Co-packaged optics (CPO): status, challenges, and solutions
Min Tan, Jiang Xu, Siyang Liu, Junbo Feng, Hua Zhang, Chaonan Yao, Shixi Chen, Hangyu Guo, Gengshi Han, Zhanhao Wen, Bao Chen, Yu He, Xuqiang Zheng, Da Ming, Yaowen Tu, Qiang Fu, Nan Qi, Dan Li, Li Geng, Song Wen, Fenghe Yang, Huimin He, Fengman Liu, Haiyun Xue, Yuhang Wang, Ciyuan Qiu, Guangcan Mi, Yanbo Li, Tianhai Chang, Mingche Lai, Luo Zhang, Qinfen Hao, Mengyuan Qin
Co-packaged optics (CPO): status, challenges, and solutions
Due to the rise of 5G, IoT, AI, and high-performance computing applications, datacenter traffic has grown at a compound annual growth rate of nearly 30%. Furthermore, nearly three-fourths of the datacenter traffic resides within datacenters. The conventional pluggable optics increases at a much slower rate than that of datacenter traffic. The gap between application requirements and the capability of conventional pluggable optics keeps increasing, a trend that is unsustainable. Copackaged optics (CPO) is a disruptive approach to increasing the interconnecting bandwidth density and energy efficiency by dramatically shortening the electrical link length through advanced packaging and co-optimization of electronics and photonics. CPO is widely regarded as a promising solution for future datacenter interconnections, and silicon platform is the most promising platform for large-scale integration. Leading international companies (e.g., Intel, Broadcom and IBM) have heavily investigated in CPO technology, an inter-disciplinary research field that involves photonic devices, integrated circuits design, packaging, photonic device modeling, electronic-photonic co-simulation, applications, and standardization. This review aims to provide the readers a comprehensive overview of the state-of-the-art progress of CPO in silicon platform, identify the key challenges, and point out the potential solutions, hoping to encourage collaboration between different research fields to accelerate the development of CPO technology.
Co-packaged optics / Silicon photonics / High-performance computing / Advanced packaging / External laser / Optical power delivery / Co-simulation / Standardization / Transmitter / Receiver
[1] |
Mahajan,R., Li,X., Fryman,J., Zhang,Z., Nekkanty,S., Tadayon,P., Jaussi,J., Shumarayev,S., Agrawal,A., Jadhav,S., Singh,K.A., Alduino,A., Gujjula,S., Chiu,C.P., Nordstog,T., Hosseini,K.J., Sane,S., Deshpande,N., Aygun,K., Sarkar,A., Dobriyal,P., Pothukuchi,S., Pogue,V., Hui,D.: Co-packaged photonics for high performance computing: status, challenges and opportunities. J. Lightwave Technol. 40 (2), 379- 392 (2022)
|
[2] |
Kumar,A., Chang,L., Tellez,G., Clevenger,L., Burns,J.: System performance: from enterprise to AI. In: Proceedings of 2018 IEEE International Electron Devices Meeting (IEDM). pp. 28.1.1- 28.1.4 (2018)
|
[3] |
Siegl,P., Buchty,R., Berekovic,M.: Data-centric computing frontiers: a survey on processing-in-memory. In: Proceedings of the Second International Symposium on Memory Systems. pp. 295- 308 (2016)
|
[4] |
Maniotis,P., Schares,L., Lee,B.G., Taubenblatt,M.A., Kuchta,D.M.: Toward lower-diameter large-scale HPC and data center networks with co-packaged optics. J. Opt. Commun. Netw. 13 (1), A67- A77 (2021)
|
[5] |
Minkenberg,C., Kucharewski,N., Rodriguez,G.: Network architecture in the era of integrated optics. J. Opt. Commun. Netw. 11 (1), A72- A83 (2019)
|
[6] |
Liao,L., Fathololoumi,S., Hui,D.: High density silicon photonic integrated circuits and photonic engine for optical co-packaged ethernet switch. In: Proceedings of 2020 European Conference on Optical Communications (ECOC). pp. 1- 4 (2020)
|
[7] |
JDF CPO:3.2 Tb/s Co-Packaged Optics Optical Module Product Requirements Document.V 1.0. (2021)
|
[8] |
Kuchta,D., Proesel,J., Doany,F., Lee,W., Dickson,T., Ainspan,H., Meghelli,M., Pepeljugoski,P., Gu,X., Beakes,M., Schultz,M., Taubenblatt,M., Fortier,P., Dufort,C., Turcotte,E., Pion,M., Bureau,C., Flens,F., Light,G., Trekell,B., Koski,K.: Multi-wavelength optical transceivers integrated on node (MOTION). In: Proceedings of 2019 Optical Fiber Communications Conference and Exhibition (OFC). pp. 1- 3 (2019)
|
[9] |
Ranovus-Odin-Co-Packaging-Next-Gen-Dc-Switches-And-Accelerators-With-Silicon-Photonics. Available at website of fuse.wikichip.org/news/3420
|
[10] |
Fathololoumi,S., Hui,D., Jadhav,S., Chen,J., Nguyen,K., Sakib,M., Li,Z., Mahalingam,H., Amiralizadeh,S., Tang,N., Potluri,H., Montazeri,M., Frish,H., Defrees,R., Seibert,C., Krichevsky,A., Doylend,J., Heck,J., Venables,R., Dahal,A., et al.: 6 Tbps silicon photonics integrated circuit and 800 Gbps photonic engine for switch co-packaging demonstration. J. Light-wave Technol. 39 (4), 1155- 1161 (2021)
|
[11] |
Hosseini,K.: 8 Tbps co-packaged FPGA and silicon photonics optical IO. In: Proceedings of 2021 Optical Fiber Communication Conference and Exhibition (OFC). (2021)
|
[12] |
Hengtong Rockley launched the first 3.2T CPO prototype based on silicon optical technology in China. Available at website of finance.sina.com.cn/tech/2021-01-29/doc-ikftssap1755910 (in Chinese)
|
[13] |
Stone,R., Chen,R., Rahn,J., et al.: Co-packaged Optics for Data Center Switching: IEEE, 2020
|
[14] |
Mu,X., Wu,S., Cheng,L., Fu,H.Y.: Edge Couplers in Silicon Photonic Integrated Circuits: A Review. Appl. Sci. (Basel) 10 (4), 1538 (2020)
|
[15] |
Baehr-Jones,T., Hochberg,M., Walker,C., EricChan,F., Koshinz,D., Krug,W., Scherer,A., Baehr-Jones,T.: Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators. J. Lightwave Technol. 23 (12), 4215- 4221 (2005)
|
[16] |
Sun,Y., Liu,F., Xue,H.: High-speed and high-density optoelectronic co-package technologies. ZTE Technol. J. 24 (4), 27- 32 (2018)
|
[17] |
Wang,H.: Research of the hybrid silicon lasers for the silison photonic integrated chip. University of Chinese Academy Sciences (in Chinese), Beijing (2016)
|
[18] |
Li,Y., Tao,L., Ran,G., Chen,W.: A selective area metal bonding method for electrically pumped silicon-based hybrid lasers. Exper. Technol. Manag. 33 (10), 4954 (2016). (in Chinese)
|
[19] |
Takei,R., Suzuki,M., Omoda,E., Manako,S., Kamei,T., Mori,M., Sakakibara,Y.: Silicon knife-edge taper waveguide for ultra low-loss spot-size converter fabricated by photo lithography. Appl. Phys. Lett. 102 (10), 101108 (2013)
|
[20] |
Papes,M., Cheben,P., Benedikovic,D., Schmid,J.H., Pond,J., Halir,R., Ortega-Moñux,A., Wangüemert-Pérez,G., Ye,W.N., Xu,D.X., Janz,S., Dado,M., Vašinek,V.: Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides. Opt. Express 24 (5), 5026- 5038 (2016)
|
[21] |
Picard,M.J., Latrasse,C., Painchaud,Y., Poulin,M., Pelletier,F., Guy,M.: CMOS-compatible spot-size converter for optical fiber to sub-um silicon waveguide coupling with low-loss low-wavelength dependence and high tolerance to misalignment. In: Proceedings of the SPIE OPTO. (2016)
|
[22] |
Billah,M.R., Blaicher,M., Hoose,T., Dietrich,P.I., Marin-Palomo,P., Lindenmann,N., Nesic,A., Hofmann,A., Troppenz,U., Moehrle,M., Randel,S., Freude,W., Koos,C.: Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5 (7), 876 (2018)
|
[23] |
JDF CPO:. Co-Packaged Optical Module Discussion Document. V1.0
|
[24] |
Zheng,Q., Yang,P., Xue,H., He,H., Cao,R., Dai,F., Sun,S., Liu,F., Wang,Q., Cao,L., Chen,L., Sun,X., Sun,P.: Research on 3D optical module integrating edge coupler and TSV. J. Lightwave Technol. 40 (18), 6190- 6200 (2022)
|
[25] |
Thomson,D., Zilkie,A., Bowers,J.E., Komljenovic,T., Reed,G.T., Vivien,L., Marris-Morini,D., Cassan,E., Virot,L., Fédéli,J.M., Hartmann,J.M., Schmid,J.H., Xu,D.X., Boeuf,F., O’Brien,P., Mashanovich,G.Z., Nedeljkovic,M.: Roadmap on silicon photonics. J. Opt. 18 (7), 073003 (2016)
|
[26] |
Barwicz,T., Janta-Polczynski,A., Khater,M., Yan,T., Green,W.: An O-band metamaterial converter interfacing standard optical fibers to silicon nanophotonic waveguides. In: Proceedings of OFC. (2015)
|
[27] |
Barwicz,T., Peng,B., Leidy,R., Janta-Polczynski,A., Houghton,T., Khater,M., Kamlapurkar,S., Engelmann,S., Fortier,P., Boyer,N., Green,W.M.J.: Integrated metamaterial interfaces for self-aligned fiber-to-chip coupling in volume manufacturing. IEEE J. Sel. Top. Quantum Electron. 25 (3), 1- 13 (2018)
|
[28] |
Zhang,Y., Liu,S., Zhai,W., Peng,C., Wang,Z., Feng,J., Guo,J.: Reconfigurable spot size converter for the silicon photonics integrated circuit. Opt. Express 29 (23), 37703- 37711 (2021)
|
[29] |
Sun,C.: TeraPHY: an O-band WDM electro-optic platform for low power, terabit/s optical I/O. In: Proceedings of 2020 IEEE Symposium on VLSI Technology. pp. 1- 2 (2020)
|
[30] |
Bian,Y.: Hybrid III-V laser integration on a monolithic silicon photonic platform. In: Proceedings of Optical Fiber Communication Conference. pp. M5A- 2 (2021)
|
[31] |
Jones,R., Doussiere,P., Driscoll,J.B., Lin,W., Yu,H., Akulova,Y., Komljenovic,T., Bowers,J.E.: Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers. IEEE Nanotechnol. Mag. 13 (2), 17- 26 (2019)
|
[32] |
Park,H., Fang,A., Kodama,S., Bowers,J.: Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. Opt. Express 13 (23), 9460- 9464 (2005)
|
[33] |
Fang,A.W., Park,H., Cohen,O., Jones,R., Paniccia,M.J., Bowers,J.E.: Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 14 (20), 9203- 9210 (2006)
|
[34] |
Miyaguchi,K.: 110 GHz through-silicon via’s integrated in silicon photonics interposers for next-generation optical modules. In: Proceedings of 2021 European Conference on Optical Communication (ECOC). pp. 1- 4 (2021)
|
[35] |
Bogaerts,L.: High-speed TSV integration in an active silicon photonics interposer platform. In: Proceedings of 2018 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). pp. 1- 3 (2018)
|
[36] |
Cheng,Q., Bahadori,M., Glick,M., Rumley,S., Bergman,K.: Recent advances in optical technologies for datacenters: a review. Optica 5 (11), 1354- 1370 (2018)
|
[37] |
Sackinger,E.: The transimpedance limit. IEEE Trans. Circuits Syst. Regul. Pap. 57 (8), 1848- 1856 (2010)
|
[38] |
Singh,J., Ciavatti,J., Sundaram,K., Wong,J.S., Bandyopadhyay,A., Zhang,X., Li,S., Bellaouar,A., Watts,J., Lee,J.G., Samavedam,S.B.: 14-nm FinFET technology for analog and RF applications. IEEE Trans. Electron Dev. 65 (1), 31- 37 (2018)
|
[39] |
Li,D., Liu,M., Gao,S., Shi,Y., Zhang,Y., Li,Z., Chiang,P.Y., Maloberti,F., Geng,L.: Low-noise broadband CMOS TIA based on multi-stage stagger-tuned amplifier for high-speed high-sensitivity optical communication. IEEE Trans. Circuits Syst. Regul. Pap. 66 (10), 3676- 3689 (2019)
|
[40] |
Sackinger, E.: Broadband Circuits for Optical Fiber Communication. Wiley, New York (2005) Sackinger, E.: Broadband Circuits for Optical Fiber Communication. Wiley, New York (2005)
|
[41] |
Razavi,B.: Design of Integrated Circuits for Optical Communications. McGraw-Hill, New York (2003)
|
[42] |
Li,D., Minoia,G., Repossi,M., Baldi,D., Temporiti,E., Mazzanti,A., Svelto,F.: A low-noise design technique for high-speed CMOS optical receivers. IEEE J. Solid-State Circuits 49 (6), 1437- 1447 (2014)
|
[43] |
De Dobbelaere,P.: Advanced silicon photonics technology platform leveraging a semiconductor supply chain. In: Proceedings of IEDM. pp. 757- 760 (2017)
|
[44] |
Li,D., Minoia,G., Repossi,M., Baldi,D., Temporiti,E., Ghilioni,A., Svelto,F.: Multi-rate low-noise optical receiver frontend. J. Lightwave Technol. 38 (18), 4978- 4986 (2020)
|
[45] |
Lakshmikumar,K.R., Kurylak,A., Nagaraju,M., Booth,R., Nandwana,R.K., Pampanin,J., Boccuzzi,V.: A process and temperature insensitive CMOS linear TIA for 100 Gb/s/lambda PAM-4 optical links. IEEE J. Solid-State Circuits 54 (11), 3180- 3190 (2019)
|
[46] |
Daneshgar,S.: A 128 Gb/s PAM4 linear TIA with 12.6 pA/√Hz noise density in 22 nm FinFET CMOS. In: Proceedings of IEEE Radio Frequency Integrated Circuits Symposium. (2021)
|
[47] |
Awny,A.: 100 Gb/s differential linear TIAs with less than 10 pA/ Hz in 130-nm SiGe: C BiCMOS. IEEE Trans. Microw. Theory Tech. 66 (2), 973- 986 (2018)
|
[48] |
Aschei,L.: A 42-GHz TIA in 28-nm CMOS with less than 1.8% THD for optical coherent receivers. IEEE Solid-State Circuits Lett 3, 238- 241 (2020)
|
[49] |
Shen,X.: Silicon photonic integrated circuits and its application in data center. In: Proceedings of 7th Symposium on Novel Photoelectronic Detection Technology and Applications. pp. 1176380 (2021)
|
[50] |
Margalit,N., Xiang,C., Bowers,S.M., Bjorlin,A., Blum,R., Bowers,J.E.: Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett. 118 (22), 220501 (2021)
|
[51] |
Porter,G., Strong,R., Farrington,N., Forencich,A., Chen-Sun,P., Rosing,T., Fainman,Y., Papen,G., Vahdat,A.: Integrating microsecond circuit switching into the data center. Comput. Commun. Rev. 43 (4), 447- 458 (2013)
|
[52] |
Imran,M.: HOSA: hybrid optical switch architecture for data center networks. In: Proceedings of 12th ACM International Conference on Computing Frontiers. pp. 1- 8 (2015)
|
[53] |
Ballani,H.: Sirius: a flat datacenter network with nanosecond optical switching. In: Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication. pp. 782- 797 (2020)
|
[54] |
Raja,A.S., Lange,S., Karpov,M., Shi,K., Fu,X., Behrendt,R., Cletheroe,D., Lukashchuk,A., Haller,I., Karinou,F., Thomsen,B., Jozwik,K., Liu,J., Costa,P., Kippenberg,T.J., Ballani,H.: Ultrafast optical circuit switching for data centers using integrated soliton microcombs. Nat. Commun. 12 (1), 5867 (2021)
|
[55] |
Tian,Y.: 800 Gb/s-FR4 specification and interoperability analysis. In: Proceedings of 2021 Optical Fiber Communications Conference and Exhibition (OFC). pp. 1- 3 (2021)
|
[56] |
Che,D.: Long-term reliable> 200-Gb/s directly modulated lasers with 800 GbE-compliant DSP. In: Proceedings of 2021 Optical Fiber Communications Conference and Exhibition (OFC). pp. 1- 3 (2021)
|
[57] |
Zhang,F.: Up to single lane 200G optical interconnects with silicon photonic modulator. In: Proceedings of 2019 Optical Fiber Communications Conference and Exhibition (OFC). pp. 1- 3 (2019)
|
[58] |
Farrington,N.: Helios: a hybrid electrical/optical switch architecture for modular data centers. In: Proceedings of the ACM SIGCOMM 2010 Conference. pp. 339- 350 (2010)
|
[59] |
Dumais,P., Goodwill,D.J., Celo,D., Jiang,J., Zhang,C., Zhao,F., Tu,X., Zhang,C., Yan,S., He,J., Li,M., Liu,W., Wei,Y., Geng,D., Mehrvar,H., Bernier,E.: Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package. J. Lightwave Technol. 36 (2), 233- 238 (2018)
|
[60] |
Qiao,L.: 16× 16 non-blocking silicon electro-optic switch based on Mach-Zehnder interferometers. In: Proceedings of Optical Fiber Communication Conference. pp. Th1C-2 (2016)
|
[61] |
Zhai,Z.: Delivering ring all reduce services in WSS-based alloptical rearrangeable clos network. In: Proceedings of Asia Communications and Photonics Conference. pp. T4A- 139 (2021)
|
[62] |
Lee,B.G.: Monolithically integrated photonic switches driven by digital CMOS. In: Proceedings of Conf. Lasers Electro-Optics. pp. CTu1L.1 (2013)
|
[63] |
Forencich,A.: System-level demonstration of a dynamically reconfigured burst-mode link using a nanosecond si-photonic switch. In: Proceedings of Optical Fiber Communications Conference and Exposition. pp. Th1G.4 (2018)
|
[64] |
Forencich,A., Kamchevska,V., Dupuis,N., Lee,B.G., Baks,C.W., Papen,G., Schares,L.: A dynamically-reconfigurable burst-mode link using a nanosecond photonic switch. J. Light-wave Technol. 38 (6), 1330- 1340 (2020)
|
[65] |
Liao,Q., Qi,N., Li,M., Hu,S., He,J., Yin,B., Shi,J., Liu,J., Chiang,P.Y., Xiao,X., Wu,N.: A 50-Gb/s PAM4 Si-photonic transmitter with digital-assisted distributed driver and integrated CDR in 40-nm CMOS. IEEE J. Solid-State Circuits 55 (5), 1282- 1296 (2020)
|
[66] |
Fu,Q.: A 57.2-Gb/s PAM4 driver for a segmented silicon-photonics Mach-Zehnder modulator with extinction ratio >9-dB in 45-nm RF-SOI CMOS technology. In: Proceedings of IEEE International Symposium Circuits Systems (ISCAS). pp. 1- 5 (2021)
|
[67] |
Li,K., Liu,S., Thomson,D.J., Zhang,W., Yan,X., Meng,F., Littlejohns,C.G., Du,H., Banakar,M., Ebert,M., Cao,W., Tran,D., Chen,B., Shakoor,A., Petropoulos,P., Reed,G.T.: Electronic-photonic convergence for silicon photonics transmitters beyond 100 Gbps on-off keying. Optica 7 (11), 1514- 1516 (2020)
|
[68] |
Li,H.: A 112 Gb/s PAM4 transmitter with silicon photonics microring modulator and CMOS driver. In: Proceedings of 2019 Optical Fiber Communications Conference and Exhibition (OFC). pp. 1- 3 (2019)
|
[69] |
Clark,K.A., Cletheroe,D., Gerard,T., Haller,I., Jozwik,K., Shi,K., Thomsen,B., Williams,H., Zervas,G., Ballani,H., Bayvel,P., Costa,P., Liu,Z.: Synchronous subnanosecond clock and data recovery for optically switched data centres using clock phase caching. Nat. Electron. 3 (7), 426- 433 (2020)
|
[70] |
Rakowski,M.: 45 nm CMOS -silicon photonics monolithic technology (45CLO) for next-generation, low power and high speed optical interconnects. In: Proceedings of Optical Fiber Communication Conference. pp.T3H.3 (2020)
|
[71] |
Rahim,A., Goyvaerts,J., Szelag,B., Fedeli,J.M., Absil,P., Aalto,T., Harjanne,M., Littlejohns,C., Reed,G., Winzer,G., Lischke,S., Zimmermann,L., Knoll,D., Geuzebroek,D., Leinse,A., Geiselmann,M., Zervas,M., Jans,H., Stassen,A., Dominguez,C., Munoz,P., Domenech,D., Giesecke,A.L., Lemme,M.C., Baets,R.: Open-access silicon photonics platforms in Europe. IEEE J. Sel. Top. Quantum Electron. 25 (5), 1- 18 (2019)
|
[72] |
800G Pluggable MSA. Available at website of 800gmsa.com
|
[73] |
OIF. Available at website of oiforum.com
|
[74] |
Xu,B.: High power external pluggable laser bank with simultaneous single mode optical & electrical connection In: Proceedings of OFC. pp. Th2A.4. (2020)
|
[75] |
Mao,Y.: Record-high power 1.55-μm distributed feedback laser diodes for optical communication. In: Proceedings of OFC. pp.W1B.7. (2021)
|
[76] |
Top 500. Available at website of top500.org
|
[77] |
Tomahawk4/BCM56990 Series. Available at website of broadcom. com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
|
[78] |
NVIDIA Quantum-2 InfiniBand Platform. Available at website of nvidia.com/en-us/networking/quantum2
|
[79] |
Verdiell,J.: Advances in onboard optical interconnects: a new generation of miniature optical engines. In: Proceedings of DesignCon 2013 (2013)
|
[80] |
Minkenberg,C., Krishnaswamy,R., Zilkie,A., Nelson,D.: Copackaged datacenter optics: opportunities and challenges. IET Optoelectron. 15 (2), 77- 91 (2021)
|
[81] |
Wade,M.: TeraPHY: a chiplet technology for low-power, high-bandwidth in-package Optical I/O. In: Proceedings of IEEE Hot Chips 31 Symposium (HCS). IEEE, pp. 1- 48 (2019)
|
[82] |
Sun,C., Wade,M.T., Lee,Y., Orcutt,J.S., Alloatti,L., Georgas,M.S., Waterman,A.S., Shainline,J.M., Avizienis,R.R., Lin,S., Moss,B.R., Kumar,R., Pavanello,F., Atabaki,A.H., Cook,H.M., Ou,A.J., Leu,J.C., Chen,Y.H., Asanović,K., Ram,R.J., Popović,M.A., Stojanović,V.M.: Single-chip microprocessor that communicates directly using light. Nature 528 (7583), 534- 538 (2015)
|
[83] |
Atabaki,A.H., Moazeni,S., Pavanello,F., Gevorgyan,H., Notaros,J., Alloatti,L., Wade,M.T., Sun,C., Kruger,S.A., Meng,H., Al Qubaisi,K., Wang,I., Zhang,B., Khilo,A., Baiocco,C.V., Popović,M.A., Stojanović,V.M., Ram,R.J.: Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 556 (7701), 349- 354 (2018)
|
[84] |
Benner,A.: High-bandwidth integrated optics for server applications. In: Future Directions in Packaging (FDIP) Workshop in conjunction with the IEEE International Conference on Electrical Performance of Electronic Packaging and Systems. IEEE, pp. 1- 3 (2010)
|
[85] |
Stone,R.: Co-packaged optics in the datacenter. In: Proceedings of OIF CPO Webinar (2020)
|
[86] |
Yousry,R.: A 1.7 pJ/b 112 Gb/s XSR transceiver for intra-package communication in 7 nm FinFET Technology. In: Proceedings of 2021 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp. 180- 182 (2021)
|
[87] |
Shivnaraine,R.: A 26.5625-to-106.25 Gb/s XSR SerDes with 1.55 pJ/b efficiency in 7 nm CMOS. In: Proceedings of 2021 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp. 181- 183 (2021)
|
[88] |
Poon,C., Zhang,W., Cho,J., Ma,S., Wang,Y., Cao,Y., Laraba,A., Ho,E., Lin,W., Wu,D., Tan,K., Upadhyaya,P., Frans,Y.: A 1. 24-pJ/b 112-Gb/s (870 Gb/s/Mm) transceiver for in-package links in 7-nm FinFET. IEEE J. Solid-State Circuits 57 (4), 1190- 1210 (2022)
|
[89] |
McCollough,K., Huss,S.D., Vandersand,J., Smith,R., Moscone,C., Farooq,Q.O.: A 480 Gb/s/mm 1.7 pJ/b short-reach wireline transceiver using single-ended NRZ for Die-to-Die Applications. In: Proceedings of 2021 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp. 1- 3 (2021)
|
[90] |
Guo,Z.: A 112.5 Gb/s ADC-DSP-based PAM-4 long-reach transceiver with >50 dB channel loss in 5 nm FinFET. In: Proceedings of 2022 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp. 1- 3 (2022)
|
[91] |
Ali,T., Chen,E., Park,H.: A 460 mW 112 Gb/s DSP-based transceiver with 38 dB loss compensation for next-generation data centers in 7 nm FinFET technology. In: Proceedings of 2020 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp. 118- 120 (2020)
|
[92] |
LaCroix,M.A., Chong,E., Shen,W.: A 116 Gb/s DSP-based wireline transceiver in 7 nm CMOS achieving 6 pJ/b at 45 dB loss in PAM-4/Duo-PAM-4 and 52 dB in PAM-2. In: Proceedings of 2021 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp. 132- 134 (2021)
|
[93] |
Mishra,P: A 112 Gb/s ADC-DSP-based PAM-4 transceiver for long-reach applications with >40 dB channel loss in 7 nm FinFET. In: Proceedings of 2021 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp. 138- 140 (2021)
|
[94] |
Im,J., Zheng,K., Chou,C.H.A., Zhou,L., Kim,J.W., Chen,S., Wang,Y., Hung,H.W., Tan,K., Lin,W., Roldan,A.B., Carey,D., Chlis,I., Casey,R., Bekele,A., Cao,Y., Mahashin,D., Ahn,H., Zhang,H., Frans,Y., Chang,K.: A 112 Gb/s PAM-4 long-reach wireline transceiver using a 36-way time-interleaved SAR-ADC and inverter-based RX analog front-end in 7 nm FinFET. IEEE J. Solid-State Circuits 56 (1), 7- 18 (2021)
|
[95] |
Razavi,B.: A study of injection locking and pulling in oscillators. IEEE J. Solid-State Circuits 39 (9), 1415- 1424 (2004)
|
[96] |
Razavi,B.: The bridged T-coil [A circuit for all seasons]. IEEE Solid-State Circuits Mag. 7 (4), 9- 13 (2015)
|
[97] |
Toprak-Deniz,Z: A 128 Gb/s 1.3 pJ/b PAM-4 transmitter with reconfigurable 3-tap FFE in 14 nm CMOS. In: Proceedings of 2019 IEEE International Solid-State Circuits Conference (ISSCC). pp. 122- 124 (2019)
|
[98] |
Kossel,M., Menolfi,C., Weiss,J., Buchmann,P., von Bueren,G., Rodoni,L., Morf,T., Toifl,T., Schmatz,M.: A T-coil-enhanced 8. 5 Gb/s high-swing SST transmitter in 65 nm bulk CMOS with -$16 dB return loss over 10 GHz bandwidth. IEEE J. Solid-State Circuits 43 (12), 2905- 2920 (2008)
|
[99] |
Pisati,M., Bernardinis,F., Pascale,P., Nani,C., Sosio,M., Pozzati,E., Ghittori,N., Magni,F., Garampazzi,M., Bollati,G., Milani,A., Minuti,A., Giunco,F., Uggetti,P., Fabiano,I., Codega,N., Bosi,A., Carta,N., Pellicone,D., Spelgatti,G., Cutrupi,M., Rossini,A., Massolini,R., Cesura,G., Bietti,I.: A sub-250 mW 1-to-56 Gb/s continuous-range PAM-4 42.5 dB IL ADC/DAC-based transceiver in 7 nm FinFET. In: Proceedings of 2019 IEEE International Solid-State Circuits Conference (ISSCC). pp. 116- 118 (2019)
|
[100] |
Kiran,S., Balankutty,A., Liu,Y., Dokania,R., Venkataraman,H., Wali,P., Kim,S., Krupnik,Y., Cohen,A., Mahony,F.: A 56 GHz receiver analog front end for 224 Gb/s PAM-4 SerDes in 10 nm CMOS. In: Proceedings of 2021 Symposium on VLSI Circuits. pp. 1- 2 (2021)
|
[101] |
Gangasani,G., Hanson,D., Storaska,D., Xu,H., Kelly,M., Shannon,M., Sorna,M., Wielgos,M., Ramakrishna,P., Shi,S., Parker,S., Shukla,U., Kelly,W., Su,W., Yu,Z.: A 1.6 Tb/s chiplet over XSR-MCM channels using 113 Gb/s PAM-4 transceiver with dynamic receiver-driven adaptation of TX-FFE and programmable roaming taps in 5 nm CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp. 122- 124 (2022)
|
[102] |
He,A., Gai,W., Sheng,K., Li,N.: An adaptive DFE using pattern-dependent data-level reference in 28 nm CMOS technology. In: Proceedings of IEEE 14th International Conference on ASIC (ASICON). IEEE, pp. 1- 4 (2021)
|
[103] |
Shi,B., Zhao,Y., Ma,H., Nguyen,T., Li,E., Cangellaris,A., Schutt-Aine,J.: Decision feedback equalizer (DFE) taps estimation with machine learning methods. In: Proceedings of IEEE Electrical Design of Advanced Packaging and Systems (EDAPS). IEEE, pp. 1- 3 (2021)
|
[104] |
Baluchistan,I.: 800-Gbps PAM-4 O-band transmission through 2-km SMF using 4λ LAN-WDM TOSA with MLSE based on nonlinear channel estimation and decision feedback. In: Proceedings of European Conference on Optical Communication (ECOC). pp. 1- 4 (2021)
|
[105] |
Li,H., Xuan,Z., Kumar,R., Sakib,M., Sharma,J., Hsu,C., Ma,C., Rong,H., Balamurugan,G., Jaussi,J.: A 4×50 Gb/s all-silicon ring-based WDM transceiver with CMOS IC. In: Proceedings of European Conference on Optical Communication (ECOC). pp. 1- 3 (2021)
|
[106] |
Wade,M., Anderson,E., Ardalan,S., Bhargava,P., Buchbinder,S., Davenport,M., Fini,J., Lu,H., Li,C., Meade,R., Ramamurthy,C., Rust,M., Sedgwick,F., Stojanovic,V., Van Orden,D., Zhang,C., Sun,C., Shumarayev,S.Y., O’Keeffe,C., Hoang,T.T., Kehlet,D., Mahajan,R.V., Guzy,M.T., Chan,A., Tran,T.: TeraPHY: a chiplet technology for low-power, high-bandwidth in-package optical I/O. IEEE Micro 40 (2), 63- 71 (2020)
|
[107] |
Wade,M., Anderson,E., Ardalan,S., Bae,W., Beheshtian,B., Buchbinder,S., Chang,K., Chao,P., Eachempatti,H., Frey,J.: An error-free 1 Tbps WDM optical I/O chiplet and multi-wavelength multi-port laser. In: Proceedings of Optical Fiber Communication Conference (OFC). OSA, pp.F3C.6 (2021)
|
[108] |
Binhao,W.: Modeling of Photonic Devices and Photonic Integrated Circuits for Optical Interconnect and RF Photonic Front-End Applications. Texas A&M University, Doctor of Philosophy (2016)
|
[109] |
Stojanović,V.: High-density 3D electronic-photonic integration. In: Proceedings of 2015 Fourth Berkeley Symposium on Energy Efficient Electronic Systems (E3S). pp. 1- 2 (2015)
|
[110] |
Zhang,Y., Zhang,H., Li,M., Feng,P., Wang,L., Xiao,X., Yu,S.: 200 Gbit/s optical PAM4 modulation based on silicon microring modulator. In: Proceedings of European Conference on Optical Communications (ECOC). pp. 1- 4 (2020)
|
[111] |
Sakib,M., Liao,P., Kumar,R., Huang,D., Su,G., Ma,C., Rong,H.: A 112 Gb/s all-silicon micro-ring photodetector for datacom applications. In: Proceedings of Optical Fiber Communication Conference (OFC) (2020)
|
[112] |
Park,H., Sysak,M.N., Chen,H.W., Fang,A.W., Liang,D., Liao,L., Koch,B.R., Bovington,J., Tang,Y., Wong,K., Jacob-Mitos,M., Jones,R., Bowers,J.E.: Device and integration technology for silicon photonic transmitters. IEEE J. Sel. Top. Quantum Electron. 17 (3), 671- 688 (2011)
|
[113] |
Li,H., Balamurugan,G., Kim,T., Sakib,M., Kumar,R., Rong,H., Jaussi,J., Bryan Casper,B.: A 3-D-integrated silicon photonic microring-based 112-Gb/s PAM-4 transmitter with nonlinear equalization and thermal control. IEEE J. Solid-State Circuits 56 (1), 19- 29 (2020)
|
[114] |
Sharma,J.: Silicon photonic micro-ring modulator-based 4×112 Gb/s O-band WDM transmitter with ring photocurrent-based thermal control in 28 nm CMOS. In: Proceedings of 2021 Symposium on VLSI Circuits. pp. 1- 2 (2021)
|
[115] |
Agarwal,S., Ingels,M., Pantouvaki,M., Steyaert,M., Absil,P., Van Campenhout,J.: Wavelength locking of a Si ring modulator using an integrated drop-port OMA monitoring circuit. IEEE J. Solid-State Circuits 51 (10), 2328- 2344 (2016)
|
[116] |
Sun,C., Wade,M., Georgas,M., Lin,S., Alloatti,L., Moss,B., Kumar,R., Atabaki,A.H., Pavanello,F., Shainline,J.M., Orcutt,J.S., Ram,R.J., Popovic,M., Stojanovic,V.: A 45 nm CMOS-SOI monolithic photonics platform with bit-statistics-based resonant microring thermal tuning. IEEE J. Solid-State Circuits 51 (4), 893- 907 (2016)
|
[117] |
Li,H., Hsu,C.M., Sharma,J., Jaussi,J., Balamurugan,G.: A 100-Gb/s PAM-4 optical receiver with 2-tap FFE and 2-tap direct-feedback DFE in 28-nm CMOS. IEEE J. Solid-State Circuits 57 (1), 44- 53 (2021)
|
[118] |
Mehta,N., Sun,C., Wade,M., Stojanovic,V.: A differential optical receiver with monolithic split-microring photodetector. IEEE J. Solid-State Circuits 54 (8), 2230- 2242 (2019)
|
[119] |
Dziallas,G., Fatemi,A., Peczek,A., Zimmermann,L., Malignaggi,A., Kahmen,G.: A 56-Gb/s optical receiver with 2.08-μA noise monolithically integrated into a 250-nm SiGe BiCMOS technology. IEEE Trans. Microw. Theory Tech. 1 (2021)
|
[120] |
Thonnart,Y., Zid,M., Gonzalez-Jimenez,J., Waltener,G., Polster,R., Dubray,O., Lepin,F., Bernabé,S., Menezo,S., Parès,G., Castany,O., Boutafa,L., Grosse,P., Charbonnier,B., Baudot,C.: A 10Gb/s Si-photonic transceiver with 150 μW 120 μs-locktime digitally supervised analog microring wavelength stabilization for 1 Tb/s/mm2 Die-to-Die Optical Networks. In: Proceedings of International Solid State Circuits Conference (ISSCC). IEEE, pp. 350- 352 (2018)
|
[121] |
Wang,Z., Yu,Y., XiaoX., Li,M., Zou,X., Gao,D., Tan,M.: A time-division-multiplexing scheme for simultaneous wavelength locking of multiple silicon micro-rings. In: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp. 1- 4 (2018)
|
[122] |
Kim,M.H., Zimmermann,L., Choi,W.Y.: A temperature controller IC for maximizing Si micro-ring modulator optical modulation amplitude. J. Lightwave Technol. 37 (4), 1200- 1206 (2019)
|
[123] |
Kim,M.: A fully integrated 25Gbs Si ring modulator transmitter with a temperature controller. In: Proceedings of Optical Fiber Communication Conference (OFC) (2020)
|
[124] |
Ming,D., Wang,Z., Wang,Y., Tan,M.: First Demonstration of closed-loop PWM wavelength locking of a microring resonator in a monolithic photonic-BiCMOS platform. In: Proceedings of 2020 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA) (2020)
|
[125] |
Kim,H.K.: Si photonic-electronic monolithically integrated optical receiver with a built-in temperature-controlled wavelength filter. Opt. Express 29 (6), 9565- 9573 (2021)
|
[126] |
Kim,M., Kim,M.H., Jo,Y., Kim,H.K., Lischke,S., Mai,C., Zimmermann,L., Choi,W.Y.: Silicon electronic-photonic integrated 25 Gb/s ring modulator transmitter with a built-in temperature controller. Photonics Research 9 (4), 507- 513 (2021)
|
[127] |
Shi,W., Xu,Y., Sepehrian,H., LaRochelle,S., Rusch,L.A.: Silicon photonic modulators for PAM transmissions. J. Opt. 20 (8), 083002 (2018)
|
[128] |
Park,A.H.K., Shoman,H., Ma,M., Shekhar,S., Chrostowski,L.: Ring resonator based polarization diversity WDM receiver. Opt. Express 27 (5), 6147- 6157 (2019)
|
[129] |
Bogaerts,W., Chrostowski,L.: Silicon photonics circuit design: methods, tools and challenges. Laser Photonics Rev. 12 (4), 1700237 (2018)
|
[130] |
Grillanda,S.: Wavelength locking of a silicon microring resonator assisted by ContactLess Integrated Photonic Probe. In: Proceedings of 11th International Conference on Group IV Photonics (GFP). pp. 124- 125 (2014)
|
[131] |
Li,H., Ding,R., Baehr-Jones,T., Fiorentino,M., Hochberg,M., Palermo,S., Chiang,P.Y., Xuan,Z., Titriku,A., Li,C., Yu,K., Wang,B., Shafik,A., Qi,N., Liu,Y.: A 25 Gb/s, 4. 4 V-swing, AC-coupled ring modulator-based WDM transmitter with wavelength stabilization in 65 nm CMOS. IEEE J. Solid-State Circuits 50 (12), 3145- 3159 (2015)
|
[132] |
Bahadori,M., Gazman,A., Janosik,N., Rumley,S., Zhu,Z., Polster,R., Cheng,Q., Bergman,K.: Thermal Rectification of integrated microheaters for microring resonators in silicon photonics platform. J. Lightwave Technol. 36 (3), 773- 788 (2018)
|
[133] |
Zheng,X., Luo,Y., Li,G., Shubin,I., Thacker,H., Yao,J., Raj,K., Cunningham,J., Krishnamoorthy,A.: Enhanced optical bistability from self-heating due to free carrier absorption in substrate removed silicon ring modulators. Opt. Express 20 (10), 11478- 11486 (2012)
|
[134] |
Ma,M., Shoman,H., Shekhar,S., Jaeger,N.A.F., Chrostowski,L.: Automated adaptation and stabilization of a tunable WDM polarization-independent receiver on active silicon photonic platform. IEEE Photonics J. 12 (4), 1- 11 (2020)
|
[135] |
Gui,T., Wang,X., Tang,M., Yu,Y., Lu,Y., Li,L.: Real-time demonstration of 600 Gb/s DP-64QAM SelfHomodyne coherent bi-direction transmission with un-cooled DFB laser. In: Proceedings of Optical Fiber Communication Conference Postdeadline Papers. OSA, pp.Th4C.3 (2020)
|
[136] |
Moazeni,S., Lin,S., Wade,M., Alloatti,L., Ram,R.J., Popovic,M., Stojanovic,V.: A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS. IEEE J. Solid-State Circuits 52 (12), 3503- 3516 (2017)
|
[137] |
Roshan-Zamir,A.: A two-segment optical DAC 40 Gb/s PAM4 silicon microring resonator modulator transmitter in 65nm CMOS. In: Proceedings of 2017 IEEE Optical Interconnects Conference (OI). IEEE, pp. 5- 6 (2017)
|
[138] |
Sorace-Agaskar,C., Leu,J., Watts,M.R., Stojanovic,V.: Electrooptical co-simulation for integrated CMOS photonic circuits with Verilog-A. Opt. Express 23 (21), 27180- 27203 (2015)
|
[139] |
Kim,M., Shin,M., Kim,M.H., Yu,B.M., Kim,Y., Ban,Y., Lischke,S., Mai,C., Zimmermann,L., Choi,W.Y.: Large-signal SPICE model for depletion-type silicon ring modulators. Photon. Res. 7 (9), 948 (2019)
|
[140] |
Ye,Y., Spina,D., Xing,Y., Bogaerts,W., Dhaene,T.: Numerical modeling of a linear photonic system for accurate and efficient time-domain simulations. Photon. Res. 6 (6), 560 (2018)
|
[141] |
Fathololoumi,S.: 1.6 Tbps silicon photonics integrated circuit for co-packaged optical-IO switch applications. In: Proceedings of Optical Fiber Communication Conference (OFC). pp. T3H.1. (2020)
|
[142] |
Liao,Q., Zhang,Y., Ma,S., Wang,L., Li,L., Li,G., Zhang,Z., Liu,J., Wu,N., Liu,L., Chen,Y., Xiao,X., Qi,N.: A 50-Gb/s PAM-4 silicon-photonic transmitter incorporating lumped-segment MZM, distributed CMOS driver, and integrated CDR. IEEE J. Solid State Circuits 57 (3), 767- 780 (2022)
|
[143] |
Li,K., Liu,S., Thomson,D., Zhang,W., Yan,X., Meng,F., Littlejohns,C., Du,H., Banakar,M., Ebert,M., Cao,W., Tran,D., Chen,B., Shakoor,A., Petropoulos,P., Reed,G.: Electronic-photonic convergence for silicon photonics transmitters beyond 100 Gbit/s on-off keying. Optica 7 (11), 1514- 1516 (2020)
|
[144] |
Rito,P., Garcia Lopez,I., Petousi,D., Zimmermann,L., Kroh,M., Lischke,S., Knoll,D., Micusik,D., Awny,A., Ulusoy,A.C., Kissinger,D.: A monolithically integrated segmented linear driver and modulator in EPIC 025-μm SiGe: C BiCMOS platform. IEEE Trans. Microw. Theory Tech. 64 (12), 4561- 4572 (2016)
|
[145] |
Petousi,D., Rito,P., Lischke,S., Knoll,D., Garcia-Lopez,I., Kroh,M., Barth,R., Mai,C., Ulusoy,A.C., Peczek,A., Winzer,G., Voigt,K., Kissinger,D., Petermann,K., Zimmermann,L.: Monolithically integrated high-extinction-ratio MZM with a segmented driver in photonic BiCMOS. IEEE Photonics Technol. Lett. 28 (24), 2866- 2869 (2016)
|
[146] |
Zhang,H., Li,M., Zhang,Y., Zhang,D., Liao,Q., He,J., Hu,S., Zhang,B., Wang,L., Xiao,X., Qi,N., Yu,S.: 800 Gbit/s transmission over 1 km single-mode fiber using a four-channel silicon photonic transmitter. Photon. Res. 8 (11), 1776 (2020)
|
[147] |
Jacques,M., Xing,Z., Samani,A., El-Fiky,E., Li,X., Xiang,M., Lessard,S., Plant,D.V.: 240 Gbit/s silicon photonic Mach-Zehnder modulator enabled by two 2. 3-Vpp drivers. J. Lightwave Technol. 38 (11), 2877- 2885 (2020)
|
[148] |
Analui,B., Guckenberger,D., Kucharski,D., Narasimha,A.: A fully integrated 20-Gb/s optoelectronic transmitter implemented in a standard 0. 13-μm CMOS SOI technology. IEEE J. Solid-State Circuits 41 (12), 2945- 2955 (2006)
|
[149] |
Zhu,K., Saxena,V., Wu,X., Kuang,W.: Design considerations for traveling-wave modulator-based CMOS photonic transmitters. IEEE Trans. Circuits Syst. Express Briefs 62 (4), 412- 416 (2015)
|
[150] |
Sepehrian,H., Yekani,A., Rusch,L.A., Shi,W.: CMOS-photonics codesign of an integrated DAC-less PAM-4 silicon photonic transmitter. IEEE Trans. Circuits Syst. Regul. Pap. 63 (12), 2158- 2168 (2016)
|
[151] |
Bae,W., Jeong,G.S., Kim,Y., Chi,H.K., Jeong,D.K.: Design of silicon photonic interconnect ICs in 65-nm CMOS technology. IEEE Trans. Very Large Scale Integr. Syst. 24 (6), 2234- 2243 (2016)
|
[152] |
Xiong,C., Gill,D.M., Proesel,J.E., Orcutt,J.S., Haensch,W., Green,W.M.J.: Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter. Optica 3 (10), 1060 (2016)
|
[153] |
Petousi,D., Zimmermann,L., Gajda,A., Kroh,M., Voigt,K., Winzer,G., Tillack,B., Petermann,K.: Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation. IEEE J. Sel. Top. Quantum Electron. 21 (4), 199- 206 (2015)
|
[154] |
Patel,D., Ghosh,S., Chagnon,M., Samani,A., Veerasubramanian,V., Osman,M., Plant,D.V.: Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator. Opt. Express 23 (11), 14263- 14287 (2015)
|
[155] |
Rito,P., Garcia Lopez,I., Awny,A., Ko,M., Ulusoy,A.C., Kissinger,D.: A DC-90-GHz 4-Vpp modulator driver in a 0. 13-μm SiGe: C BiCMOS process. IEEE Trans. Microw. Theory Tech. 65 (12), 1- 11 (2017)
|
[156] |
Sarkas,I., Balteanu,A., Dacquay,E., Tomkins,A., Voinigescu,S.: A 45 nm SOI CMOS Class-D mm-wave PA with >10 Vpp differential swing. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 55, 88- 90 (2012)
|
[157] |
Walling,J.S., Shekhar,S., Allstot,D.J.: Wideband CMOS amplifier design: time-domain considerations. IEEE Trans. Circuits Syst. Regul. Pap. 55 (7), 1781- 1793 (2008)
|
[158] |
Shekhar,S., Walling,J.S., Allstot,D.J.: Bandwidth extension techniques for CMOS amplifiers. IEEE J. Solid-State Circuits 41 (11), 2424- 2439 (2006)
|
[159] |
Analui,B., Hajimiri,A.: Bandwidth enhancement for transimpedance amplifiers. IEEE J. Solid-State Circuits 39 (8), 1263- 1270 (2004)
|
[160] |
Suzuki,K., Tomita,Y., Yamaguchi,H., Cheung,T., Yamamoto,T., Tamura,H.: A 24-Gb/s source-series terminated driver with inductor peaking in 28-nm CMOS. In: Proceedings of IEEE Asian Solid-State Circuits Conference. IEEE, pp. 137- 140 (2012)
|
[161] |
Kim,J., Buckwalter,J.F.: Bandwidth enhancement with low group-delay variation for a 40-Gb/s transimpedance amplifier. IEEE Trans. Circuits Syst. Regul. Pap. 57 (8), 1964- 1972 (2010)
|
[162] |
Ahmed,A.H., El Moznine,A., Lim,D., Ma,Y., Rylyakov,A., Shekhar,S.: A dual-polarization silicon-photonic coherent transmitter supporting 552 Gb/s/wavelength. IEEE J. Solid-State Circuits 55 (9), 2597- 2608 (2020)
|
[163] |
He,J., Zhang,Y., Liu,H., Liao,Q., Zhang,Z., Li,M., Jiang,F., Shi,J., Liu,J., Wu,N., Chen,Y., Chiang,P., Yu,N., Xiao,X., Qi,N.: A 56-Gb/s reconfigurable silicon-photonics transmitter using high-swing distributed driver and 2-tap in-segment feedforward equalizer in 65-nm CMOS. In: Proceedings of IEEE Transactions on Circuits And Systems I-Regular Papers. IEEE, pp. 1- 12 (2021)
|
[164] |
Wohlfeil,B., Eiselt,N., Rito,P., Dochhan,A., Mehrpoor,G., Rafique,D., Petousi,D., Lopez,I., Lischke,S., Kissinger,D., Zimmermann,L., Eiselt,M., Griesser,H., Elbers,J.: First demonstration of fully integrated segmented driver and MZM in 0.25-μm SiGe BiCMOS employing 112 Gb/s PAM4 over 60 km SSMF. In: Proceedings of European Conference on Optical Communication, ECOC. pp. 4- 6 (2018)
|
[165] |
He,J., Qi,N., Yu,N., Wu,L., Loss,A.C.: A 2nd-order CTLE in 130 nm SiGe BiCMOS for a 50 GBaud PAM4 optical driver. In: Proceedings of ICTA. pp. 4- 5 (2018)
|
[166] |
Li,L., Chen,Y., Zhu,E.: A 28 Gbaud/s 4 Vpp PAM4 MZ modulator driver in 0.13 μm SiGe BiCMOS technology. In: Proceedings of 5th International Conference on Integration Circuits Microsystems, ICICM. pp. 85- 88 (2020)
|
[167] |
Fu,J., You,X., Luo,X., Zhong,L.: Energy-efficient differential to single-ended driver in 130-nm SiGe BiCMOS. In: Proceedings of IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). IEEE, pp. 4- 5 (2020)
|
[168] |
Qi,N., Li,X., Li,H., Xiao,X., Wang,L., Li,Z., Gao,Z., Yu,Y., Miki,M., Patrick,C.: A 25 Gb/s, 520 mW, 6.4 Vpp silicon-photonic Mach-Zehnder modulator with distributed driver in CMOS. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC). pp. W1B.3 (2015)
|
[169] |
Chen,T.J., Su,H.M., Lee,T.H., Hsu,S.S.H.: A 64-Gb/s 4.2-Vpp modulator driver using stacked-FET distributed amplifier topology in 65-nm CMOS. In: Proceedings of IEEE MTT-S International Microwave Symposium (IMS). IEEE, pp. 730- 733 (2019)
|
[170] |
Liao,Q., Hu,S., He,J., Yin,B., Chiang,P., Liu,J. Qi,N., Wu,N.: A dual-28 Gb/s digital-assisted distributed driver with CDR for optical-DAC PAM4 modulation in 40 nm CMOS. In: Proceedings of IEEE Radio Frequency Integrated Circuits Symposium. IEEE, pp. 219- 222 (2019)
|
[171] |
Zhao,Y., Vera,L., Long,J.R.: A 10 Gb/s, 6 Vp-p, digitally controlled, differential distributed amplifier MZM driver. IEEE J. Solid-State Circuits 49 (9), 2030- 2043 (2014)
|
[172] |
El-Aassar,O., Rebeiz,G.M.: A DC-to-108-GHz CMOS SOI distributed power amplifier and modulator driver leveraging multidrive complementary stacked cells. IEEE J. Solid-State Circuits 54 (12), 1- 15 (2019)
|
[173] |
Vera,L., Long,J.R.: A 40-Gb/s SiGe-BiCMOS MZM driver with 6-Vp-p output and on-chip digital calibration. IEEE J. Solid-State Circuits 52 (2), 460- 471 (2017)
|
[174] |
Hosseinzadeh,N., Jain,A., Ning,K., Helkey,R., Buckwalter,J.F.: A linear microwave electro-optic front end with SiGe distributed amplifiers and segmented silicon photonic Mach-Zehnder modulator. IEEE Trans. Microw. Theory Tech 47 (3), 1- 13,4 (2019)
|
[175] |
Kim,J., Buckwalter,J.F.: A 40-Gb/s optical transceiver frontend in 45 nm SOI CMOS. IEEE J. Solid-State Circuits 47 (3), 615- 626 (2012)
|
[176] |
Hettrich,H., Moller,M.: Design considerations for a 11. 3 Gbit/s SiGe bipolar driver array with a 5× 6 V pp chip-to-chip bondwire output to an MZM PIC. IEEE J. Solid-State Circuits 51 (9), 2006- 2014 (2016)
|
[177] |
Galal,S., Razavi,B.: 10-Gb/s limiting amplifier and laser/modulator driver in 0. 18-μm CMOS technology. IEEE J. Solid-State Circuits 38 (12), 2138- 2146 (2003)
|
[178] |
Zandieh,A., Schvan,P., Voinigescu,S.P.: Linear large-swing push-pull SiGe BiCMOS drivers for silicon photonics modulators. IEEE Trans. Microw. Theory Tech. 65 (12), 5355- 5366 (2017)
|
[179] |
Li,K., Thomson,D., Liu,S., Meng,F., Shakoor,A., Khokhar,A., Cao,W., Zhang,W., Reed,G.: Co-design of electronics and photonics components for silicon photonics transmitters. In: Proceedings of European Conference on Optical Communication, ECOC. pp. 2- 4 (2018)
|
[180] |
Giuglea,A., Belfiore,G., Khafaji,M., Henker,R., Ellinger,F.: A 30 Gb/s high-swing, open-collector modulator driver in 250 nm SiGe BiCMOS. In: Proceedings of IEEE 61st International Midwest Symposium on Circuits and Systems. IEEE, pp. 5- 8 (2018)
|
[181] |
Hwang,J., Jeong,G.S., Bae,W., Park,J.E., Yoon,C.S., Yoon,J.M., Joo,J., Kim,G., Jeong,D.K.: A 32 Gb/s, 201 mW, MZM/ EAM Cascode push-pull CML driver in 65 nm CMOS. IEEE Trans. Circuits Syst. Express Briefs 65 (4), 436- 440 (2018)
|
[182] |
Qi,N., Xiao,X., Hu,S., Li,X., Li,H., Liu,L., Li,Z., Wu,N., Chiang,P.Y.: Co-design and demonstration of a 25-Gb/s silicon-photonic Mach-Zehnder modulator with a CMOS-based high-swing driver. IEEE J. Sel. Top. Quantum Electron. 22 (6), 131- 140 (2016)
|
[183] |
Li,K., Wilson,P.: An improved push-pull driver using 0.13 μm CMOS. In: Proceedings of IEEE International Symposium on Circuits and Systems. IEEE, pp. 1958- 1961 (2013)
|
[184] |
Mandegaran,S., Hajimiri,A.: A breakdown voltage multiplier for high voltage swing drivers. IEEE J. Solid-State Circuits 42 (2), 302- 312 (2007)
|
[185] |
Knochenhauer,C., Scheytt,J.C., Ellinger,F.: A compact, low-power 40-GBit/s modulator driver with 6-V differential output swing in 0. 25-μm SiGe BiCMOS. IEEE J. Solid-State Circuits 46 (5), 1137- 1146 (2011)
|
[186] |
Ahmed,A.H.: A 6 V swing 3.6% THD >40 GHz driver with 4.5× bandwidth extension for a 272 Gb/s dual-polarization 16-QAM silicon photonic transmitter. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp. 484- 486 (2019)
|
[187] |
Pornpromlikit,S., Jeong,J., Presti,C.D., Scuderi,A., Asbeck,P.M.: A watt-level stacked-FET linear power amplifier in siliconon-insulator CMOS. IEEE Trans. Microw. Theory Tech. 58 (1), 57- 64 (2010)
|
[188] |
Dabag,H.T., Hanafi,B., Golcuk,F., Agah,A., Buckwalter,J.F., Asbeck,P.M.: Analysis and design of stacked-FET millimeter-wave power amplifier. IEEE Trans. Microw. Theory Tech. 61 (4), 1543- 1556 (2013)
|
[189] |
Shopov,S., Voinigescu,S.P.: A 3×60 Gb/s transmitter/repeater front-end with 4. 3VPP single-ended output swing in a 28 nm UTBB FD-SOI technology. IEEE J. Solid-State Circuits 51 (7), 1651- 1662 (2016)
|
[190] |
Jayamon,J.A., Buckwalter,J.F., Asbeck,P.M.: Multigate-cell stacked FET design for millimeter-wave CMOS power amplifier. IEEE J. Solid-State Circuits 51 (9), 2027- 2039 (2016)
|
[191] |
Nguyen,D.P., Pham,T., Pham,A.V.: A 28-GHz symmetrical doherty power amplifier using stacked-FET cells. IEEE Trans. Microw. Theory Tech. 66 (6), 2628- 2637 (2018)
|
[192] |
Kim,K., Lee,K., Shin,G., Lee,S., Son,H., Cho,S., Song,H.J.: A 50-Gb/s compact RadCom E-band transmitter with phase-controlled push-push Quadrupler and stacked-FET power amplifier. IEEE Solid-State Circuits Lett. 4, 150- 153 (2021)
|
[193] |
Hofer,B.: Amplifier Frequency and Transient Response (AFTR) Notes. Tektronix Inc, Portland, OR (1982)
|
[194] |
Lee,T.: Planar Microwave Engineering. Cambridge Univ. Press, Cambridge, U.K. (2004)
|
[195] |
Bénéteau,E.M., Cherry,E.M., Hooper,D.E.: The design of wide-band transistor feedback amplifiers. Proc. Inst. Electr. Eng. 110 (9), 1617 (1963)
|
[196] |
Ramon,H., Yin,X., Bauwelinck,J., Vanhoecke,M., Verbist,J., Soenen,W., De Heyn,P., Ban,Y., Pantouvaki,M., Van Campenhout,J., Ossieur,P.: Low-power 56 Gb/s NRZ microring modulator driver in 28 nm FDSOI CMOS. IEEE Photonics Technol. Lett. 30 (5), 467- 470 (2018)
|
[197] |
Khafaji,M.M., Henker,R., Ellinger,F.: A 1-pJ/bit 80-Gb/s 215-1 PRBS generator with a modified-cherry Hooper output driver. IEEE J. Solid-State Circuits 54 (7), 2059- 2069 (2019)
|
[198] |
Zhu,K., Saxena,V., Kuang,W.: Compact Verilog-A modeling of silicon traveling-wave modulator for hybrid CMOS photonic circuit design. In: Proceedings of IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, pp. 615- 618 (2004)
|
[199] |
Xing,Z., Samani,A., Xiang,M., El-Fiky,E., Hoang,T.M., Patel,D., Li,R., Qiu,M., Saber,M.G., Morsy-Osman,M., Plant,D.V.: 100 Gb/s PAM4 transmission system for datacenter interconnects using a SiP ME-MZM based DAC-less transmitter and a VSB self-coherent receiver. Opt. Express 26 (18), 23969- 23979 (2018)
|
[200] |
Li,G.L., Mason,T.G.B., Yu,P.K.L.: Analysis of segmented traveling-wave optical modulators. J. Lightwave Technol. 22 (7), 1789- 1796 (2004)
|
[201] |
Li,C., Yu,K., Rhim,J., Zhu,K., Qi,N., Fiorentino,M., Pinguet,T., Peterson,M., Saxena,V., Palermo,S.: A 3D-integrated 56 Gb/s NRZ/PAM4 reconfigurable segmented Mach-Zehnder modulator-based Si-photonics transmitter. In: Proceedings of IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS). IEEE, pp. 32- 35 (2018)
|
[202] |
Kononov,E.: Modeling Photonic Links in Verilog-A. Massachusetts Institute of Technology (2013)
|
[203] |
Martin,P., Gays,F., Grellier,E., Myko,A., Menezo,S.: Modeling of silicon photonics devices with Verilog-A. In: Proceedings of 29th International Conference on Microelectronics Proceedings-MIEL. pp. 209- 212 (2014)
|
[204] |
Shawon,M.J., Saxena,V.: Rapid simulation of photonic integrated circuits using Verilog-A compact models. IEEE Trans. Circuits Syst. Regul. Pap. 67 (10), 3331- 3341 (2020)
|
[205] |
Kim,M., Jo,Y., Lischke,S., Mai,C., Zimmermann,L., Choi,W.Y.: A temperature-aware large-signal SPICE model for depletion-type silicon ring modulators. IEEE Photonics Technol. Lett. 33 (17), 947- 950 (2021)
|
[206] |
Rhim,J., Ban,Y., Yu,B.M., Lee,J.M., Choi,W.Y.: Verilog-A behavioral model for resonance-modulated silicon micro-ring modulator. Opt. Express 23 (7), 8762- 8772 (2015)
|
[207] |
Wang,B., Li,C., Chen,C.H., Yu,K., Fiorentino,M., Beausoleil,R.G., Palermo,S.: A compact Verilog-A model of silicon carrierinjection ring modulators for optical interconnect transceiver circuit design. J. Lightwave Technol. 34 (12), 2996- 3005 (2016)
|
[208] |
Shin,M., Ban,Y., Yu,B.M., Kim,M.H., Rhim,J., Zimmermann,L., Choi,W.Y.: A linear equivalent circuit model for depletiontype silicon microring modulators. IEEE Trans. Electron Dev. 64 (3), 1140- 1145 (2017)
|
[209] |
Kim,M., Shin,M., Kim,M., Yu,B., Mai,C., Lischke,S., Zimmermann,L., Choi,W.: A large-signal equivalent circuit for depletion-type silicon ring modulators. In: Proceedings of Optical Fiber Communications Conference and Exposition (OFC). IEEE, pp. 1- 3 (2018)
|
[210] |
Ye,Y., Spina,D., Bogaerts,W., Dhaene,T.: Baseband macromodeling of linear photonic circuits for time-domain simulations. J. Lightwave Technol. 37 (4), 1364- 1373 (2019)
|
[211] |
Lin,S.: Electronic-Photonic Co-Design of Silicon Photonic Interconnects. University of California at Berkeley, Doctor of Philosophy (2017)
|
[212] |
Lin,S., Moazeni,S., Settaluri,K.T., Stojanović,V.: Electronic-photonic co-optimization of high-speed silicon photonic transmitters. J. Lightwave Technol. 35 (21), 4766- 4780 (2017)
|
[213] |
Preite,M.V., Sorianello,V., De Angelis,G., Romagnoli,M., Velha,P.: Geometrical representation of a polarisation management component on a SOI platform. Micromachines (Basel) 10 (6), E364 (2019)
|
[214] |
Annoni,A., Guglielmi,E., Carminati,M., Ferrari,G., Sampietro,M., Miller,D., Melloni,A., Morichetti,F.: Unscrambling light—automatically undoing strong mixing between modes. Light Sci. Appl. 6 (12), 17110 (2017)
|
[215] |
de Cea,M., Atabaki,A.H., Ram,R.J.: Power handling of silicon microring modulators. Opt. Express 27 (17), 24274- 24285 (2019)
|
[216] |
Leu,J.: Integrated Silicon Photonic Circuit Simulation. Doctor of Philosophy, Massachusetts Institute of Technology (2018)
|
[217] |
Wang,Z., Xu,J., Yang,P., Wang,X., Wang,Z., Duong,L.H.K., Wang,Z., Maeda,R.K.V., Li,H.: Improve chip pin performance using optical interconnects. IEEE Trans. Very Large Scale Integration Syst. 24, 1574- 1587 (2016)
|
[218] |
Goodman,J., Leonberger,F., Kung,S.Y., Athale,R.: Optical interconnections for VLSI systems. Proc. IEEE 72 (7), 850- 866 (1984)
|
[219] |
Demir,Y., Pan,Y., Song,S., Hardavellas,N., Kim,J., Memik,G.: Galaxy: a high-performance energy-efficient multi-chip architecture using photonic interconnects. In: Proceedings of the 28th ACM international conference on Supercomputing -ICS’14, (Munich, Germany). ACM, pp. 303- 312 (2014)
|
[220] |
Vantrease,D., Schreiber,R., Monchiero,M., McLaren,M., Jouppi,N.P., Fiorentino,M., Davis,A., Binkert,N., Beausoleil,R.G., Ahn,J.H.: Corona: system implications of emerging nanophotonic technology. In: Proceedings of 2008 International Symposium on Computer Architecture. pp. 153- 164 (2008)
|
[221] |
Wang,Z., Wang,Z., Xu,J., Chang,Y.S., Feng,J., Chen,X., Chen,S., Zhang,J.: CAMON: low-cost silicon photonic chiplet for manycore processors. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 39 (9), 1820- 1833 (2020)
|
[222] |
Yang,P., Wang,Z., Wang,Z., Xu,J., Chang,Y.S., Chen,X., Maeda,R.K.V., Feng,J.: Multidomain inter/intrachip silicon photonic networks for energy efficient rack-scale computing systems. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 39 (3), 626- 639 (2020)
|
[223] |
Zhang,J., Liu,Y., Feng,J., Chen,S., Wu,T., Dong,X., Xu,J.: UONN: energy-efficient optical neural network. In: Proceedings of 2021 Asia Communications and Photonics Conference (ACP). pp. 1- 3 (2021)
|
[224] |
Duong,L.H.K., Wang,Z., Nikdast,M., Xu,J., Yang,P., Wang,Z., Wang,Z., Maeda,R.K.V., Li,H., Wang,X., Le Beux,S., Thonnart,Y.: Coherent and incoherent crosstalk noise analyses in interchip/intrachip optical interconnection networks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24, 2475- 2487 (2016)
|
[225] |
Wu,X., Xu,J., Ye,Y., Wang,Z., Nikdast,M., Wang,X.: SUOR: sectioned undirectional optical ring for chip multiprocessor. ACM J. Emerg. Technol. Comput. Syst. 10 (4), 1- 25 (2014)
|
[226] |
Zhou,L., Kodi,A.K.: PROBE: prediction-based optical bandwidth scaling for energy-efficient NoCs. In: Proceedings of 2013 Seventh IEEE/ACM International Symposium on Networks-on-Chip (NoCS). IEEE, pp. 1- 8 (2013)
|
[227] |
Ort’ın-Ob’on,M., Tala,M., Ramini,L., Viñals-Yufera,V., Bertozzi,D.: Contrasting laser power requirements of wavelength-routed optical NoC topologies subject to the floorplanning, placement, and routing constraints of a 3D-stacked system. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25, 2081- 2094 (2017)
|
[228] |
Chen,C., Zhang,T., Contu,P., Klamkin,J., Coskun,A.K., Joshi,A.: Sharing and placement of on-chip laser sources in silicon photonic NoCs. In: Proceedings of 2014 8th IEEE/ACM International Symposium on Networks-on-Chip (NoCS). IEEE, pp. 88- 95 (2014)
|
[229] |
Chen,C., Joshi,A.: Runtime management of laser power in silicon photonic multibus NoC architecture. IEEE J. Sel. Top. Quantum Electron. 19 (2), 3700713 (2013)
|
[230] |
Lee,J.H., Bovington,J., Shubin,I., Luo,Y., Yao,J., Lin,S., Cunningham,J.E., Raj,K., Krishnamoorthy,A.V., Zheng,X.: Demonstration of 12. 2% wall plug efficiency in uncooled single mode external-cavity tunable Si/III-V hybrid laser. Opt. Express 23 (9), 12079- 12088 (2015)
|
[231] |
Spuesens,T., Pathak,S., Vanslembrouck,M., Dumon,P., Bogaerts,W.: Grating couplers with an integrated power splitter for high-intensity optical power distribution. IEEE Photonics Technol. Lett. 28 (11), 1173- 1176 (2016)
|
[232] |
Liang,T.K., Tsang,H.K.: Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides. IEEE J. Sel. Top. Quantum Electron. 10 (5), 1149- 1153 (2004)
|
[233] |
Ramini,L., Grani,P., Bartolini,S., Bertozzi,D.: Contrasting wavelength-routed optical NoC topologies for power-efficient 3D-stacked multicore processors using physical-layer analysis. In: Proceedings of Design, Automation Test in Europe Conference Exhibition (DATE). IEEE, pp. 1589- 1594 (2013)
|
[234] |
Duong,L.H.K., Yang,P., Wang,Z., Chang,Y.S., Xu,J., Wang,Z., Chen,X.: Crosstalk noise reduction through adaptive power control in inter/intra-chip optical networks. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 38 (1), 43- 56 (2019)
|
[235] |
Kennedy,M., Kodi,A.K.: Laser pooling: static and dynamic laser power allocation for on-chip optical interconnects. J. Lightwave Technol. 35 (15), 3159- 3167 (2017)
|
[236] |
Shang,C., Hughes,E., Wan,Y., Dumont,M., Koscica,R., Selvidge,J., Herrick,R., Gossard,A.C., Mukherjee,K., Bowers,J.E.: High-temperature reliable quantumdot lasers on Si with misfit and threading dislocation filters. Optica 8 (5), 749 (2021)
|
[237] |
Jones,R., Rong,H., Liu,A., Fang,A., Paniccia,M., Hak,D., Cohen,O.: Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express 13 (2), 519- 525 (2005)
|
[238] |
Dumais,P., Goodwill,D.J., Celo,D., Jiang,J., Bernier,E.: Three-mode synthesis of slab Gaussian beam in ultra-low-loss in-plane nanophotonic silicon waveguide crossing. In: Proceedings of 2017 IEEE 14th International Conference on Group IV Photonics (GFP). IEEE, pp. 97- 98 (2017)
|
[239] |
Luo,J., Killian,C., Beux,S.L., Chillet,D., Sentieys,O., O’connor,I.: Offline optimization of wavelength allocation and laser power in nanophotonic interconnects. J. Emerg. Technol. Comput. Syst. 14 (24), 1- 24 (2018)
|
[240] |
Medina,E., Dagan,E.: Habana Labs purpose-built AI inference and training processor architectures: scaling AI training systems using standard ethernet with Gaudi processor. IEEE Micro 40 (2), 17- 24 (2020)
|
[241] |
Optical I/O Core PAA-XW80001-ESA (Engineering Sample). Available at website of aiocore.com
|
[242] |
Wang,B., Sorin,W.V., Rosenberg,P., Kiyama,L., Mathai,S., Tan,M.R.T.: 4×112 Gbps/fiber CWDM VCSEL arrays for co-packaged interconnects. J. Lightwave Technol. 38 (13), 3439- 3444 (2020)
|
[243] |
Hao,Q., Hao,K., Xue,H., Han,M., Qi,N., Zhang,K., Niu,X., Xiao,L., Fan,D.: A chip-level optical interconnect for CPU. IEEE Photonics Technol. Lett. 33 (16), 852- 855 (2021)
|
[244] |
LightCounting: LightCounting ethernet optics report. (2020)
|
[245] |
He,H., Xue,H., Sun,Y., Liu,F., Cao,L.: Design and realization of multi-channel and high-bandwidth 25D transmitter integrated with silicon photonic MZM. J. Lightwave Technol. 40 (15), 5201- 5215 (2022)
|
[246] |
Ranovus Announces Second-Generation “Co-Packaged Optics” Chip for Hyperscale Data Center Applications. Available at website of ranovus.com/ranovus-announces-second-generation-copackaged-optics-chip-for-hyperscale-data-center-applications
|
/
〈 | 〉 |