Monolayer graphene/GaN heterostructure photodetector with UV-IR dual-wavelength photoresponses

Junjun Xue, Jiaming Tong, Zhujun Gao, Zhouyu Chen, Haoyu Fang, Saisai Wang, Ting Zhi, Jin Wang

PDF(3803 KB)
PDF(3803 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (2) : 17. DOI: 10.1007/s12200-024-00121-7
RESEARCH ARTICLE

Monolayer graphene/GaN heterostructure photodetector with UV-IR dual-wavelength photoresponses

Author information +
History +

Abstract

An ultraviolet-infrared (UV-IR) dual-wavelength photodetector (PD) based on a monolayer (ML) graphene/GaN heterostructure has been successfully fabricated in this work. The ML graphene was synthesized by chemical vapor deposition (CVD) and subsequently transferred onto GaN substrate using polymethylmethacrylate (PMMA). The morphological and optical properties of the as-prepared graphene and GaN were presented. The fabricated PD based on the graphene/GaN heterostructure exhibited excellent rectify behavior by measuring the current–voltage (I–V) characteristics under dark conditions, and the spectral response demonstrated that the device revealed an UV-IR dual-wavelength photoresponse. In addition, the energy band structure and absorption properties of the ML graphene/GaN heterostructure were theoretically investigated based on density functional theory (DFT) to explore the underlying physical mechanism of the two-dimensional (2D)/three-dimensional (3D) hybrid heterostructure PD device. This work paves the way for the development of innovative GaN-based dual-wavelength optoelectronic devices, offering a potential strategy for future applications in the field of advanced photodetection technology.

Graphical abstract

Keywords

Wide bandgap semiconductors / Graphene / Dual-wavelength / Photodetector

Cite this article

Download citation ▾
Junjun Xue, Jiaming Tong, Zhujun Gao, Zhouyu Chen, Haoyu Fang, Saisai Wang, Ting Zhi, Jin Wang. Monolayer graphene/GaN heterostructure photodetector with UV-IR dual-wavelength photoresponses. Front. Optoelectron., 2024, 17(2): 17 https://doi.org/10.1007/s12200-024-00121-7

References

[1]
Zeng, C., Lin, W., He, T., Zhao, Y., Sun, Y., Cui, Q., Zhang, X., Lu, S., Zhang, X., Xu, Y., Kong, M., Zhang, B.: Ultravioletinfrared dual-color photodetector based on vertical GaN nanowire array and graphene. Chin. Opt. Lett. 18(11), 112501 (2020)
CrossRef Google scholar
[2]
Perera, A.G.U., Ariyawansa, G., Rinzan, M.B.M., Stevens, M., Alevli, M., Dietz, N., Matsik, S.G., Asghar, A., Ferguson, I.T., Luo, H., Bezinger, A., Liu, H.C.: Performance improvements of ultraviolet/infrared dual-band detectors. Infrared Phys. Technol. 50(2–3), 142–148 (2007)
CrossRef Google scholar
[3]
Guo, J., Ye, B., Gu, Y., Liu, Y., Yang, X., Xie, F., Zhang, X., Qian, W., Zhang, X., Lu, N., Yang, G.: Broadband photodetector for ultraviolet to visible wavelengths based on the Ba2PbI4/GaN heterostructure. ACS Appl. Mater. Interfaces 15(48), 56014–56021 (2023)
CrossRef Google scholar
[4]
Liu, H., Ye, B., Gu, Y., Liu, Y., Yang, X., Xie, F., Zhang, X., Qian, W., Zhang, X., Lu, N., Yang, G.: UV-visible dual-band photodetector based on an all-inorganic Mn-doped CsPbCl3/GaN type-II heterojunction. Appl. Phys. Lett. 123(23), 232105 (2023)
CrossRef Google scholar
[5]
Ye, B.J., Liu, Y.S., Xie, F., Yang, X.F., Gu, Y., Zhang, X.M., Qian, W.Y., Zhu, C., Lu, N.Y., Chen, G.Q., Yang, G.F.: Dual-wavelength photodetector based on layered WSe2/n-GaN van der Waals heterostructure. Mater. Today Nano 21, 100295 (2023)
CrossRef Google scholar
[6]
Qi, L., Li, X., Tang, Z., Yin, S., Zhao, Y.: Monolithically integrated UV/IR dual-color photodetector with AlGaN/GaN heterojunction structure. Semicond. Technol. 39(8), 575–578 (2014)
[7]
Singh, D.K., Pant, R.K., Nanda, K.K., Krupanidhi, S.B.: Differentiation of ultraviolet/visible photons from near infrared photons by MoS2/GaN/Si-based photodetector. Appl. Phys. Lett. 119(12), 121102 (2021)
CrossRef Google scholar
[8]
Sandhu, H.K., John, J.W., Jakhar, A., Sharma, A., Jain, A., Das, S.: MoSe2/n-GaN heterojunction induced high photoconductive gain for low-noise broadband photodetection from ultraviolet to near-infrared wavelengths. Adv. Mater. Interfaces. 9(12), 2102200 (2022)
CrossRef Google scholar
[9]
Solanke, S.V., Soman, R., Rangarajan, M., Raghavan, S., Nath, D.N.: UV/near-IR dual band photodetector based on p-GaN/α-In2Se3 heterojunction. Sens. Actuator A Phys. 317, 112455 (2021)
CrossRef Google scholar
[10]
Tang, X., Hao, Z., Wang, L., Yu, J., Wang, X., Luo, Y., Sun, C., Han, Y., Xiong, B., Wang, J., Li, H.: Plasmon-enhanced hot-electron photodetector based on Au/GaN-nanopillar arrays for short-wave-infrared detection. Appl. Sci. (Basel) 12(9), 4277 (2022)
CrossRef Google scholar
[11]
Zhang, X., Liu, B., Liu, Q., Yang, W., Xiong, C., Li, J., Jiang, X.: Ultrasensitive and highly selective photodetections of UV-A rays based on individual bicrystalline GaN nanowire. ACS Appl. Mater. Interfaces 9(3), 2669–2677 (2017)
CrossRef Google scholar
[12]
Rabiee Golgir, H., Li, D.W., Keramatnejad, K., Zou, Q.M., Xiao, J., Wang, F., Jiang, L., Silvain, J.F., Lu, Y.F.: Fast growth of GaN epilayers via laser-assisted metal-organic chemical vapor deposition for ultraviolet photodetector applications. ACS Appl. Mater. Interfaces 9(25), 21539–21547 (2017)
CrossRef Google scholar
[13]
Guo, J., Gu, Y., Liu, Y., Liang, F., Chen, W., Xie, F., Yang, X., Qian, W., Zhang, X., Chen, G., Yang, G.: Polarization assisted interdigital AlGaN/GaN heterostructure ultraviolet photodetectors. IEEE Trans. Electron Dev. 70(5), 2352–2357 (2023)
CrossRef Google scholar
[14]
Gong, B., Ye, B., Gu, Y., Xie, F., Zhang, X., Qian, W., Zhang, X., Lu, N., Yang, G.: Self-powered GaN-based MSM ultraviolet photodetector with asymmetrical interdigitated structure. IEEE Trans. Electron Dev. 71(1), 922–926 (2024)
CrossRef Google scholar
[15]
Tian, H., Liu, Q., Hu, A., He, X., Hu, Z., Guo, X.: Hybrid graphene/ GaN ultraviolet photo-transistors with high responsivity and speed. Opt. Express 26(5), 5408–5415 (2018)
CrossRef Google scholar
[16]
Gundimeda, A., Krishna, S., Aggarwal, N., Sharma, A., Sharma, N.D., Maurya, K.K., Husale, S., Gupta, G.: Fabrication of nonpolar GaN based highly responsive and fast UV photodetector. Appl. Phys. Lett. 110(10), 103507 (2017)
CrossRef Google scholar
[17]
Yang, J., Tang, L., Luo, W., Shen, J., Zhou, D., Feng, S., Wei, X., Shi, H.: Light trapping in conformal graphene/silicon nanoholes for high-performance photodetectors. ACS Appl. Mater. Interfaces 11(33), 30421–30429 (2019)
CrossRef Google scholar
[18]
Xie, C., Wang, Y., Zhang, Z.X., Wang, D., Luo, L.B.: Graphene/semiconductor hybrid heterostructures for optoelectronic device applications. Nano Today 19, 41–83 (2018)
CrossRef Google scholar
[19]
Wei, X., Yan, F.G., Lv, Q.S., Shen, C., Wang, K.Y.: Fast gatetunable photodetection in the graphene sandwiched WSe2/GaSe heterojunctions. Nanoscale 9(24), 8388–8392 (2017)
CrossRef Google scholar
[20]
Deb, P., Dhar, J.C.: Fast response UV photodetection using TiO2 nanowire/graphene oxide thin-film heterostructure. IEEE Photonics Technol. Lett. 31(8), 571–574 (2019)
CrossRef Google scholar
[21]
Nowak, D., Clapa, M., Kula, P., Sochacki, M., Stonio, B., Galazka, M., Pelka, M., Kuten, D., Niedzielski, P.: Influence of the interactions at the graphene-substrate boundary on graphene sensitivity to UV irradiation. Materials (Basel). 12(23), 3949 (2019)
CrossRef Google scholar
[22]
Guo, X., Wang, W., Nan, H., Yu, Y., Jiang, J., Zhao, W., Li, J., Zafar, Z., Xiang, N., Ni, Z., Hu, W., You, Y., Ni, Z.: High-performance graphene photodetector using interfacial gating. Optica 3(10), 1066–1070 (2016)
CrossRef Google scholar
[23]
Hu, W., Ye, Z., Liao, L., Chen, H., Chen, L., Ding, R., He, L., Chen, X., Lu, W.: 128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk. Opt. Lett. 39(17), 5184 (2014)
CrossRef Google scholar
[24]
He, T., Ma, H., Wang, Z., Li, Q., Liu, S., Duan, S., Xu, T., Wang, J., Wu, H., Zhong, F., Ye, Y., Wu, J., Lin, S., Zhang, K., Martyniuk, P., Rogalski, A., Wang, P., Li, L., Lin, H., Hu, W.: On-chip optoelectronic logic gates operating in the telecom band. Nat. Photonics. 18(1), 60–67 (2024)
CrossRef Google scholar
[25]
Kim, S., Seo, T.H., Kim, M.J., Song, K.M., Suh, E.K., Kim, H.: Graphene-GaN Schottky diodes. Nano Res. 8(4), 1327–1338 (2015)
CrossRef Google scholar
[26]
Seo, T.H., Lee, K.J., Oh, T.S., Lee, Y.S., Jeong, H., Park, A.H., Kim, H., Choi, Y.R., Suh, E.K., Cuong, T.V., Pham, V.H., Chung, J.S., Kim, E.J.: Graphene network on indium tin oxide nanodot nodes for transparent and current spreading electrode in InGaN/GaN light emitting diode. Appl. Phys. Lett. 98(25), 251114 (2011)
CrossRef Google scholar
[27]
Hoon Seo, T., Kyoung Kim, B., Shin, G., Lee, C., Jong Kim, M., Kim, H., Suh, E.K.: Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes. Appl. Phys. Lett. 103(5), 051105 (2013)
CrossRef Google scholar
[28]
Cho, H., Lee, C., Oh, S.I., Park, S., Kim, H.C., Kim, M.J.: J, K.M.: Parametric study of methanol chemical vapor deposition growth for graphene. Carbon. Lett. 13(4), 205–211 (2012)
CrossRef Google scholar
[29]
Smidstrup, S., Markussen, T., Vancraeyveld, P., Wellendorff, J., Schneider, J., Gunst, T., Verstichel, B., Stradi, D., Khomyakov, P.A., Vej-Hansen, U.G., Lee, M.E., Chill, S.T., Rasmussen, F., Penazzi, G., Corsetti, F., Ojanperä, A., Jensen, K., Palsgaard, M.L.N., Martinez, U., Blom, A., Brandbyge, M., Stokbro, K.: Quantum ATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter. 32(1), 015901 (2020)
CrossRef Google scholar
[30]
Han, G.H., Güneş, F., Bae, J.J., Kim, E.S., Chae, S.J., Shin, H.J., Choi, J.Y., Pribat, D., Lee, Y.H.: Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 11(10), 4144–4148 (2011)
CrossRef Google scholar
[31]
Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)
CrossRef Google scholar
[32]
Yang, F., Cong, H., Yu, K., Zhou, L., Wang, N., Liu, Z., Li, C., Wang, Q., Cheng, B.: Ultrathin broadband germanium-graphene hybrid photodetector with high performance. ACS Appl. Mater. Interfaces 9(15), 13422–13429 (2017)
CrossRef Google scholar
[33]
Wei, X., Yan, F., Lv, Q., Zhu, W., Hu, C., Patanè, A., Wang, K.: Enhanced photoresponse in MoTe2 photodetectors with asymmetric graphene contacts. Adv. Opt. Mater. 7(12), 1900190 (2019)
CrossRef Google scholar
[34]
Yüksel, Ö.F., Kuş, M., Şimşir, N., Şafak, H., Şahin, M., Yenel, E.: A detailed analysis of current-voltage characteristics of Au/perylenemonoimide/n-Si Schottky barrier diodes over a wide temperature range. J. Appl. Phys. 110(2), 024507 (2011)
CrossRef Google scholar
[35]
Liu, C., Li, E., Zheng, Y., Bai, K., Cui, Z., Ma, D.: Regulation of vertical and biaxial strain on electronic and optical properties of G-GaN-G sandwich heterostructure. J. Mater. Sci. 56(19), 11402–11413 (2021)
CrossRef Google scholar
[36]
Ferreira, L.G., Marques, M., Teles, L.K.: Approximation to density functional theory for the calculation of band gaps of semiconductors. Phys Rev B Condens Matter Mater Phys. 78(12), 125116 (2008)
CrossRef Google scholar
[37]
Wu, Z., Lu, Y., Xu, W., Zhang, Y., Li, J., Lin, S.: Surface plasmon enhanced graphene/p-GaN heterostructure light-emitting-diode by Ag nano-particles. Nano Energy 30, 362–367 (2016)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(3803 KB)

Accesses

Citations

Detail

Sections
Recommended

/