Simulation study of reducing reflection losses in all-perovskite tandem solar cells through dual serrated structure

Wenjiang Ye , Aoyue Chen , Ping Fu , Jiang Tang , Chao Chen

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (2) : 9

PDF (1678KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (2) : 9 DOI: 10.1007/s12200-025-00153-7
RESEARCH ARTICLE

Simulation study of reducing reflection losses in all-perovskite tandem solar cells through dual serrated structure

Author information +
History +
PDF (1678KB)

Abstract

The power conversion efficiency of all-perovskite tandem solar cells is predominantly constrained by optical absorption losses, especially reflection losses. In this simulation study, we propose the optimization of a dual-interface serrated microstructure to mitigate these optical reflection losses in all-perovskite tandem solar cells. By adjusting the geometry of the periodic serrated structures at both the front interface and the back electrode, we enhance light absorption in the wide-bandgap perovskite layer and promote light scattering in the narrow-bandgap perovskite layer. The structural modification reduces the reflection-induced photocurrent density loss from 4.47 to 3.65 mA cm-2. It is expected to boost the efficiency of all-perovskite tandem solar cells to approximately 31.13%, representing a 3.41% increase. The dual-interface optimization effectively suppresses reflection losses and improves the overall photocurrent of all-perovskite tandem solar cells. These results offer a promising strategy for minimizing optical losses and enhancing device performance in all-perovskite tandem solar cells.

Graphical abstract

Keywords

Reflection loss / Tandem solar cells / Perovskite / Microstructure

Cite this article

Download citation ▾
Wenjiang Ye, Aoyue Chen, Ping Fu, Jiang Tang, Chao Chen. Simulation study of reducing reflection losses in all-perovskite tandem solar cells through dual serrated structure. Front. Optoelectron., 2025, 18(2): 9 DOI:10.1007/s12200-025-00153-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Green, M.A. , Dunlop, E.D. , Yoshita, M. , Kopidakis, N. , Bothe, K. , Siefer, G. , Hao, X. , Jiang, J.Y. : Solar cell efficiency tables (version 65). Prog. Photovolt. Res. Appl. 33 (1), 3- 15 (2025)

[2]

Gao, Y. , Lin, R. , Xiao, K. , Luo, X. , Wen, J. , Yue, X. , Tan, H. : Performance optimization of monolithic all-perovskite tandem solar cells under standard and real-world solar spectra. Joule 6 (8), 1944- 1963 (2022)

[3]

Wang, Y. , Lin, R. , Liu, C. , Wang, X. , Chosy, C. , Haruta, Y. , Bui, A.D. , Li, M. , Sun, H. , Zheng, X. , Luo, H. , Wu, P. , Gao, H. , Sun, W. , Nie, Y. , Zhu, H. , Zhou, K. , Nguyen, H.T. , Luo, X. , Li, L. , Xiao, C. , Saidaminov, M.I. , Stranks, S.D. , Zhang, L. , Tan, H. : Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature 635 (8040), 867- 873 (2024)

[4]

Chen, B. , Yu, Z. , Onno, A. , Yu, Z. , Chen, S. , Wang, J. , Holman, Z.C. , Huang, J. : Bifacial all-perovskite tandem solar cells. Sci. Adv. 8 (47), eadd0377 (2022)

[5]

Lin, R. , Xiao, K. , Qin, Z. , Han, Q. , Zhang, C. , Wei, M. , Saidaminov, M.I. , Gao, Y. , Xu, J. , Xiao, M. , Li, A. , Zhu, J. , Sargent, E.H. , Tan, H. : Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4 (10), 864- 873 (2019)

[6]

Ge, Y. , Zheng, L. , Wang, H. , Gao, J. , Yao, F. , Wang, C. , Li, G. , Guan, H. , Wang, S. , Cui, H. , Ye, F. , Shao, W. , Zheng, Z. , Yu, Z. , Wang, J. , Xu, Z. , Dai, C. , Ma, Y. , Yang, Y. , Guan, Z. , Liu, Y. , Wang, J. , Lin, Q. , Li, Z. , Li, X. , Ke, W. , Grätzel, M. , Fang, G. : Suppressing wide-angle light loss and non-radiative recombination for efficient perovskite solar cells. Nat. Photonics 19 (2), 170- 177 (2025)

[7]

Yang, Z. , Yu, Z. , Wei, H. , Xiao, X. , Ni, Z. , Chen, B. , Deng, Y. , Habisreutinger, S.N. , Chen, X. , Wang, K. , Zhao, J. , Rudd, P.N. , Berry, J.J. , Beard, M.C. , Huang, J. : Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat. Commun. 10 (1), 4498 (2019)

[8]

Palmstrom, A.F. , Eperon, G.E. , Leijtens, T. , Prasanna, R. , Habisreutinger, S.N. , Nemeth, W. , Gaulding, E.A. , Dunfield, S.P. , Reese, M. , Nanayakkara, S. , Moot, T. , Werner, J. , Liu, J. , To, B. , Christensen, S.T. , McGehee, M.D. , van Hest, M.F.A.M. , Luther, J.M. , Berry, J.J. , Moore, D.T. : Enabling flexible all-perovskite tandem solar cells. Joule 3 (9), 2193- 2204 (2019)

[9]

Islam, M.R. , Wu, Y. , Liu, K. , Wang, Z. , Qu, S. , Wang, Z. : Recent progress and future prospects for light management of all-perovskite tandem solar cells. Adv. Mater. Interfaces 9 (4), 2101144 (2022)

[10]

Jiang, Y. , Almansouri, I. , Huang, S. , Young, T. , Li, Y. , Peng, Y. , Hou, Q. , Spiccia, L. , Bach, U. , Cheng, Y.B. , Green, M.A. , Ho-Baillie, A. : Optical analysis of perovskite/silicon tandem solar cells. J. Mater. Chem. C Mater. 4 (24), 5679- 5689 (2016)

[11]

Shang, A. , Li, X. : Photovoltaic devices: opto-electro-thermal physics and modeling. Adv. Mater. 29 (8), 1603492 (2017)

[12]

Singh, A. , Gagliardi, A. : Efficiency of all-perovskite two-terminal tandem solar cells: a drift-diffusion study. Sol. Energy 187, 39- 46 (2019)

[13]

Singh, N. , Agarwal, A. , Agarwal, M. : Numerical simulation of highly efficient lead-free all-perovskite tandem solar cell. Sol. Energy 208, 399- 410 (2020)

[14]

Shankar, G. , Kumar, P. , Pradhan, B. : All-perovskite two-terminal tandem solar cell with 32.3% efficiency by numerical simulation. Mater. Today Sustain. 20, 100241 (2022)

[15]

Peer, A. , Biswas, R. : Nanophotonic organic solar cell architecture for advanced light trapping with dual photonic crystals. ACS Photonics 1 (9), 840- 847 (2014)

[16]

Wang, D.L. , Cui, H.J. , Hou, G.J. , Zhu, Z.G. , Yan, Q.B. , Su, G. : Highly efficient light management for perovskite solar cells. Sci. Rep. 6 (1), 18922 (2016)

[17]

Mohammadi, M.H. , Eskandari, M. , Fathi, D. : Design of optimized photonic-structure and analysis of adding a SiO2 layer on the parallel CH3NH3PbI3/CH3NH3SnI3 perovskite solar cells. Sci. Rep. 13 (1), 15905 (2023)

[18]

Turkay, D. , Artuk, K. , Othman, M. , Sahli, F. , Champault, L. , Allebé, C. , Hessler-Wyser, A. , Jeangros, Q. , Ballif, C. , Wolff, C.M. : Beyond flat: undulated perovskite solar cells on microscale Si pyramids by solution processing. ACS Energy Lett. 10 (3), 1397- 1403 (2025)

[19]

Elshorbagy, M.H. , Garcia-Camara, B. , Lopez-Fraguas, E. , Vergaz, R. : Efficient light management in a monolithic tandem perovskite/silicon solar cell by using a hybrid metasurface. Nanomaterials 9 (5), 791 (2019)

[20]

Zhan, Y. , Li, C. , Che, Z. , Shum, H.C. , Hu, X. , Li, H. : Light management using photonic structures towards high-index perovskite optoelectronics: fundamentals, designing, and applications. Energy Environ. Sci. 16 (10), 4135- 4163 (2023)

[21]

Haque, M.A. , Mohsin, A.S.M. , Bhuian, M.B.H. , Rahman, M.M. : Analysis of an ultra-broadband TiN-based metasurface absorber for solar thermophotovoltaic cell in the visible to near infrared region. Sol. Energy 284, 113064 (2024)

[22]

Li, P. , Jiang, X. , Huang, S. , Liu, Y. , Fu, N. : Plasmonic perovskite solar cells: an overview from metal particle structure to device design. Surf. Interfaces 25, 101287 (2021)

[23]

Lu, S. , Chen, C. , Tang, J. : Possible top cells for next-generation Si-based tandem solar cells. Front. Optoelectron. 13 (3), 246- 255 (2020)

[24]

Li, G. , Xu, M. , Chen, Z. : Design and simulation investigations on charge transport layers-free in lead-free three absorber layer all-perovskite solar cells. Front. Optoelectron. 17 (1), 18 (2024)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF (1678KB)

Supplementary files

Supplementary materials

391

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/