Impact of device resistances in the performance of graphene-based terahertz photodetectors

O. Castelló, Sofía M. López Baptista, K. Watanabe, T. Taniguchi, E. Diez, J. E. Velázquez-Pérez, Y. M. Meziani, J. M. Caridad, J. A. Delgado-Notario

PDF(5326 KB)
PDF(5326 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (2) : 19. DOI: 10.1007/s12200-024-00122-6
RESEARCH ARTICLE

Impact of device resistances in the performance of graphene-based terahertz photodetectors

Author information +
History +

Abstract

In recent years, graphene field-effect-transistors (GFETs) have demonstrated an outstanding potential for terahertz (THz) photodetection due to their fast response and high-sensitivity. Such features are essential to enable emerging THz applications, including 6G wireless communications, quantum information, bioimaging and security. However, the overall performance of these photodetectors may be utterly compromised by the impact of internal resistances presented in the device, so-called access or parasitic resistances. In this work, we provide a detailed study of the influence of internal device resistances in the photoresponse of high-mobility dual-gate GFET detectors. Such dual-gate architectures allow us to fine tune (decrease) the internal resistance of the device by an order of magnitude and consequently demonstrate an improved responsivity and noise-equivalent-power values of the photodetector, respectively. Our results can be well understood by a series resistance model, as shown by the excellent agreement found between the experimental data and theoretical calculations. These findings are therefore relevant to understand and improve the overall performance of existing high-mobility graphene photodetectors.

Graphical abstract

Keywords

Graphene / THz / Photodetector / Field-effect transistor / Plasmonic

Cite this article

Download citation ▾
O. Castelló, Sofía M. López Baptista, K. Watanabe, T. Taniguchi, E. Diez, J. E. Velázquez-Pérez, Y. M. Meziani, J. M. Caridad, J. A. Delgado-Notario. Impact of device resistances in the performance of graphene-based terahertz photodetectors. Front. Optoelectron., 2024, 17(2): 19 https://doi.org/10.1007/s12200-024-00122-6

References

[1]
Heffernan, B.M., Kawamoto, Y., Maekawa, K., Greenberg, J., Amin, R., Hori, T., Tanigawa, T., Nagatsuma, T., Rolland, A.: 60 Gbps real-time wireless communications at 300 GHz carrier using a Kerr microcomb-based source. APL Photonics. 8(6), 066106 (2023)
[2]
Yu, L., Hao, L., Meiqiong, T., Jiaoqi, H., Wei, L., Jinying, D., Xueping, C., Weiling, F., Yang, Z.: The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges. RSC Adv. 9(17), 9354–9363 (2019)
CrossRef Google scholar
[3]
Wang, Y., Li, W., Cheng, H., Liu, Z., Cui, Z., Huang, J., Xiong, B., Yang, J., Huang, H., Wang, J., Fu, Z., Huang, Q., Lu, Y.: Enhancement of spintronic terahertz emission enabled by increasing Hall angle and interfacial skew scattering. Communications Physics 6, 1–10 (2023)
CrossRef Google scholar
[4]
Aghoutane, B., El Ghzaoui, M., Kumari, S.V., Das, S., El Faylali, H.: A circularly polarized super wideband transparent optical nanoantenna for advanced THz communication applications. Opt. Quantum Electron. 55, 1–17 (2023)
[5]
Sun, Z., Liang, C., Chen, C., Wang, X., Zhou, E., Bian, X., Yang, Y., You, R., Zhao, X., Zhao, J., You, Z.: High-efficiency dynamic terahertz deflector utilizing a mechanically tunable metasurface. Research 6, 0274 (2023)
[6]
Leitenstorfer, A., Moskalenko, A.S., Kampfrath, T., Kono, J., Castro-Camus, E., Peng, K., Qureshi, N., Turchinovich, D., Tanaka, K., Markelz, A.G., Havenith, M., Hough, C., Joyce, H.J., Padilla, W.J., Zhou, B., Kim, K.Y., Zhang, X.C., Jepsen, P.U., Dhillon, S., Vitiello, M., Linfield, E., Davies, A.G., Hoffmann, M.C., Lewis, R., Tonouchi, M., Klarskov, P., Seifert, T.S., Gerasimenko, Y.A., Mihailovic, D., Huber, R., Boland, J.L., Mitrofanov, O., Dean, P., Ellison, B.N., Huggard, P.G., Rea, S.P., Walker, C., Leisawitz, D.T., Gao, J.R., Li, C., Chen, Q., Valušis, G., Wallace, V.P., Pickwell-MacPherson, E., Shang, X., Hesler, J., Ridler, N., Renaud, C.C., Kallfass, I., Nagatsuma, T., Zeitler, J.A., Arnone, D., Johnston, M.B., Cunningham, J.: The 2023 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 56(22), 223001 (2023)
[7]
Otteneder, M., Hubmann, S., Lu, X., Kozlov, D.A., Golub, L.E., Watanabe, K., Taniguchi, T., Efetov, D.K., Ganichev, S.D.: Terahertz photogalvanics in twisted bilayer graphene close to the second magic angle. Nano Lett. 20(10), 7152–7158 (2020)
CrossRef Google scholar
[8]
Castilla, S., Terrés, B., Autore, M., Viti, L., Li, J., Nikitin, A.Y., Vangelidis, I., Watanabe, K., Taniguchi, T., Lidorikis, E., Vitiello, M.S., Hillenbrand, R., Tielrooij, K.J., Koppens, F.H.L.: Fast and sensitive terahertz detection using an antennaintegrated graphene pn junction. Nano Lett. 19(5), 2765–2773 (2019)
CrossRef Google scholar
[9]
Xie, Y., Liang, F., Chi, S., Wang, D., Zhong, K., Yu, H., Zhang, H., Chen, Y., Wang, J.: Defect engineering of MoS2 for roomtemperature terahertz photodetection. ACS Appl. Mater. Interfaces 12(6), 7351–7357 (2020)
[10]
Viti, L., Hu, J., Coquillat, D., Politano, A., Knap, W., Vitiello, M.S.: Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response. Sci Rep. 6(1), 20474 (2016)
[11]
Hu, Z., Zhang, L., Chakraborty, A., D’Olimpio, G., Fujii, J., Ge, A., Zhou, Y., Liu, C., Agarwal, A., Vobornik, I., Farias, D., Kuo, C.N., Lue, C.S., Politano, A., Wang, S.W., Hu, W., Chen, X., Lu, W., Wang, L.: Terahertz nonlinear hall rectifiers based on spinpolarized topological electronic states in 1T-CoTe2. Adv Mater. 35(10), 2209557 (2023)
[12]
Yang, S., Lin, Z., Wang, X., Huang, J., Yang, R., Chen, Z., Jia, Y., Zeng, Z., Cao, Z., Zhu, H., Hu, Y., Li, E., Chen, H., Wang, T., Deng, S., Gui, X.: Stretchable, transparent, and ultra-broadband terahertz shielding thin films based on wrinkled MXene architectures. Nano-Micro Lett. 16(1), 165 (2024)
[13]
Dyakonov, M., Shur, M.: Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Dev. 43(3), 380–387 (1996)
CrossRef Google scholar
[14]
Wang, L., Han, L., Guo, W., Zhang, L., Yao, C., Chen, Z., Chen, Y., Guo, C., Zhang, K., Kuo, C.N., Lue, C.S., Politano, A., Xing, H., Jiang, M., Yu, X., Chen, X., Lu, W.: Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting. Light Sci. Appl. 11(1), 53 (2022)
[15]
Yao, C., Jiang, M., Wang, D., Zhang, L., Zhang, N., Wang, L., Chen, X.: Hemispherical lens integrated room temperature ultrabroadband GaAs HEMT terahertz detector. Front. Phys. (Lausanne) 11, 1182059 (2023)
[16]
Nguyen Pham, H.H., Hisatake, S., Minin, O.V., Nagatsuma, T., Minin, I.V.: Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube. APL Photonics 2(5), 056106 (2017)
[17]
Shabanov, A., Moskotin, M., Belosevich, V., Matyushkin, Y., Rybin, M., Fedorov, G., Svintsov, D.: Optimal asymmetry of transistor-based terahertz detectors. Appl. Phys. Lett. 119(16), 163505 (2021)
[18]
Sakowicz, M., Lifshits, M.B., Klimenko, O.A., Schuster, F., Coquillat, D., Teppe, F., Knap, W.: Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects. J. Appl. Phys. 110(5), 54512 (2011)
[19]
Stillman, W., Shur, M.S., Veksler, D., Rumyantsev, S., Guarin, F.: Device loading effects on nonresonant detection of terahertz radiation by silicon MOSFETs. Electron. Lett. 43(7), 422–423 (2007)
[20]
Stillman, W., Donais, C., Rumyantsev, S., Shur, M., Veksler, D., Hobbs, C., Smith, C., Bersuker, G., Taylor, W., Jammy, R.: Silicon FinFETs as detectors of terahertz and sub-terahertz radiation. Int. J. High Speed Electron. Syst. 20(1), 27–42 (2012)
[21]
Rehman, A., Delgado-Notario, J.A., Sai, P., But, D.B., Prystawko, P., Ivonyak, Y., Cywinski, G., Knap, W., Rumyantsev, S.: Temperature dependence of current response to sub-terahertz radiation of AlGaN/GaN and graphene transistors. Appl. Phys. Lett. 121(21), 213503 (2022)
[22]
Hou, H.W., Liu, Z., Teng, J.H., Palacios, T., Chua, S.J.: High temperature terahertz detectors realized by a GaN high electron mobility transistor. Sci. Rep. 7, 1–6 (2017)
[23]
Knap, W., Dyakonov, M., Coquillat, D., Teppe, F., Dyakonova, N., Łusakowski, J., Karpierz, K., Sakowicz, M., Valusis, G., Seliuta, D., Kasalynas, I., El Fatimy, A., Meziani, Y.M., Otsuji, T.: Field effect transistors for terahertz detection: physics and first imaging applications. Int. J. Infrared Millim. Terahertz Waves 30, 1319–1337 (2009)
[24]
Delgado-Notario, J.A., Knap, W., Clericò, V., Salvador-Sánchez, J., Calvo-Gallego, J., Taniguchi, T., Watanabe, K., Otsuji, T., Popov, V.V., Fateev, D.V., Diez, E., Velázquez-Pérez, J.E., Meziani, Y.M.: Enhanced terahertz detection of multigate graphene nanostructures. Nanophotonics. 11(3), 519–529 (2022)
CrossRef Google scholar
[25]
Viti, L., Coquillat, D., Politano, A., Kokh, K.A., Aliev, Z.S., Babanly, M.B., Tereshchenko, O.E., Knap, W., Chulkov, E.V., Vitiello, M.S.: Plasma-wave terahertz detection mediated by topological insulators surface states. Nano Lett. 16(1), 80–87 (2016)
CrossRef Google scholar
[26]
Delgado-Notario, J.A., Clericò, V., Diez, E., Velázquez-Pérez, J.E., Taniguchi, T., Watanabe, K., Otsuji, T., Meziani, Y.M.: Asymmetric dual-grating gates graphene FET for detection of terahertz radiations. APL Photonics. 5(6), 066102 (2020)
[27]
Vaquero, D., Clericò, V., Schmitz, M., Delgado-Notario, J.A., Martín-Ramos, A., Salvador-Sánchez, J., Müller, C.S.A., Rubi, K., Watanabe, K., Taniguchi, T., Beschoten, B., Stampfer, C., Diez, E., Katsnelson, M.I., Zeitler, U., Wiedmann, S., Pezzini, S.: Phonon-mediated room-temperature quantum Hall transport in graphene. Nat. Commun. 14(1), 318 (2023)
[28]
Bandurin, D.A., Gayduchenko, I., Cao, Y., Moskotin, M., Principi, A., Grigorieva, I.V., Goltsman, G., Fedorov, G., Svintsov, D.: Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors. Appl. Phys. Lett. 112(14), 141101 (2018)
[29]
Bandurin, D.A., Svintsov, D., Gayduchenko, I., Xu, S.G., Principi, A., Moskotin, M., Tretyakov, I., Yagodkin, D., Zhukov, S., Taniguchi, T., Watanabe, K., Grigorieva, I.V., Polini, M., Goltsman, G.N., Geim, A.K., Fedorov, G.: Resonant terahertz detection using graphene plasmons. Nat. Commun. 9(1), 5392 (2018)
[30]
Vicarelli, L., Vitiello, M.S., Coquillat, D., Lombardo, A., Ferrari, A.C., Knap, W., Polini, M., Pellegrini, V., Tredicucci, A.: Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11(10), 865–871 (2012)
[31]
Zak, A., Andersson, M.A., Bauer, M., Matukas, J., Lisauskas, A., Roskos, H.G., Stake, J.: Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene. Nano Lett. 14(10), 5834–5838 (2014)
CrossRef Google scholar
[32]
Caridad, J.M., Castelló, Ó., López Baptista, S.M., Taniguchi, T., Watanabe, K., Roskos, H.G., Delgado-Notario, J.A.: Room-temperature plasmon-assisted resonant THz detection in single-layer graphene transistors. Nano Lett. 24(3), 935–942 (2024)
CrossRef Google scholar
[33]
Wang, L., Meric, I., Huang, P.Y., Gao, Q., Gao, Y., Tran, H., Taniguchi, T., Watanabe, K., Campos, L.M., Muller, D.A., Guo, J., Kim, P., Hone, J., Shepard, K.L., Dean, C.R.: One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013)
CrossRef Google scholar
[34]
Kim, S., Nah, J., Jo, I., Shahrjerdi, D., Colombo, L., Yao, Z., Tutuc, E., Banerjee, S.K.: Realization of a high mobility dualgated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 94(6), 062107 (2009)
[35]
Boubanga-Tombet, S., Knap, W., Yadav, D., Satou, A., But, D.B., Popov, V.V., Gorbenko, I.V., Kachorovskii, V., Otsuji, T.: Room-temperature amplification of terahertz radiation by grating-gate graphene structures. Phys. Rev. X 10(3), 31004 (2020)
[36]
Soltani, A., Kuschewski, F., Bonmann, M., Generalov, A., Vorobiev, A., Ludwig, F., Wiecha, M.M., Čibiraitė, D., Walla, F., Winnerl, S., Kehr, S.C., Eng, L.M., Stake, J., Roskos, H.G.: Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor. Light: Science & Applications 9, 1–7 (2020)
CrossRef Google scholar
[37]
Muraviev, A.V., Rumyantsev, S.L., Liu, G., Balandin, A.A., Knap, W., Shur, M.S.: Plasmonic and bolometric terahertz detection by graphene field-effect transistor. Appl. Phys. Lett. 103(18), 181114 (2013)
[38]
Tamura, K., Tang, C., Ogiura, D., Suwa, K., Fukidome, H., Takida, Y., Minamide, H., Suemitsu, T., Otsuji, T., Satou, A.: Fast and sensitive terahertz detection with a current-driven epitaxial-graphene asymmetric dual-grating-gate field-effect transistor structure. APL Photonics. 7(12), 126101 (2022)
[39]
Ullah, S., Shi, Q., Zhou, J., Yang, X., Ta, H.Q., Hasan, M., Mahmood Ahmad, N., Fu, L., Bachmatiuk, A., Rümmeli, M.H., Ullah, S., Shi, Q., Zhou, J., Yang, X., Bachmatiuk, A., Rümmeli, M.H., Ta, H.Q., Hasan, M., Ahmad, N.M., Fu, L.: Advances and trends in chemically doped graphene. Adv. Mater. Interfaces. 7(24), 2000999 (2020)
[40]
Rogalski, A.: Graphene-based materials in the infrared and terahertz detector families: a tutorial. Adv. Opt. Photonics 11(2), 314–379 (2019)
[41]
Yang, J., Qin, H., Zhang, K.: Emerging terahertz photodetectors based on two-dimensional materials. Opt. Commun. 406, 36–43 (2018)

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(5326 KB)

Accesses

Citations

Detail

Sections
Recommended

/