Effect of energy back transfer from Er3+ to Yb3+ ions on the upconversion luminescence of Er:NaYb(MoO4)2 and Yb,Er:NaBi(MoO4)2

Miaomiao Wang , Mengyu Zhang , Shoujun Ding , Haitang Hu , Chuancheng Zhang , Yong Zou

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (2) : 12

PDF (1659KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (2) : 12 DOI: 10.1007/s12200-025-00155-5
RESEARCH ARTICLE

Effect of energy back transfer from Er3+ to Yb3+ ions on the upconversion luminescence of Er:NaYb(MoO4)2 and Yb,Er:NaBi(MoO4)2

Author information +
History +
PDF (1659KB)

Abstract

Under the excitation of a 980 nm laser, the visible upconversion (UC) luminescence of Er3+ ions doped Yb3+ ions selfactivated NaYb(MoO4)2 phosphor and crystal, as well as the Yb3+/Er3+ ions codoped NaBi(MoO4)2 crystal were investigated comprehensively. The results indicate that all three samples exhibit two significant green emission bands and a weak red emission band in the visible band corresponding to the transitions of 2H11/2/4S3/24I15/2 and 4F9/24I15/2 of Er3+ ions, respectively. Through the variable power density spectra of three different samples, the relationship between the energy back transfer (EBT) process of Yb3+-Er3+ ions and the power density point and Yb3+ ion concentration was investigated. The EBT process was observed in both the Er3+ ions doped Yb3+ ions self-activated NaYb(MoO4)2 phosphor and crystal, as confirmed by the luminescence image of the sample. At high power density, the Yb3+ ions self-activated sample exhibited yellow luminescence, with the crystal appearing later than the phosphor. In contrast, the NaBi(MoO4)2 crystal displayed bright green emission within the measured power density range. In addition, by monitoring the relative intensity change of Yb3+ emission in 5 at% Er3+: NaYb(MoO4)2 crystal, the generation of EBT process in self-activated samples at high power density is more directly explained. These experimental results provide a reliable basis for our comprehensive understanding of the EBT mechanism, and also provide a reliable direction for the final determination of the optimal excitation power density for optical temperature measurement.

Graphical abstract

Keywords

Upconversion luminescence / Energy back transfer / Yb 3+/Er 3+ cooping / Phosphor / Crystal

Cite this article

Download citation ▾
Miaomiao Wang, Mengyu Zhang, Shoujun Ding, Haitang Hu, Chuancheng Zhang, Yong Zou. Effect of energy back transfer from Er3+ to Yb3+ ions on the upconversion luminescence of Er:NaYb(MoO4)2 and Yb,Er:NaBi(MoO4)2. Front. Optoelectron., 2025, 18(2): 12 DOI:10.1007/s12200-025-00155-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dey,R., Rai,V.K.: Yb3+ sensitized Er3+ doped La2O3 phosphor in temperature sensors and display devices. Dalton Trans. 43(1), 111–118 (2014)

[2]

Madirov,E., Busko,D., Howard,I.A., Richards, B.S., Turshatov,A.: Absolute quantum yield for understanding upconversion and downshift luminescence in PbF2: Er3+, Yb3+ crystals. Phys. Chem. Chem. Phys. 25(17), 11986–11997 (2023)

[3]

Kim,D.R., Park,S.W., Moon,B.K., Park, S.H., Jeong,J.H., Choi,H., Kim,J.H.: The role of Yb3+ concentrations on Er3+ doped SrLaMgTaO6 double perovskite phosphors. RSC Adv. 7(3), 1464–1470 (2017)

[4]

Guan,Z., Li,X., Shen,R., Tian, Z., Yu,H., Cao,Y., Wang,Y., Zhang,J., Xu, S., Chen,B.: Intense red up-conversion luminescence and temperature sensing property of Yb3+/Er3+ co-doped BaGd2O4 phosphors. Spectrochim. Acta A Mol. Biomol. Spectrosc. 284 121805 (2023)

[5]

Wang,S., Cheng,X.H., Wang,J.Y., Zhong, Z.C.: Color change upconversion mechanism of Y6O5F8: Er3+/Yb3+ microtubes by using time-resolve spectra. Phys. Solid Stat. 60(7), 1381–1386 (2018)

[6]

Zhang,L., Meng,Q., Sun,W., S.: Temperature-sensing characteristics of NaGd(MoO4)2:Sm3+, Tb3+ phosphors. Ceram. Int. 47(1), 670–676 (2021)

[7]

He,D., Guo,C., Zhou,S., Zhang, L., Yang,Z., Duan,C., Yin,M.: Synthesis and thermometric properties of shuttle-like Er3+/Yb3+ co-doped NaLa(MoO4)2 microstructures. CrystEngCom. 17(40), 7745–7753 (2015)

[8]

Runowski,M., Bartkowiak, A., Majewska,M., Martín,I.R., Lis, S.: Upconverting lanthanide doped fluoride NaLuF4: Yb3+-Er3+-Ho3+-optical sensor for multi-range fluorescence intensity ratio (FIR) thermometry in visible and NIR regions. J. Lumin. 201 104–109 (2018)

[9]

Pattnaik,S., Mondal, M., Mukhopadhyay,L., Basak,S., Rai,V.K., Giri,R., Singh, V.: Frequency upconversion based thermally stable molybdate phosphors in a temperature sensing probe. New J. Chem. 46(22), 10897–10906 (2022)

[10]

Xu,S., Chen,Y., Jiang,Y., Ashraf, G.A., Guo,H.: Up-conversion La4GeO8: Er3+, Yb3+ optical thermometer based on fluorescence intensity ratio technique. J. Lumin. 251 119193 (2022)

[11]

Jiang,T., Ye,R., Jin,X., Guo, W., Liu,X., Zhao,S., Zhang,J., Xu,S.: Size influence on optical thermometry of Er3+/Yb3+ co-doped Y2O3 microspheres: from TCLs and Non-TCLs. J. Lumin. 254 119471 (2023)

[12]

Wang,H., Yao,J., Wei,Q., Zhao, J., Zou,B., Zeng,R.: Simultaneously achieving multicolor emission of down-shifting and up-conversion in Yb3+, Er3+-codoped Cs2NaGdCl6 double perovskites. Adv. Opt. Mater. 11(20), 2300694 (2023)

[13]

Ye,S., Lei,L.: Controlled synthesis of cubic NaYF4: Yb/Er@ NaYF4 core/shell nanocrystals for ratiometric fluorescence temperature sensing. Chem. Phys. Lett. 833 140935 (2023)

[14]

Fu,B., Yan,H., Li,R., Feng, L., Yu,Y., Gong,G., Huang,H., Liao,J.: Heterovalent Zr4+/Nb5+-cosubstituted negative thermal expansion luminescent materials with anti-thermal quenching luminescence. Laser Photonics Rev. 18(12), 2400739 (2024)

[15]

Liao,J., Han,Z., Lin,F., Fu, B., Gong,G., Yan,H., Huang,H., Wen,H.R., Qiu, B.: Simultaneous thermal enhancement of upconversion and downshifting luminescence by negative thermal expansion in nonhygroscopic ZrSc(WO4)2PO4:Yb/Er phosphors. Inorg. Chem. 62(24), 9518–9527 (2023)

[16]

Yan,H., Li,R., Feng,L., Yu, Y., Gong,G., Huang,H., Wen,H.R., Liao,J.: Simultaneous negative thermal quenching luminescence of upconversion and downshifting processes in Al2(WO4)3:Yb/Er phosphors with low thermal expansion. J. Mater. Chem. C Mater. Opt. Electron. Device. 12(32), 12353–12362 (2024)

[17]

Liao,J., Wang,Q., Kong,L., Ming, Z., Wang,Y., Li,Y., Che,L.: Effect of Yb3+ concentration on tunable upconversion luminescence and optically temperature sensing behavior in Gd2TiO5: Yb3+/Er3+phosphors. Opt. Mater. 75 841–849 (2018)

[18]

Li,K., Zhu,D., Lian,H.: Up-conversion luminescence and optical temperature sensing properties in novel KBaY(MoO4)3:Yb3+, Er3+ materials for temperature sensors. J. Alloys Compd. 816 152554 (2020)

[19]

Xu,D., Liu,C., Yan,J., Yang, S., Zhang,Y.: Understanding energy transfer mechanisms for tunable emission of Yb3+-Er3+ codoped GdF3 nanoparticles: concentration-dependent luminescence by near-infrared and violet excitation. J. Phys. Chem. C. 119(12), 6852–6860 (2015)

[20]

Wang,M., Ding,S., Zhang,C., Ren, H., Zou,Y., Tang,X., Zhang,Q.: Pure-green upconversion emission and high-sensitivity optical thermometry of Er3+-doped stoichiometric NaYb(MoO4)2. Ceram. Int. 49(23), 37661–37669 (2023)

[21]

Singh,V., Rai,V.K., Al-Shamery,K., Haase,M., Kim,S.H.: NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 108 141–145 (2013)

[22]

Walton,I.M., Cox,J.M., Benson,C.A., Patel, D., Chen,Y.S., Benedict,J.B.: The role of atropisomers on the photo-reactivity and fatigue of diarylethene-based metal–organic frameworks. New J. Chem. 40(1), 101–106 (2016)

[23]

Lacomba-Perales,R., Ruiz-Fuertes, J., Errandonea,D., Martínez-García,D., Segura,A.: Optical absorption of divalent metal tungstates: correlation between the band-gap energy and the cation ionic radius. Europhys. Lett. 83(3), 37002 (2008)

[24]

Du,P., Luo,L., Yu,J.S.: Energy back transfer induced color controllable upconversion emissions in La2MoO6: Er3+/Yb3+ nanocrystals for versatile applications. Part. Part. Syst. Charact. 35(3), 1700416 (2018)

[25]

Wang,W., Li,L., Chen,H., Wei, X., Jia,J., Pan,Y., Li,Y.: Upconversion luminescence and effect of pump power on optical thermometry of Yb3+/Er3+ co-doped YOF self-crystallization glass ceramics. Opt. Mater. 135 113330 (2023)

[26]

Li,A., Xu,D., Zhang,Y., Lin, H., Yang,S., Chen,Z., Shao,Y.: Upconversion luminescence and energy-transfer mechanism of NaGd(MoO4)2:Yb3+/Er3+ microcrystals. J. Am. Ceram. Soc. 99(5), 1657–1663 (2016)

[27]

Liu,J., Deng,H., Huang,Z., Zhang, Y., Chen,D., Shao,Y.: Phonon-assisted energy back transfer-induced multicolor upconversion emission of Gd2O3: Yb3+/Er3+ nanoparticles under near-infrared excitation. Phys. Chem. Chem. Phys. 17(23), 15412–15418 (2015)

[28]

Mo,Z., Su,S., Huo,Y., Wen, H., Suchocki,A., Hakeem,D.A.: Enhanced dual mode luminescence via energy transfer in Er3+, Yb3+ co-doped β-spodumene. J. Alloys Compd. 872 159551 (2021)

[29]

Chen,G., Somesfalean, G., Liu,Y., Zhang,Z., Sun,Q., Wang,F.: Upconversion mechanism for two-color emission in rare-earthion-doped ZrO2 nanocrystals. Phys. Rev. B Condens. Matter Mater. Phys. 75(19), 195204 (2007)

[30]

Sukul,P.P., Kumar,K., Swart,H.: Erbium energy bridging upconversion mechanism studies on BAKL:Er3+/Yb3+ glass-ceramics and simultaneous enhancement of color purity of the green luminescence. Dalton Trans. 51(7), 2827–2839 (2022)

RIGHTS & PERMISSIONS

The Author(s) 2025

AI Summary AI Mindmap
PDF (1659KB)

450

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/