Circularly polarized light emission and detection by chiral inorganic semiconductors
Zha Li, Wancai Li, Dehui Li, Wei Tang, Huageng Liang, Huaibing Song, Chao Chen, Liang Gao, Jiang Tang
Circularly polarized light emission and detection by chiral inorganic semiconductors
Chiral inorganic semiconductors with high dissymmetric factor are highly desirable, but it is generally difficult to induce chiral structure in inorganic semiconductors because of their structure rigidity and symmetry. In this study, we introduced chiral ZnO film as hard template to transfer chirality to CsPbBr3 film and PbS quantum dots (QDs) for circularly polarized light (CPL) emission and detection, respectively. The prepared CsPbBr3/ZnO thin film exhibited CPL emission at 520 nm and the PbS QDs/ZnO film realized CPL detection at 780 nm, featuring high dissymmetric factor up to around 0.4. The electron transition based mechanism is responsible for chirality transfer.
High dissymmetric factor / Circularly polarized light emission / Semiconductor / Hard template / Chirality
[1] |
Huo, S.W., Duan, P.F., Jiao, T.F., Peng, Q.M., Liu, M.H.: Self-assembled luminescent quantum dots to generate full-color and white circularly polarized light. Angew. Chem. Int. Ed. 56(40), 12174–12178 (2017)
CrossRef
Google scholar
|
[2] |
Song, F.Y., Wei, G., Jiang, X.X., Li, F., Zhu, C.J., Cheng, Y.X.: Chiral sensing for induced circularly polarized luminescence using an Eu(III)-containing polymer and D- or L-proline. Chem. Commun. (Camb.) 49(51), 5772–5774 (2013)
CrossRef
Google scholar
|
[3] |
Yang, Y., Da Costa, R.C., Fuchter, M.J., Campbell, A.J.: Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photonics 7(8), 634–638 (2013)
CrossRef
Google scholar
|
[4] |
Stanciu, C.D., Hansteen, F., Kimel, A.V., Kirilyuk, A., Tsukamoto, A., Itoh, A., Rasing, T.: All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett 99(4), 047601 (2007)
CrossRef
Google scholar
|
[5] |
Sanchez-Carnerero, E.M., Agarrabeitia, A.R., Moreno, F., Maroto, B.L., Muller, G., Ortiz, M.J., de la Moya, S.: Circularly polarized luminescence from simple organic molecules. Chemistry 21(39), 13488–13500 (2015)
CrossRef
Google scholar
|
[6] |
Ma, W., Xu, L., de Moura, A.F., Wu, X., Kuang, H., Xu, C., Kotov, N.A.: Chiral inorganic nanostructures. Chem. Rev. 117(12), 8041–8093 (2017)
CrossRef
Google scholar
|
[7] |
Zhao, T.H., Han, J.L., Jin, X., Liu, Y., Liu, M.H., Duan, P.F.: Enhanced circularly polarized luminescence from reorganized chiral emitters on the skeleton of a zeolitic imidazolate framework. Angew. Chem. Int. Ed. 58(15), 4978–4982 (2019)
CrossRef
Google scholar
|
[8] |
Ben-Moshe, A., Wolf, S.G., Sadan, M.B., Houben, L., Fan, Z.Y., Govorov, A.O., Markovich, G.: Markovich, G.: Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat. Commun. 5(1), 4302 (2014)
CrossRef
Google scholar
|
[9] |
Liu, C., Li, T., Abroshan, H., Li, Z.M., Zhang, C., Kim, H.J., Li, G., Jin, R.C.: Chiral Ag-23 nanocluster with open shell electronic structure and helical face-centered cubic framework. Nat. Commun 9(1), 744 (2018)
CrossRef
Google scholar
|
[10] |
Varga, K., Tannir, S., Haynie, B.E., Leonard, B.M., Dzyuba, S.V., Kubelka, J., Balaz, M.: CdSe quantum dots functionalized with chiral, thiol-free carboxylic acids: unraveling structural requirements for ligand-induced chirality. ACS Nano 11(10), 9846–9853 (2017)
CrossRef
Google scholar
|
[11] |
Shi, Y.H., Duan, P.F., Huo, S.W., Li, Y.G., Liu, M.H.: Endowing perovskite nanocrystals with circularly polarized luminescence. Adv. Mater 30(12), 1705011 (2018)
CrossRef
Google scholar
|
[12] |
Wang, C.T., Chen, J.Q., Xu, P., Yeung, F., Kwok, H.S., Li, G.J.: Fully chiral light emission from CsPbX3 perovskite nanocrystals enabled by cholesteric superstructure stacks. Adv. Funct. Mater 29(35), 1903155 (2019)
CrossRef
Google scholar
|
[13] |
Ma, J.Q., Fang, C., Chen, C., Jin, L., Wang, J.Q., Wang, S., Tang, J., Li, D.H.: Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13(3), 3659–3665 (2019)
CrossRef
Google scholar
|
[14] |
Zheng, H.Z., Ju, B., Wang, X.J., Wang, W.H., Li, M.J., Tang, Z.Y., Zhang, S.X.A., Xu, Y.: Circularly polarized luminescent carbon dot nanomaterials of helical superstructures for circularly polarized light detection. Adv. Opt. Mater 6(23), 1801246 (2018)
CrossRef
Google scholar
|
[15] |
Sang, Y.T., Han, J.L., Zhao, T.H., Duan, P.F., Liu, M.H.: Circularly polarized luminescence in nanoassemblies: generation, amplification, and application. Adv. Mater. 32(41), 1900110 (2020)
CrossRef
Google scholar
|
[16] |
Duan, Y.Y., Han, L., Zhang, J.L., Asahina, S., Huang, Z.H., Shi, L., Wang, B., Cao, Y.Y., Yao, Y., Ma, L.G., Wang, C., Dukor, R.K., Sun, L., Jiang, C., Tang, Z.Y., Nafie, L.A., Che, S.N.: Optically active nanostructured ZnO films. Angew. Chem. Int. Ed. 54(50), 15170–15175 (2015)
CrossRef
Google scholar
|
[17] |
Duan, Y.Y., Liu, X., Han, L., Asahina, S., Xu, D.D., Cao, Y.Y., Yao, Y., Che, S.N.: Optically active chiral CuO “nanoflowers”. J. Am. Chem. Soc. 136(20), 7193–7196 (2014)
CrossRef
Google scholar
|
[18] |
Gao, C.B., Che, S.A.: Organically functionalized mesoporous silica by co-structure-directing route. Adv. Funct. Mater. 20(17), 2750–2768 (2010)
CrossRef
Google scholar
|
[19] |
Duan, Y.Y., Che, S.N.: Electron transition-based optical activity (ETOA) of achiral metal oxides derived from chiral mesoporous silica. Chemistry 19(32), 10468–10472 (2013)
CrossRef
Google scholar
|
[20] |
Shen, Q., Mao, W.T., Han, L., Duan, Y.Y., Che, S.A.: Chiral mesostructured SnO2 films with tunable optical activities. Opt. Mater. 94, 21–27 (2019)
CrossRef
Google scholar
|
[21] |
Zhang, F., Ai, J., Ding, K., Duan, Y., Han, L., Che, S.: Synthesis of chiral mesostructured titanium dioxide films. Chem. Commun. (Camb.) 56(35), 4848–4851 (2020)
CrossRef
Google scholar
|
[22] |
Liu, S.H., Han, L., Duan, Y.Y., Asahina, S., Terasaki, O., Cao, Y.Y., Liu, B., Ma, L.G., Zhang, J.L., Che, S.A.: Synthesis of chiral TiO2 nanofibre with electron transition-based optical activity. Nat. Commun 3(1), 1215 (2012)
CrossRef
Google scholar
|
/
〈 | 〉 |