Progress in silicon-based reconfigurable and programmable all-optical signal processing chips

Jing Xu , Wenchan Dong , Qingzhong Huang , Yujia Zhang , Yuchen Yin , Zhenyu Zhao , Desheng Zeng , Xiaoyan Gao , Wentao Gu , Zihao Yang , Hanghang Li , Xinjie Han , Yong Geng , Kunpeng Zhai , Bei Chen , Xin Fu , Lei Lei , Xiaojun Wu , Jianji Dong , Yikai Su , Ming Li , Jianguo Liu , Ninghua Zhu , Xuhan Guo , Heng Zhou , Huashun Wen , Kun Qiu , Xinliang Zhang

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (2) : 10

PDF (14223KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (2) : 10 DOI: 10.1007/s12200-025-00154-6
REVIEW ARTICLE

Progress in silicon-based reconfigurable and programmable all-optical signal processing chips

Author information +
History +
PDF (14223KB)

Abstract

Taking the advantage of ultrafast optical linear and nonlinear effects, all-optical signal processing (AOSP) enables manipulation, regeneration, and computing of information directly in optical domain without resorting to electronics. As a promising photonic integration platform, silicon-on-insulator (SOI) has the advantage of complementary metal oxide semiconductor (CMOS) compatibility, low-loss, compact size as well as large optical nonlinearities. In this paper, we review the recent progress in the project granted to develop silicon-based reconfigurable AOSP chips, which aims to combine the merits of AOSP and silicon photonics to solve the unsustainable cost and energy challenges in future communication and big data applications. Three key challenges are identified in this project: (1) how to finely manipulate and reconfigure optical fields, (2) how to achieve ultra-low loss integrated silicon waveguides and significant enhancement of nonlinear effects, (3) how to mitigate crosstalk between optical, electrical and thermal components. By focusing on these key issues, the following major achievements are realized during the project. First, ultra-low loss silicon-based waveguides as well as ultra-high quality microresonators are developed by advancing key fabrication technologies as well as device structures. Integrated photonic filters with bandwidth and free spectral range reconfigurable in a wide range were realized to finely manipulate and select input light fields with a high degree of freedom. Second, several mechanisms and new designs that aim at nonlinear enhancement have been proposed, including optical ridge waveguides with reverse biased PIN junction, slot waveguides, multimode waveguides and parity-time symmetry coupled microresonators. Advanced AOSP operations are verified with these novel designs. Logical computations at 100 Gbit/s were demonstrated with self-developed, monolithic integrated programmable optical logic array. High-dimensional multi-value logic operations based on the four-wave mixing effect are realized. Multi-channel all-optical amplitude and phase regeneration technology is developed, and a multi-channel, multi-format, reconfigurable all-optical regeneration chip is realized. Expanding regeneration capacity via spatial dimension is also verified. Third, the crosstalk from optical as well as thermal coupling due to high-density integration are mitigated by developing novel optical designs and advanced packaging technologies, enabling high-density, small size, multi-channel and multi-functional operation with low power consumption. Finally, four programmable AOSP chips are developed, i.e., programmable photonic filter chip, programmable photonic logic operation chip, multi-dimensional all-optical regeneration chip, and multi-channel and multi-functional AOSP chip with packaging. The major achievements developed in this project pave the way toward ultra-low loss, high-speed, high-efficient, high-density information processing in future classical and non-classical communication and computing applications.

Graphical abstract

Keywords

All-optical signal processing (AOSP) / Optical nonlinearity / Low-loss silicon waveguides / Reconfigurable optical filters / Programmable optical logic array / Optical regeneration / High-density optoelectronic packaging

Cite this article

Download citation ▾
Jing Xu, Wenchan Dong, Qingzhong Huang, Yujia Zhang, Yuchen Yin, Zhenyu Zhao, Desheng Zeng, Xiaoyan Gao, Wentao Gu, Zihao Yang, Hanghang Li, Xinjie Han, Yong Geng, Kunpeng Zhai, Bei Chen, Xin Fu, Lei Lei, Xiaojun Wu, Jianji Dong, Yikai Su, Ming Li, Jianguo Liu, Ninghua Zhu, Xuhan Guo, Heng Zhou, Huashun Wen, Kun Qiu, Xinliang Zhang. Progress in silicon-based reconfigurable and programmable all-optical signal processing chips. Front. Optoelectron., 2025, 18(2): 10 DOI:10.1007/s12200-025-00154-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ji,Y., Wang,H., Cui,J., Yu,M., Yang,Z., Bai,L.: All-optical signal processing technologies in flexible optical networks. Photonic Netw. Commun. 38 (1), 14- 36 (2019)

[2]

Wabnitz,S., Eggleton,B.J.: All-optical signal processing: data communication and storage applications. Springer International Publishing, Cham (2015)

[3]

Ellis,A.D., Zhao,J., Cotter,D.: Approaching the non-linear Shannon limit. J. Lightwave Technol. 28 (4), 423- 433 (2010)

[4]

Zhong,Z., Wang,H., Ji,Y.: All-optical aggregation and deaggregation between 3× BPSK and 8QAM in HNLF with wavelength preserved. Appl. Opt. 59 (4), 1092- 1098 (2020)

[5]

Cui,J., Tan,Y., Lu,G.W., Ji,Y., Wen,H., Zhai,K., Li,M., Zhu,N.: Across-dimensional optical constellation deaggregations from QAMs to PAMs in optical transparent networks. Opt. Laser Technol. 175, 110737 (2024)

[6]

Dong,J., Zhang,X., Xu,J., Huang,D., Fu,S., Shum,P.: 40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter. Opt. Expr. 15 (6), 2907 (2007)

[7]

Fu,S., Zhong,W.D., Shum,P.P., Wen,Y.J.: All-optical NRZ-OOK-to-RZ-OOK format conversions with tunable duty cycles using nonlinear polarization rotation of a semiconductor optical amplifier. Opt. Commun. 282 (11), 2143- 2146 (2009)

[8]

Slavík,R., Parmigiani,F., Kakande,J., Lundström,C., Sjödin,M., Andrekson,P.A., Weerasuriya,R., Sygletos,S., Ellis,A.D., Grüner-Nielsen,L., Jakobsen,D., Herstrøm,S., Phelan,R., O’Gorman,J., Bogris,A., Syvridis,D., Dasgupta,S., Petropoulos,P., Richardson,D.J.: All-optical phase and amplitude regenerator for next-generation telecommunications systems. Nat. Photonics 4 (10), 690- 695 (2010)

[9]

Kakande,J., Slavík,R., Parmigiani,F., Bogris,A., Syvridis,D., Grüner-Nielsen,L., Phelan,R., Petropoulos,P., Richardson,D.J.: Multilevel quantization of optical phase in a novel coherent parametric mixer architecture. Nat. Photonics 5 (12), 748- 752 (2011)

[10]

Yang,Z., Dong,W., Fan,Z., He,S., Chen,N., Li,H., Zhou,H., Zhang,X., Xu,J.: 40 Gb/s multimode all-optical regenerator based on the low-loss silicon-based nanowaveguide. Opt. Expr. 32 (4), 6507 (2024)

[11]

Chitgarha,M.R., Khaleghi,S., Yilmaz,O.F., Tur,M., Haney,M.W., Langrock,C., Fejer,M.M., Willner,A.E.: Demonstration of channel-spacing-tunable demultiplexing of optical orthogonal-frequency-division-multiplexed subcarriers utilizing reconfigurable all-optical discrete Fourier transform. Opt. Lett. 37 (19), 3975 (2012)

[12]

Marpaung,D., Pagani,M., Morrison,B., Eggleton,B.J.: Non-linear integrated microwave photonics. J. Lightwave Technol. 32 (20), 3421- 3427 (2014)

[13]

Xue,X., Zheng,X., Zhou,B., Weiner,A.M.: Microresonator frequency combs for integrated microwave photonics. IEEE Photonics Technol. Lett. 30 (21), 1814- 1817 (2018)

[14]

Tur,M., Langrock,C., Almaiman,A., Touch,J.D., Khaleghi,S., Chitgarha,M.R., Mohajerin-Ariaei,A., Fejer,M.M., Ziyadi,M., Willner,A.E.: Reconfigurable 2-D WDM optical tapped-delay-line to correlate 20 Gbaud QPSK data. In: 39th European conference and exhibition on optical communication (ECOC 2013), London, UK. (2013)

[15]

Khaleghi,S., Chitgarha,M.R., Ziyadi,M., Daab,W., Mohajerin-Ariaei,A., Rogawski,D., Touch,J.D., Tur,M., Langrock,C., Fejer,M.M., Willner,A.E.: A tunable optical tapped-delay-line that simultaneously and independently processes multiple input WDM data signals. In: Optical fiber communication conference/national fiber optic engineers conference 2013. OSA, Anaheim, California. (2013)

[16]

Gu,W., Gao,X., Dong,W., Wang,Y., Zhou,H., Xu,J., Zhang,X.: All-optical complex-valued convolution based on four-wave mixing. Optica 11 (1), 64 (2024)

[17]

Khaleghi,S., Yilmaz,O.F., Chitgarha,M.R., Tur,M., Ahmed,N., Nuccio,S.R., Fazal,I.M., Wu,X., Haney,M.W., Langrock,C., Fejer,M.M., Willner,A.E.: High-speed correlation and equalization using a continuously tunable all-optical tapped delay line. IEEE Photonics J. 4 (4), 1220- 1235 (2012)

[18]

Vukovic,N., Healy,N., Suhailin,F.H., Mehta,P., Day,T.D., Badding,J.V., Peacock,A.C.: Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators. Sci. Rep. 3 (1), 2885 (2013)

[19]

Chai,Z., Hu,X., Wang,F., Niu,X., Xie,J., Gong,Q.: Ultrafast all-optical switching. Adv. Opt. Mater. 5 (7), 1600665 (2017)

[20]

Steiner,T.J., Castro,J.E., Chang,L., Dang,Q., Xie,W., Norman,J., Bowers,J.E., Moody,G.: Ultrabright entangled-photon-pair generation from an AlGaAs-on-insulator microring resonator. PRX Quantum 2 (1), 010337 (2021)

[21]

Ma,Z., Chen,J.Y., Li,Z., Tang,C., Sua,Y.M., Fan,H., Huang,Y.P.: Ultrabright quantum photon sources on chip. Phys. Rev. Lett. 125 (26), 263602 (2020)

[22]

Lin,Q., Agrawal,G.P.: Silicon waveguides for creating quantum-correlated photon pairs. Opt. Lett. 31 (21), 3140 (2006)

[23]

Imany,P., Jaramillo-Villegas,J.A., Odele,O.D., Han,K., Leaird,D.E., Lukens,J.M., Lougovski,P., Qi,M., Weiner,A.M.: 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Opt. Expr. 26 (2), 1825 (2018)

[24]

Yu,C., Christen,L., Luo,T., Wang,Y., Pan,Z., Yan,L.S., Willner,A.E.: All-optical XOR gate using polarization rotation in single highly nonlinear fiber. IEEE Photonics Technol. Lett. 17 (6), 1232- 1234 (2005)

[25]

Hajomer,A.A.E., Presi,M., Andriolli,N., Porzi,C., Hu,W., Contestabile,G., Yang,X.: On-chip all-optical wavelength conversion of PAM-4 signals using an integrated SOA-based turbo-switch circuit. J. Lightwave Technol. 37 (16), 3956- 3962 (2019)

[26]

Bogoni,A., Wu,X., Fazal,I., Willner,A.E.: 160 Gb/s Time-domain channel extraction/insertion and all-optical logic operations exploiting a single PPLN waveguide. J. Lightwave Technol. 27 (19), 4221- 4227 (2009)

[27]

Shen,J., Yu,S., Liao,P., Chen,Z., Gu,W., Guo,H.: All-optical full-adder based on cascaded PPLN waveguides. IEEE J. Quantum Electron. 47 (9), 1195- 1200 (2011)

[28]

Borghi,M., Castellan,C., Signorini,S., Trenti,A., Pavesi,L.: Nonlinear silicon photonics. J. Opt. 19 (9), 093002 (2017)

[29]

Ye,Z., Zhao,P., Twayana,K., Karlsson,M., Torres-Company,V., Andrekson,P.A.: Overcoming the quantum limit of optical amplification in monolithic waveguides. Sci. Adv. 7 (38), eabi8150 (2021)

[30]

Razzari,L., Duchesne,D., Ferrera,M., Morandotti,R., Chu,S., Little,B.E., Moss,D.J.: CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photonics 4 (1), 41- 45 (2010)

[31]

Xia,D., Yang,Z., Zeng,P., Zhang,B., Wu,J., Wang,Z., Zhao,J., Huang,J., Luo,L., Liu,D., Yang,S., Guo,H., Li,Z.: Integrated chalcogenide photonics for microresonator soliton combs. Laser Photonics Rev. 17 (3), 2200219 (2023)

[32]

Pu,M., Hu,H., Ottaviano,L., Semenova,E., Vukovic,D., Oxenløwe,L.K., Yvind,K.: Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing. Laser Photonics Rev. 12 (12), 1800111 (2018)

[33]

Stassen,E., Kim,C., Kong,D., Hu,H., Galili,M., Oxenløwe,L.K., Yvind,K., Pu,M.: Ultra-low power all-optical wavelength conversion of high-speed data signals in high-confinement AlGaAs-on-insulator microresonators. APL Photonics 4 (10), 100804 (2019)

[34]

Chang,L., Xie,W., Shu,H., Yang,Q.F., Shen,B., Boes,A., Peters,J.D., Jin,W., Xiang,C., Liu,S., Moille,G., Yu,S.P., Wang,X., Srinivasan,K., Papp,S.B., Vahala,K., Bowers,J.E.: Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun. 11 (1), 1331 (2020)

[35]

Ge,L., Chen,Y., Jiang,H., Li,G., Zhu,B., Liu,Y., Chen,X.: Broadband quasi-phase matching in a MgO:PPLN thin film. Photon. Res. 6 (10), 954 (2018)

[36]

Wei,J., Hu,Z., Zhang,M., Li,P., Wu,Y., Zeng,C., Tang,M., Xia,J.: All-optical wavelength conversion of a 92-Gb/s 16-QAM signal within the C-band in a single thin-film PPLN waveguide. Opt. Expr. 30 (17), 30564 (2022)

[37]

Jalali,B., Yegnanarayanan,S., Yoon,T., Yoshimoto,T., Rendina,I., Coppinger,F.: Advances in silicon-on-insulator optoelectronics. IEEE J. Sel. Top. Quantum Electron. 4 (6), 938- 947 (1998)

[38]

Bogaerts,W., Baets,R., Dumon,P., Wiaux,V., Stephan,B., Taillaert,D., Luyssaert,B., Campenhout,J.V., Bienstman,P., Thourhout,D.V.: Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol. 23 (1), 401- 412 (2005)

[39]

Pavesi,L.: Thirty years in silicon photonics: a personal view. Front. Phys. (Lausanne) 9, 786028 (2021)

[40]

Bell,M.I.: Frequency dependence of Miller’s rule for nonlinear susceptibilities. Phys. Rev. B Solid State 6 (2), 516- 521 (1972)

[41]

Boes,A., Chang,L., Langrock,C., Yu,M., Zhang,M., Lin,Q., Lončar,M., Fejer,M., Bowers,J., Mitchell,A.: Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science 379 (6627), eabj4396 (2023)

[42]

Ding,M., Zhang,M., Hong,S., Zhao,Y., Zhang,L., Wang,Y., Chen,H., Yu,Z., Gao,S., Dai,D.: High-efficiency four-wave mixing in low-loss silicon photonic spiral waveguides beyond the singlemode regime. Opt. Expr. 30 (10), 16362 (2022)

[43]

Riemensberger,J., Kuznetsov,N., Liu,J., He,J., Wang,R.N., Kippenberg,T.J.: A photonic integrated continuous-travelling-wave parametric amplifier. Nature 612 (7938), 56- 61 (2022)

[44]

Xuan,Y., Liu,Y., Varghese,L.T., Metcalf,A.J., Xue,X., Wang,P.H., Han,K., Jaramillo-Villegas,J.A., Noman,A.A., Wang,C., Kim,S., Teng,M., Lee,Y.J., Niu,B., Fan,L., Wang,J., Leaird,D.E., Weiner,A.M., Qi,M.: High-Q silicon nitride initiation. Optica 3 (11), 1171 (2016)

[45]

Li,F., Pelusi,M., Xu,D.X., Ma,R., Janz,S., Eggleton,B.J., Moss,D.J.: All-optical wavelength conversion for 10 Gb/s DPSK signals in a silicon ring resonator. Opt. Expr. 19 (23), 22410 (2011)

[46]

Monat,C., Grillet,C., Collins,M., Clark,A., Schroeder,J., Xiong,C., Li,J., O’Faolain,L., Krauss,T.F., Eggleton,B.J., Moss,D.J.: Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide. Nat. Commun. 5 (1), 3246 (2014)

[47]

Almeida,V.R., Xu,Q., Barrios,C.A., Lipson,M.: Guiding and confining light in void nanostructure. Opt. Lett. 29 (11), 1209 (2004)

[48]

Kauranen,M., Zayats,A.V.: Nonlinear plasmonics. Nat. Photonics 6 (11), 737- 748 (2012)

[49]

Abir,T., Tal,M., Ellenbogen,T.: Second-harmonic enhancement from a nonlinear plasmonic metasurface coupled to an optical waveguide. Nano Lett. 22 (7), 2712- 2717 (2022)

[50]

Koos,C., Vorreau,P., Vallaitis,T., Dumon,P., Bogaerts,W., Baets,R., Esembeson,B., Biaggio,I., Michinobu,T., Diederich,F., Freude,W., Leuthold,J.: All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat. Photonics 3 (4), 216- 219 (2009)

[51]

Wang,Y., He,S., Gao,X., Ye,P., Lei,L., Dong,W., Zhang,X., Xu,P.: Enhanced optical nonlinearity in a silicon-organic hybrid slot waveguide for all-optical signal processing. Photon. Res. 10 (1), 50- 58 (2022)

[52]

Dong,P., Qian,W., Liao,S., Liang,H., Kung,C.C., Feng,N.N., Shafiiha,R., Fong,J., Feng,D., Krishnamoorthy,A.V., Asghari,M.: Low loss shallow-ridge silicon waveguides. Opt. Expr. 18 (14), 14474- 14479 (2010)

[53]

Ji,X., Barbosa,F.A.S., Roberts,S.P., Dutt,A., Cardenas,J., Okawachi,Y., Bryant,A., Gaeta,A.L., Lipson,M.: Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4 (6), 619- 624 (2017)

[54]

Puckett,M.W., Liu,K., Chauhan,N., Zhao,Q., Cheng,H., Blumenthal,D.J.: 422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nat. Commun. 12 (1), 934 (2021)

[55]

Qiu,H., Zhou,F., Qie,J., Yao,Y., Hu,X., Zhang,Y., Xiao,X., Yu,Y., Dong,J., Zhang,X.: A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator. J. Lightwave Technol. 36 (19), 4312- 4318 (2018)

[56]

Guillén-Torres,M.A., Caverley,M., Cretu,E., Jaeger,N.A., Chrostowski,L.: Large-area, high-Q SOI ring resonators. In 2014 IEEE photonics conference 336-337 IEEE. (2014)

[57]

Zhang,L., Jie,L., Zhang,M., Wang,Y., Xie,Y., Shi,Y., Dai,D.: Ultrahigh-Q silicon racetrack resonators. Photon. Res. 8 (5), 684- 689 (2020)

[58]

Lee,K.K., Lim,D.R., Kimerling,L.C., Shin,J., Cerrina,F.: Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction. Opt. Lett. 26 (23), 1888- 1890 (2001)

[59]

Biberman,A., Shaw,M.J., Timurdogan,E., Wright,J.B., Watts,M.R.: Ultralow-loss silicon ring resonators. Opt. Lett. 37 (20), 4236- 4238 (2012)

[60]

Takahashi,J.I., Tsuchizawa,T., Watanabe,T., Itabashi,S.I.: Oxidation-induced improvement in the sidewall morphology and cross-sectional profile of silicon wire waveguides. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom 22 (5), 2522- 2525 (2004)

[61]

Xie,W., Chang,L., Shu,H., Norman,J.C., Peters,J.D., Wang,X., Bowers,J.E.: Ultrahigh-Q AlGaAs-on-insulator microresonators for integrated nonlinear photonics. Opt. Expr. 28 (22), 32894- 32906 (2020)

[62]

Hung,S.C., Liang,E.Z., Lin,C.F.: Silicon waveguide sidewall smoothing by KrF excimer laser reformation. J. Lightwave Technol. 27 (7), 887- 892 (2009)

[63]

Zhang,B., Al Qubaisi,K., Cherchi,M., Harjanne,M., Ehrlichman,Y., Khilo,A.N., PopovićM.A.: Compact multi-million Q resonators and 100 MHz passband filter bank in a thick-SOI photonics platform. Opt. Lett. 45 (11), 3005- 3008 (2020)

[64]

Huang,Q., Yu,J.: Coherent interaction between two orthogonal travelling-wave modes in a microdonut resonator for filtering and buffering applications. Opt. Expr. 22 (21), 25171- 25182 (2014)

[65]

Naweed,A.: Photonic coherence effects from dual-waveguide coupled pair of co-resonant microring resonators. Opt. Expr. 23 (10), 12573- 12581 (2015)

[66]

Huang,G., Fu,M., Qi,J., Pan,J., Yi,W., Li,X.: Design of broadband flat optical frequency comb based on cascaded sign-alternated dispersion tellurite microstructure fiber. Micromachines (Basel) 12 (10), 1252 (2021)

[67]

Buscaino,B., Zhang,M., Lončar,M., Kahn,J.M.: Design of efficient resonator-enhanced electro-optic frequency comb generators. J. Lightwave Technol. 38 (6), 1400- 1413 (2020)

[68]

Zhang,Y., Liu,Q., Mei,C., Zeng,D., Huang,Q., Zhang,X.: Proposal and demonstration of a controllable Q factor in directly coupled microring resonators for optical buffering applications. Photon. Res. 9 (10), 2006- 2015 (2021)

[69]

Elshaari,A.W., Aboketaf,A., Preble,S.F.: Controlled storage of light in silicon cavities. Opt. Expr. 18 (3), 3014- 3022 (2010)

[70]

Vlasov,Y., Green,W.M.J., Xia,F.: High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat. Photonics 2 (4), 242- 246 (2008)

[71]

Qavi,A.J., Washburn,A.L., Byeon,J.Y., Bailey,R.C.: Label-free technologies for quantitative multiparameter biological analysis. Anal. Bioanal. Chem. 394 (1), 121- 135 (2009)

[72]

Deng,X., Yan,L., Jiang,H., Feng,X., Pan,W., Luo,B.: Polarization-insensitive and tunable silicon Mach-Zehnder wavelength filters with flat transmission passband. IEEE Photonics J. 10 (3), 1- 7 (2018)

[73]

Gerstel,O., Jinno,M., Lord,A., Yoo,S.B.: Elastic optical networking: a new dawn for the optical layer? IEEE Commun. Mag. 50 (2), s12- s20 (2012)

[74]

Zhou,R., Pascual,M.D.G., Anandarajah,P.M., Shao,T., Smyth,F., Barry,L.P.: Flexible wavelength de-multiplexer for elastic optical networking. Opt. Lett. 41 (10), 2241- 2244 (2016)

[75]

Ong,J.R., Kumar,R., Mookherjea,S.: Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters. IEEE Photonics Technol. Lett. 25 (16), 1543- 1546 (2013)

[76]

Dai,T., Shen,A., Wang,G., Wang,Y., Li,Y., Jiang,X., Yang,J.: Bandwidth and wavelength tunable optical passband filter based on silicon multiple microring resonators. Opt. Lett. 41 (20), 4807- 4810 (2016)

[77]

Liu,L., Xue,W., Jin,X., Yue,J., Yu,Z., Zhou,L.: Bandwidth and wavelength tunable all-optical filter based on cascaded optomechanical microring resonators. IEEE Photonics J. 11 (1), 1- 10 (2019)

[78]

Poulopoulos,G., Giannoulis,G., Iliadis,N., Kalavrouziotis,D., Apostolopoulos,D., Avramopoulos,H.: Flexible filtering element on SOI with wide bandwidth tunability and full FSR tuning. J. Lightwave Technol. 37 (2), 300- 306 (2019)

[79]

Orlandi,P., Morichetti,F., Strain,M.J., Sorel,M., Bassi,P., Melloni,A.: Photonic integrated filter with widely tunable bandwidth. J. Lightwave Technol. 32 (5), 897- 907 (2014)

[80]

Jiang,X., Wu,J., Yang,Y., Pan,T., Mao,J., Liu,B., Liu,R., Zhang,Y., Qiu,C., Tremblay,C., Su,Y.: Wavelength and bandwidth- tunable silicon comb filter based on Sagnac loop mirrors with Mach−Zehnder interferometer couplers. Opt. Expr. 24 (3), 2183- 2188 (2016)

[81]

Liao,S., Ding,Y., Peucheret,C., Yang,T., Dong,J., Zhang,X.: Integrated programmable photonic filter on the silicon-on-insulator platform. Opt. Expr. 22 (26), 31993- 31998 (2014)

[82]

St-Yves,J., Bahrami,H., Jean,P., LaRochelle,S., Shi,W.: Widely bandwidth-tunable silicon filter with an unlimited free-spectral range. Opt. Lett. 40 (23), 5471- 5474 (2015)

[83]

Jiang,J., Qiu,H., Wang,G., Li,Y., Dai,T., Wang,X., Yu,H., Yang,J., Jiang,X.: Broadband tunable filter based on the loop of multimode Bragg grating. Opt. Expr. 26 (1), 559- 566 (2018)

[84]

Mora,J., Chen,L.R., Capmany,J.: Single-bandpass microwave photonic filter with tuning and reconfiguration capabilities. J. Lightwave Technol. 26 (15), 2663- 2670 (2008)

[85]

Jiang,Y., Shum,P.P., Zu,P., Zhou,J., Bai,G., Xu,J., Zhou,Z., Li,H., Wang,S.: A selectable multiband bandpass microwave photonic filter. IEEE Photonics J. 5 (3), 5500509 (2013)

[86]

Zhang,Y., Hu,X., Chen,D., Wang,L., Li,M., Feng,P., Xiao,X., Yu,S.: Design and demonstration of ultra-high-Q silicon microring resonator based on a multi-mode ridge waveguide. Opt. Lett. 43 (7), 1586- 1589 (2018)

[87]

Zhang,L., Hong,S., Wang,Y., Yan,H., Xie,Y., Chen,T., Zhang,M., Yu,Z., Shi,Y., Liu,L., Dai,D.: Ultralow-loss silicon photonics beyond the singlemode regime. Laser Photonics Rev. 16 (4), 2100292 (2022)

[88]

Zhang,Y., Zhong,K., Zhou,X., Tsang,H.K.: Broadband high-Q multimode silicon concentric racetrack resonators for widely tunable Raman lasers. Nat. Commun. 13 (1), 3534 (2022)

[89]

Chen,L., Sherwood-Droz,N., Lipson,M.: Compact bandwidth-tunable microring resonators. Opt. Lett. 32 (22), 3361- 3363 (2007)

[90]

Liu,M., Zhao,Y., Wang,X., Zhang,X., Gao,S., Dong,J., Cai,X.: Widely tunable fractional-order photonic differentiator using a Mach−Zenhder interferometer coupled microring resonator. Opt. Expr. 25 (26), 33305- 33314 (2017)

[91]

Xu,J., Zhang,Y., Guo,X., Huang,Q., Zhang,X., Su,Y.: Ultra-narrow passband-tunable filter based on a high-Q silicon racetrack resonator. Opt. Lett. 46 (22), 5575- 5578 (2021)

[92]

Zhang,Y., Zhong,K., Tsang,H.K.: Compact multimode silicon racetrack resonators for high-efficiency tunable Raman lasers. Appl. Phys. Lett. 122 (8), 081101 (2023)

[93]

Lakshmijayasimha,P.D., Kaszubowska-Anandarajah,A., Martin,E.P., Hammad,M.N., Landais,P., Anandarajah,P.M.: Characterization of a multifunctional active demultiplexer for optical frequency combs. Opt. Laser Technol. 134, 106637 (2021)

[94]

Bogaerts,W., Pérez,D., Capmany,J., Miller,D.A., Poon,J., Englund,D., Morichetti,F., Melloni,A.: Programmable photonic circuits. Nature 586 (7828), 207- 216 (2020)

[95]

Touch,J., Badawy,A.H., Sorger,V.J.: Optical computing. Nanophotonics 6 (3), 503- 505 (2017)

[96]

Zhang,L., Ji,R., Jia,L., Yang,L., Zhou,P., Tian,Y., Chen,P., Lu,Y., Jiang,Z., Liu,Y., Fang,Q., Yu,M.: Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators. Opt. Lett. 35 (10), 1620- 1622 (2010)

[97]

Ying,Z., Feng,C., Zhao,Z., Soref,R., Pan,D., Chen,R.T.: Integrated multi-operand electro-optic logic gates for optical computing. Appl. Phys. Lett. 115 (17), 171104 (2019)

[98]

Tian,Y., Zhao,Y., Chen,W., Guo,A., Li,D., Zhao,G., Liu,Z., Xiao,H., Liu,G., Yang,J.: Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators. Opt. Express 23 (20), 26342- 26355 (2015)

[99]

Tian,Y., Liu,Z., Xiao,H., Zhao,G., Liu,G., Yang,J., Ding,J., Zhang,L., Yang,L.: Experimental demonstration of a reconfigurable electro-optic directed logic circuit using cascaded carrier-injection micro-ring resonators. Sci. Rep. 7 (1), 6410 (2017)

[100]

Ying,Z., Wang,Z., Zhao,Z., Dhar,S., Pan,D.Z., Soref,R., Chen,R.T.: Comparison of microrings and microdisks for high-speed optical modulation in silicon photonics. Appl. Phys. Lett. 112 (11), 111108 (2018)

[101]

Ying,Z., Wang,Z., Zhao,Z., Dhar,S., Pan,D.Z., Soref,R., Chen,R.T.: Silicon microdisk-based full adders for optical computing. Opt. Lett. 43 (5), 983- 986 (2018)

[102]

Ying,Z., Feng,C., Zhao,Z., Dhar,S., Dalir,H., Gu,J., Chen,R.T.: Electronic-photonic arithmetic logic unit for high-speed computing. Nat. Commun. 11 (1), 2154 (2020)

[103]

Feng,C., Ying,Z., Zhao,Z., Gu,J., Pan,D.Z., Chen,R.T.: Wavelength-division-multiplexing (WDM)-based integrated electronic-photonic switching network (EPSN) for high-speed data processing and transportation: High-speed optical switching network. Nanophotonics 9 (15), 4579- 4588 (2020)

[104]

Feng,C., Ying,Z., Zhao,Z., Gu,J., Pan,D.Z., Chen,R.T.: Toward high-speed and energy-efficient computing: A WDM-based scalable on-chip silicon integrated optical comparator. Laser Photonics Rev. 15 (8), 2000275 (2021)

[105]

Xu,J., Zhang,X., Zhang,Y., Dong,J., Liu,D., Huang,D.: Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals: design and experiments. J. Lightwave Technol. 27 (23), 5268- 5275 (2009)

[106]

Lei,L., Dong,J., Yu,Y., Tan,S., Zhang,X.: All-optical canonical logic units-based programmable logic array (CLUs-PLA) using semiconductor optical amplifiers. J. Lightwave Technol. 30 (22), 3532- 3539 (2012)

[107]

Qiu,J., Sun,K., Rochette,M., Chen,L.R.: Reconfigurable alloptical multilogic gate (XOR, AND, and OR) based on cross-phase modulation in a highly nonlinear fiber. IEEE Photonics Technol. Lett. 22 (16), 1199- 1201 (2010)

[108]

Dai,B., Shimizu,S., Wang,X., Wada,N.: Simultaneous alloptical half-adder and half-subtracter based on two semiconductor optical amplifiers. IEEE Photonics Technol. Lett. 25 (1), 91- 93 (2013)

[109]

Chen,X., Huo,L., Zhao,Z., Zhuang,L., Lou,C.: Reconfigurable all-optical logic gates using single semiconductor optical amplifier at 100-Gb/s. IEEE Photonics Technol. Lett. 28 (21), 2463- 2466 (2016)

[110]

Dong,W., Lei,L., Chen,L., Yu,Y., Zhang,X.: All-optical 2×2-bit multiplier at 40 Gb/s based on canonical logic units-based programmable logic array (CLUs-PLA). J. Lightwave Technol. 38 (20), 5586- 5594 (2020)

[111]

Dong,W., Gu,W., Gao,X., Yu,Y., Dong,J., Lei,L., Zhang,X.: Simultaneous full set of three-input canonical logic units in a single nonlinear device for an all-optical programmable logic array. Opt. Expr. 30 (23), 41922- 41932 (2022)

[112]

Hou,J., Chen,L., Dong,W., Zhang,X.: 40 Gb/s reconfigurable optical logic gates based on FWM in silicon waveguide. Opt. Expr. 24 (3), 2701- 2711 (2016)

[113]

Dong,W., Huang,Z., Hou,J., Santos,R., Zhang,X.: Integrated all-optical programmable logic array based on semiconductor optical amplifiers. Opt. Lett. 43 (9), 2150- 2153 (2018)

[114]

Cheng,Z., Dong,J., Zhang,X.: Ultracompact optical switch using a single semisymmetric Fano nanobeam cavity. Opt. Lett. 45 (8), 2363- 2366 (2020)

[115]

Soref,R., De Leonardis,F., Passaro,V.M.: Compact resonant 2× 2 crossbar switch using three coupled waveguides with a central nanobeam. Opt. Expr. 29 (6), 8751- 8762 (2021)

[116]

Shamir,J.: Parallel optical logic operations on reversible networks. Opt. Commun. 291, 133- 137 (2013)

[117]

Miller,D.A.: Analyzing and generating multimode optical fields using self-configuring networks. Optica 7 (7), 794- 801 (2020)

[118]

Zhou,H., Zhao,Y., Wang,X., Gao,D., Dong,J., Zhang,X.: Self-configuring and reconfigurable silicon photonic signal processor. ACS Photonics 7 (3), 792- 799 (2020)

[119]

Shen,Y., Harris,N.C., Skirlo,S., Prabhu,M., Baehr-Jones,T., Hochberg,M., Sun,X., Zhao,S., Larochelle,H., Englund,D., SoljačićM.: Deep learning with coherent nanophotonic circuits. Nat. Photonics 11 (7), 441- 446 (2017)

[120]

Dong,W., Hou,J., Zhang,X.: Investigation on expanding the computing capacity of optical programmable logic array based on canonical logic units. J. Lightwave Technol. 36 (18), 3949- 3958 (2018)

[121]

Lee,B.G., Biberman,A., Turner-Foster,A.C., Foster,M.A., Lipson,M., Gaeta,A.L., Bergman,K.: Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides. IEEE Photonics Technol. Lett. 21 (3), 182- 184 (2009)

[122]

Gao,X., Gu,W., Dong,W., Zhou,H., Lei,L., Chen,L., Yu,Y., Dong,J., Zhang,X.: Seven-channel all-optical reconfigurable canonical logic units multicasting at 40 Gb/s based on a nonlinearity-enhanced silicon waveguide. Opt. Expr. 30 (18), 32650- 32659 (2022)

[123]

Moroney,N., Del Bino,L., Woodley,M.T., Ghalanos,G.N., Silver,J.M., Svela,A.Ø., Zhang,S., Del’Haye,P.: Logic gates based on interaction of counterpropagating light in microresonators. J. Lightwave Technol. 38 (6), 1414- 1419 (2020)

[124]

Essiambre,R.J., Kramer,G., Winzer,P.J., Foschini,G.J., Goebel,B.: Capacity limits of optical fiber networks. J. Lightwave Technol. 28 (4), 662- 701 (2010)

[125]

Liu,X., Chandrasekhar,S., Winzer,P.J.: Digital signal processing techniques enabling multi-Tb\/s superchannel transmission: an overview of recent advances in DSP-enabled superchannels. IEEE Signal Process. Mag. 31 (2), 16- 24 (2014)

[126]

Temprana,E., Myslivets,E., Kuo,B.P., Liu,L., Ataie,V., Alic,N., Radic,S.: Overcoming Kerr-induced capacity limit in optical fiber transmission. Science 348 (6242), 1445- 1448 (2015)

[127]

Ip,E.M., Kahn,J.M.: Fiber impairment compensation using coherent detection and digital signal processing. J. Lightwave Technol. 28 (4), 502- 519 (2010)

[128]

Tong,Z., Lundström,C., Andrekson,P.A., McKinstrie,C.J., Karlsson,M., Blessing,D.J., Tipsuwannakul,E., Puttnam,B.J., Toda,H., Grüner-Nielsen,L.: Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers. Nat. Photonics 5 (7), 430- 436 (2011)

[129]

Olsson,S.L., Corcoran,B., Lundström,C., Eriksson,T.A., Karlsson,M., Andrekson,P.A.: Phase-sensitive amplified transmission links for improved sensitivity and nonlinearity tolerance. J. Lightwave Technol. 33 (3), 710- 721 (2015)

[130]

Olsson,S.L., Karlsson,M., Andrekson,P.A.: Nonlinear phase noise mitigation in phase-sensitive amplified transmission systems. Opt. Expr. 23 (9), 11724- 11740 (2015)

[131]

Umeki,T., Asobe,M., Takenouchi,H.: In-line phase sensitive amplifier based on PPLN waveguides. Opt. Expr. 21 (10), 12077- 12084 (2013)

[132]

Umeki,T., Tadanaga,O., Asobe,M., Miyamoto,Y., Takenouchi,H.: First demonstration of high-order QAM signal amplification in PPLN-based phase sensitive amplifier. Opt. Expr. 22 (3), 2473- 2482 (2014)

[133]

Lundström,C., Corcoran,B., Karlsson,M., Andrekson,P.A.: Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation. Opt. Expr. 20 (19), 21400- 21412 (2012)

[134]

Andrekson,P.A., Karlsson,M.: Fiber-based phase-sensitive optical amplifiers and their applications. Adv. Opt. Photonics 12 (2), 367- 428 (2020)

[135]

Porzi,C., Bogoni,A., Contestabile,G.: Regeneration of DPSK signals in a saturated SOA. IEEE Photonics Technol. Lett. 24 (18), 1597- 1599 (2012)

[136]

Liebig,E., Sackey,I., Richter,T., Gajda,A., Peczek,A., Zimmermann,L., Petermann,K., Schubert,C.: Performance evaluation of a silicon waveguide for phase regeneration of a QPSK signal. J. Lightwave Technol. 35 (6), 1149- 1156 (2017)

[137]

Olsson,S.L., Eliasson,H., Astra,E., Karlsson,M., Andrekson,P.A.: Long-haul optical transmission link using low-noise phase-sensitive amplifiers. Nat. Commun. 9 (1), 2513 (2018)

[138]

Ettabib,M.A., Bottrill,K., Parmigiani,F., Kapsalis,A., Bogris,A., Brun,M., Labeye,P., Nicoletti,S., Hammani,K., Syvridis,D., Richardson,D.J., Petropoulos,P.: All-optical phase regeneration with record PSA extinction ratio in a low-birefringence silicon germanium waveguide. J. Lightwave Technol. 34 (17), 3993- 3998 (2016)

[139]

Karlsson,M.: Transmission systems with low noise phase-sensitive parametric amplifiers. J. Lightwave Technol. 34 (5), 1411- 1423 (2016)

[140]

Boggio,J.C., Marconi,J.D., Fragnito,H.L.: Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions. J. Lightwave Technol. 23 (11), 3808- 3814 (2005)

[141]

Anderson,B., Robin,C., Flores,A., Dajani,I.: Experimental study of SBS suppression via white noise phase modulation. In: Fiber Lasers XI: technology, systems, and applications. 8961, 362-368 SPIE. (2014)

[142]

Zhao,P., Ye,Z., Karlsson,M., Torres-Company,V., Andrekson,P.A.: Low-noise phase-sensitive parametric amplifiers based on integrated silicon-nitride-waveguides for optical signal processing. J. Lightwave Technol. 40 (6), 1847- 1854 (2022)

[143]

Vazimali,M.G., Fathpour,S.: Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv. Photonics 4 (3), 034001 (2022)

[144]

Bottrill,K.R.H., Kakarla,R., Parmigiani,F., Venkitesh,D., Petropoulos,P.: Phase regeneration of QPSK signal in SOA using single-stage, wavelength converting PSA. IEEE Photonics Technol. Lett. 28 (2), 205- 208 (2016)

[145]

Croussore,K.A., Li,G.: Phase-regenerative wavelength conversion for BPSK and DPSK signals. IEEE Photonics Technol. Lett. 21 (2), 70- 72 (2009)

[146]

Guan,P., Da Ros,F., Lillieholm,M., Kjøller,N.K., Hu,H., Røge,K.M., Galili,M., Morioka,T., Oxenløwe,L.K.: Scalable WDM phase regeneration in a single phase-sensitive amplifier through optical time lenses. Nat. Commun. 9 (1), 1049 (2018)

[147]

Long,Y., Wang,A., Zhou,L., Wang,J.: All-optical wavelength conversion and signal regeneration of PAM-4 signal using a silicon waveguide. Opt. Expr. 24 (7), 7158- 7167 (2016)

[148]

Salem,R., Foster,M.A., Turner,A.C., Geraghty,D.F., Lipson,M., Gaeta,A.L.: Signal regeneration using low-power four-wave mixing on silicon chip. Nat. Photonics 2 (1), 35- 38 (2008)

[149]

Morichetti,F., Canciamilla,A., Ferrari,C., Samarelli,A., Sorel,M., Melloni,A.: Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion. Nat. Commun. 2 (1), 296 (2011)

[150]

Zeng,X., Gentry,C.M., PopovićM.A.: Four-wave mixing in silicon coupled-cavity resonators with port-selective, orthogonal supermode excitation. Opt. Lett. 40 (9), 2120- 2123 (2015)

[151]

Kim,C., Lu,X., Kong,D., Chen,N., Chen,Y., Oxenløwe,L.K., Yvind,K., Zhang,X., Yang,L., Pu,M., Xu,J.: Parity-time symmetry enabled ultra-efficient nonlinear optical signal processing. eLight 4, 6 (2024)

[152]

Xia,Y., Yang,S., Niu,J., Fu,X., Yang,L.: Strict non-blocking four-port optical router for mesh photonic network-on-chip. J. Semicond. 43 (9), 092301 (2022)

[153]

Tao,Z., Tao,Y., Jin,M., Qin,J., Chen,R., Shen,B., Wu,Y., Shu,H., Yu,S., Wang,X.: Highly reconfigurable silicon integrated microwave photonic filter towards next-generation wireless communication. Photon. Res. 11 (5), 682- 694 (2023)

[154]

Spyropoulou,M., Pleros,N., Vyrsokinos,K., Apostolopoulos,D., Bougioukos,M., Petrantonakis,D., Miliou,A., Avramopoulos,H.: 40 Gb/s NRZ wavelength conversion using a differentially-biased SOA-MZI: theory and experiment. J. Lightwave Technol. 29 (10), 1489- 1499 (2011)

[155]

Zhuang,L., Roeloffzen,C.G., Hoekman,M., Boller,K.J., Lowery,A.J.: Programmable photonic signal processor chip for radiofrequency applications. Optica 2 (10), 854- 859 (2015)

[156]

Pérez,D., Gasulla,I., Crudgington,L., Thomson,D.J., Khokhar,A.Z., Li,K., Cao,W., Mashanovich,G.Z., Capmany,J.: Multipurpose silicon photonics signal processor core. Nat. Commun. 8 (1), 636 (2017)

[157]

Liu,W., Li,M., Guzzon,R.S., Norberg,E.J., Parker,J.S., Lu,M., Coldren,L.A., Yao,J.: A fully reconfigurable photonic integrated signal processor. Nat. Photonics 10 (3), 190- 195 (2016)

[158]

Zhang,W., Yao,J.: A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing. Nat. Commun. 9 (1), 1396 (2018)

[159]

Zhang,W., Yao,J.: Photonic integrated field-programmable disk array signal processor. Nat. Commun. 11 (1), 406 (2020)

[160]

Tan,M., Xu,J., Liu,S., Feng,J., Zhang,H., Yao,C., Chen,S., Guo,H., Han,G., Wen,Z., Chen,B., He,Y., Zheng,X., Ming,D., Tu,Y., Fu,Q., Qi,N., Li,D., Geng,L., Wen,S., Yang,F., He,H., Liu,F., Xue,H., Wang,Y., Qiu,C., Mi,G., Li,Y., Chang,T., Lai,M., Zhang,L., Hao,Q., Qin,M.: Co-packaged optics (CPO): status, challenges, and solutions. Front Optoelectron. 16 (1), 1 (2023)

[161]

Li,T., Hou,J., Yan,J., Liu,R., Yang,H., Sun,Z.: Chiplet heterogeneous integration technology—status and challenges. Electronics (Basel) 9 (4), 670 (2020)

[162]

Ohira,K., Kobayashi,K., Iizuka,N., Yoshida,H., Ezaki,M., Uemura,H., Kojima,A., Nakamura,K., Furuyama,H., Shibata,H.: On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide. Opt. Expr. 18 (15), 15440- 15447 (2010)

[163]

Hatori,N., Shimizu,T., Okano,M., Ishizaka,M., Yamamoto,T., Urino,Y., Mori,M., Nakamura,T., Arakawa,Y.: A hybrid integrated light source on a silicon platform using a trident spot-size converter. J. Lightwave Technol. 32 (7), 1329- 1336 (2014)

[164]

De Valicourt,G., Chang,C.M., Lee,J., Eggleston,M.S., Zhu,C., Sinsky,J.H., Kim,K., Dong,P., Maho,A., Brenot,R., Chen,Y.K.: Integrated hybrid wavelength-tunable III-V/silicon transmitter based on a ring-assisted Mach-Zehnder interferometer modulator. J. Lightwave Technol. 36 (2), 204- 209 (2018)

[165]

Puckett,M.W., Krueger,N.A.: Broadband, ultrahigh efficiency fiber-to-chip coupling via multilayer nanophotonics. Appl. Opt. 60 (15), 4340- 4344 (2021)

[166]

Padmaraju,K., Bergman,K.: Resolving the thermal challenges for silicon microring resonator devices. Nanophotonics 3 (4-5), 269- 281 (2014)

[167]

Chen,S., Shi,Y., He,S., Dai,D.: Low-loss and broadband 2× 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. Opt. Lett. 41 (4), 836- 839 (2016)

[168]

Van Campenhout,J., Green,W.M., Vlasov,Y.A.: Design of a digital, ultra-broadband electro-optic switch for reconfigurable optical networks-on-chip. Opt. Express 17 (26), 23793- 23808 (2009)

[169]

Birks,T.A., Russell,P.S.J., Culverhouse,D.O.: The acousto-optic effect in single-mode fiber tapers and couplers. J. Lightwave Technol. 14 (11), 2519- 2529 (1996)

[170]

Freiser,M.: A survey of magnetooptic effects. IEEE Trans. Magn. 4 (2), 152- 161 (1968)

[171]

Cocorullo,G., Rendina,I.: Thermo-optical modulation at 1.5 μm in silicon etalon. Electron. Lett. 28 (1), 83- 85 (1992)

[172]

Holland,M.G.: Analysis of lattice thermal conductivity. Phys. Rev. 132 (6), 2461- 2471 (1963)

[173]

Gao,F., Wang,Y., Cao,G., Jia,X., Zhang,F.: Improvement of sidewall surface roughness in silicon-on-insulator rib waveguides. Appl. Phys. B 81 (5), 691- 694 (2005)

[174]

Bellegarde,C., Pargon,E., Sciancalepore,C., Petit-Etienne,C., Hugues,V., Robin-Brosse,D., Hartmann,J.M., Lyan,P.: Improvement of sidewall roughness of submicron SOI wave-guides by hydrogen plasma and annealing. IEEE Photonics Technol. Lett. 30 (7), 591- 594 (2018)

[175]

Sparacin,D.K., Spector,S.J., Kimerling,L.C.: Silicon waveguide sidewall smoothing by wet chemical oxidation. J. Lightwave Technol. 23 (8), 2455- 2461 (2005)

[176]

Wang,X., Zhou,L., Li,R., Xie,J., Lu,L., Wu,K., Chen,J.: Continuously tunable ultra-thin silicon waveguide optical delay line. Optica 4 (5), 507- 515 (2017)

[177]

Wen,H.S., Cui,J.B., Zhou,H., Chen,Y.F., Jin,Y., Xu,B.R., Zhai,K.P., Sun,J.Z., Guo,Y.Y., Wu,Y.R., Chen,W., Chen,W., Wang,X., Zhu,N.H., Lu,G.W., Ji,G.J., Zhou,D.C., Cheng,Y.K., Yang,D., Li,M.: 100 Gb/s NRZ OOK signal regeneration using four-wave mixing in a silicon waveguide with reverse-biased pin junction. Opt. Expr. 30 (21), 38077- 38094 (2022)

[178]

Zhao,W., Peng,Y., Cao,X., Zhao,S., Liu,R., Wei,Y., Liu,D., Yi,X., Han,S., Wan,Y., Li,K., Wu,G., Wang,J., Shi,Y., Dai,D.: 96-Channel on-chip reconfigurable optical add-drop multiplexer for multi-dimensional multiplexing systems. Nanophotonics 11 (18), 4299- 4313 (2022)

[179]

Li,M., Yin,P., Liu,Z., Dong,F., Sui,L., Ma,W., Wang,T.: Enhanced four-wave mixing in borophene-microfiber waveguides at telecom C-band. Appl. Opt. 61 (5), 1261- 1267 (2022)

[180]

Long,Y., Gui,C., Wang,A., Hu,X., Zhu,L., Zhou,L., Wang,J.: All-optical three-input simultaneous multicasted quaternary addition/subtraction using non-degenerate FWM in a silicon waveguide and 20 Gibt/s QPSK signal. In: Optical fiber communication conference, Th2A-6. Optica Publishing Group. (2016)

[181]

He,A., Guo,X., Wang,T., Su,Y.: Ultracompact fiber-to-chip metamaterial edge coupler. ACS Photonics 8 (11), 3226- 3233 (2021)

[182]

Zhai,K., Jin,Y., Chen,Y., Chen,S., Wang,X., Wen,H., Zhu,N.: Thermal analysis and hybrid packaging design of SOI based all optical signal processing chip. In: 2021 Asia Communications and Photonics Conference (ACP), 1-3. IEEE. (2021)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF (14223KB)

1404

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/