavtsev, D. , Seryogina, E. , Kandurova, K. , Shupletsov, V. , Lapin, K. , Alekseyev, A. , Kuznetsov, S. , Bykov, A. , Dunaev, A. , Meglinski, I. : Impairments of cerebral blood flow microcirculation in rats brought on by cardiac cessation and respiratory arrest. J. Biophotonics 14 (12), e202100216 (2021)

[15]

Briers, J.D. , Webster, S. : Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow. J. Biomed. Opt. 1 (2), 174- 179 (1996)

[16]

Miao, P. , Rege, A. , Li, N. , Thakor, N.V. , Tong, S. : High resolution cerebral blood flow imaging by registered laser speckle contrast analysis. IEEE Trans. Biomed. Eng. 57 (5), 1152- 1157 (2010)

[17]

Mamontov, O.V. , Sokolov, A.Y. , Volynsky, M.A. , Osipchuk, A.V. , Zaytsev, V.V. , Romashko, R.V. , Kamshilin, A.A. : Animal model of assessing cerebrovascular functional reserve by imaging photoplethysmography. Sci. Rep. 10 (1), 19008 (2020)

[18]

Sidorov, I.S. , Volynsky, M.A. , Kamshilin, A.A. : Influence of polarization filtration on the information readout from pulsating blood vessels. Biomed. Opt. Express 7 (7), 2469- 2474 (2016)

[19]

Moço, A.V. , Stuijk, S. , de Haan, G. : Ballistocardiographic artifacts in PPG imaging. IEEE Trans. Biomed. Eng. 63 (9), 1804- 1811 (2016)

[20]

Kamshilin, A.A. , Krasnikova, T.V. , Volynsky, M.A. , Miridonov, S.V. , Mamontov, O.V. : Alterations of blood pulsations parameters in carotid basin due to body position change. Sci. Rep. 8 (1), 13663 (2018)

[21]

Liu, H. , Wang, Y. , Wang, L. : The effect of light conditions on photoplethysmographic image acquisition using a commercial camera. IEEE J. Transl. Eng. Health Med. 2, 6917212 (2014)

[22]

Kamshilin, A.A. , Nippolainen, E. , Sidorov, I.S. , Vasilev, P.V. , Erofeev, N.P. , Podolian, N.P. , Romashko, R.V. : A new look at the essence of the imaging photoplethysmography. Sci. Rep. 5 (1), 10494 (2015)

[23]

Golubova, N. , Potapova, E. , Seryogina, E. , Dremin, V. : Time-frequency analysis of laser speckle contrast for transcranial assessment of cerebral blood flow. Biomed. Signal Process. Control 85, 104969 (2023)

[24]

Abdurashitov, A.S. , Lychagov, V.V. , Sindeeva, O.A. , Semyachkina-Glushkovskaya, O.V. , Tuchin, V.V. : Histogram analysis of laser speckle contrast image for cerebral blood flow monitoring. Front. Optoelectron. 8 (2), 187- 194 (2015)

[25]

Postnov, D.D. , Erdener, E. , Kilic, K. , Boas, D.A. : Cardiac pulsatility mapping and vessel type identification using laser speckle contrast imaging. Biomed. Opt. Express 9 (12), 6388- 6397 (2018)

[26]

Kalchenko, V. , Sdobnov, A. , Meglinski, I. , Kuznetsov, Y. , Molodij, G. , Harmelin, A. : A robust method for adjustment of laser speckle contrast imaging during transcranial mouse brain visualization. Photonics 6 (3), 80 (2019)

[27]

Somló E. : Adenosine triphosphate in paroxysmal tachycardia. Lancet 265 (6874), 1125 (1955)

[28]

Lyubashina, O.A. , Mamontov, O.V. , Volynsky, M.A. , Zaytsev, V.V. , Kamshilin, A.A. : Contactless assessment of cerebral autoregulation by photoplethysmographic imaging at green illumination. Front. Neurosci. 13, 1235 (2019)

[29]

Sokolov, A.Y. , Volynsky, M.A. , Potapenko, A.V. , Iurkova, P.M. , Zaytsev, V.V. , Nippolainen, E. , Kamshilin, A.A. : Duality in response of intracranial vessels to nitroglycerin revealed in rats by imaging photoplethysmography. Sci. Rep. 13 (1), 11928 (2023)

[30]

Parthasarathy, A.B. , Tom, W.J. , Gopal, A. , Zhang, X. , Dunn, A.K. : Robust flow measurement with multi-exposure speckle imaging. Opt. Express 16 (3), 1975- 1989 (2008)

[31]

Ayata, C. , Dunn, A.K. , Gursoy-Özdemir, Y. , Huang, Z. , Boas, D.A. , Moskowitz, M.A. : Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J. Cereb. Blood Flow Metab. 24 (7), 744- 755 (2004)

[32]

Sdobnov, A. , Piavchenko, G. , Bykov, A. , Meglinski, I. : Advances in dynamic light scattering imaging of blood flow. Laser Photon. Rev. 18 (2), 2300494 (2024)

[33]

Zherebtsov, E. , Sdobnov, A. , Sieryi, O. , Kaakinen, M. , Eklund, L. , Myllylä T. , Bykov, A. , Meglinski, I. : Enhancing transcranial blood flow visualization with dynamic light scattering technologies:advances in quantitative analysis. Laser Photon. Rev. 19 (2), 2401016 (2025)

[34]

Garcia-Lopez, I. , Rodriguez-Villegas, E. : Extracting the jugular venous pulse from anterior neck contact photoplethysmography. Sci. Rep. 10 (1), 3466 (2020)

[35]

Ranganathan, N. , Sivaciyan, V. : Jugular venous pulse descent patterns:recognition and clinical relevance. CJC Open 5 (3), 200- 207 (2023)

[36]

Wang, J.J. , Flewitt, J.A. , Shrive, N.G. , Parker, K.H. , Tyberg, J.V. : Systemic venous circulation. Waves propagating on a windkessel: relation of arterial and venous windkessels to systemic vascular resistance. Am. J. Physiol. Heart Circ. Physiol. 290 (1), H154- H162 (2006)

[37]

Kamshilin, A.A. , Margaryants, N.B. : Origin of photoplethysmographic waveform at green light. Phys. Procedia 86, 72- 80 (2017)

[38]

Forrester, T. , Harper, A.M. , MacKenzie, E.T. , Thomson, E.M. : Effect of adenosine triphosphate and some derivatives on cerebral blood flow and metabolism. J. Physiol. 296 (1), 343- 355 (1979)

[39]

Hussain, R. , Tsuchida, T. , Kudo, T. , Kobayashi, M. , Tsujikawa, T. , Kiyono, Y. , Fujibayashi, Y. , Okazawa, H. : Vasodilatory effect of adenosine triphosphate does not change cerebral blood flow: a PET study with 15O-water. Ann. Nucl. Med. 23 (8), 717- 723 (2009)

[40]

Fercher, A.F. , Briers, J.D. : Flow visualization by means of singleexposure speckle photography. Opt. Commun. 37 (5), 326- 330 (1981)

[41]

Fujii, H. , Asakura, T. , Nohira, K. , Shintomi, Y. , Ohura, T. : Blood flow observed by time-varying laser speckle. Opt. Lett. 10 (3), 104- 106 (1985)

[42]

Sakadzic, S. , Yuan, S. , Dilekoz, E. , Ruvinskaya, S. , Vinogradov, S.A. , Ayata, C. , Boas, D.A. : Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression. Appl. Opt. 48 (10), D169- D177 (2009)

[43]

Kazmi, S.M.S. , Parthasarthy, A.B. , Song, N.E. , Jones, T.A. , Dunn, A.K. : Chronic imaging of cortical blood flow using multiexposure speckle imaging. J. Cereb. Blood Flow Metab. 33 (6), 798- 808 (2013)

[44]

He, F. , Sullender, C.T. , Zhu, H. , Williamson, M.R. , Li, X. , Zhao, Z. , Jones, T.A. , Xie, C. , Dunn, A.K. , Luan, L. : Multimodal mapping of neural activity and cerebral blood flow reveals long-lasting neurovascular dissociations after small-scale strokes. Sci. Adv. 6 (21), eaba1933 (2020)

[45]

Postnov, D.D. , Tang, J. , Erdener, S.E. , Kılıç K. , Boas, D.A. : Dynamic light scattering imaging. Sci. Adv. 6 (45), eabc4628 (2020)

[46]

Rasche, S. , Huhle, R. , Junghans, E. , de Abreu, M.G. , Ling, Y. , Trumpp, A. , Zaunseder, S. : Association of remote imaging photoplethysmography and cutaneous perfusion in volunteers. Sci. Rep. 10 (1), 16464 (2020)

[47]

Dunn, C.E. , Lertsakdadet, B. , Crouzet, C. , Bahani, A. , Choi, B. : Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and in vivo measurements. Biomed. Opt. Express 9 (9), 4306- 4316 (2018)

[48]

Garrett, A. , Kim, B. , Sie, E.J. , Gurel, N.Z. , Marsili, F. , Boas, D.A. , Roblyer, D. : Simultaneous photoplethysmography and blood flow measurements towards the estimation of blood pressure using speckle contrast optical spectroscopy. Biomed. Opt. Express 14 (4), 1594- 1607 (2023)

[49]

Fleischhauer, V. , Adrians, J. , Zaunseder, S. : Validation of skin perfusion monitoring by imaging PPG versus laser speckle imaging. Curr. Dir. Biomed. Eng. 9 (1), 351- 354 (2023)

[50]

Herranz Olazabal, J. , Lorato, I. , Kling, J. , Verhoeven, M. , Wieringa, F. , Van Hoof, C. , Verkruijsse, W. , Hermeling, E. : Comparison between speckle plethysmography and photoplethysmography during cold pressor test referenced to finger arterial pressure. Sensors 23 (11), 5016 (2023)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF (2310KB)

2752

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/