Simulation study of reducing reflection losses in all-perovskite tandem solar cells through dual serrated structure
Wenjiang Ye , Aoyue Chen , Ping Fu , Jiang Tang , Chao Chen
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (2) : 9
Simulation study of reducing reflection losses in all-perovskite tandem solar cells through dual serrated structure
The power conversion efficiency of all-perovskite tandem solar cells is predominantly constrained by optical absorption losses, especially reflection losses. In this simulation study, we propose the optimization of a dual-interface serrated microstructure to mitigate these optical reflection losses in all-perovskite tandem solar cells. By adjusting the geometry of the periodic serrated structures at both the front interface and the back electrode, we enhance light absorption in the wide-bandgap perovskite layer and promote light scattering in the narrow-bandgap perovskite layer. The structural modification reduces the reflection-induced photocurrent density loss from 4.47 to 3.65 mA cm-2. It is expected to boost the efficiency of all-perovskite tandem solar cells to approximately 31.13%, representing a 3.41% increase. The dual-interface optimization effectively suppresses reflection losses and improves the overall photocurrent of all-perovskite tandem solar cells. These results offer a promising strategy for minimizing optical losses and enhancing device performance in all-perovskite tandem solar cells.
Reflection loss / Tandem solar cells / Perovskite / Microstructure
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
The Author(s)
Supplementary files
/
| 〈 |
|
〉 |