Broadband light management in hydrogel glass for energy efficient windows

Jia Fu, Chunzao Feng, Yutian Liao, Mingran Mao, Huidong Liu, Kang Liu

PDF(2415 KB)
PDF(2415 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (3) : 33. DOI: 10.1007/s12200-022-00033-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Broadband light management in hydrogel glass for energy efficient windows

Author information +
History +

Abstract

Windows are critically important components in building envelopes that have a significant effect on the integral energy budget. For energy saving, here we propose a novel design of hydrogel-glass which consists of a layer of hydrogel and a layer of normal glass. Compared with traditional glass, the hydrogel-glass possesses a higher level of visible light transmission, stronger near-infrared light blocking, and higher mid-infrared thermal emittance. With these properties, hydrogel-glass based windows can enhance indoor illumination and reduce the temperature, reducing energy use for both lighting and cooling. Energy savings ranging from 2.37 to 10.45 MJ/m2 per year can be achieved for typical school buildings located in different cities around the world according to our simulations. With broadband light management covering the visible and thermal infrared regions of the spectrum, hydrogel-glass shows great potential for application in energy-saving windows.

Graphical abstract

Keywords

Hydrogel / Light management / Windows / Energy saving / Broadband

Cite this article

Download citation ▾
Jia Fu, Chunzao Feng, Yutian Liao, Mingran Mao, Huidong Liu, Kang Liu. Broadband light management in hydrogel glass for energy efficient windows. Front. Optoelectron., 2022, 15(3): 33 https://doi.org/10.1007/s12200-022-00033-4

References

[1]
Amasyali,K., El-Gohary,N.M.: A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 81, 1192- 1205 (2018)
[2]
Han,H., Jeon,Y., Lim,S., Kim,W., Chen,K.: New developments in illumination, heating and cooling technologies for energy-efficient buildings. Energy 35 (6), 2647- 2653 (2010)
[3]
Grynning,S., Gustavsen,A., Time,B., Jelle,B.P.: Windows in the buildings of tomorrow: energy losers or energy gainers? Energy Build. 61, 185- 192 (2013)
[4]
Cuce,E., Riffat,S.B.: A state-of-the-art review on innovative glazing technologies. Renew. Sustain. Energy Rev. 41, 695- 714 (2015)
[5]
Pal,S., Roy,B., Neogi,S.: Heat transfer modelling on windows and glazing under the exposure of solar radiation. Energy Build. 41 (6), 654- 661 (2009)
[6]
Yang,Z., Li,X., Hu,Y.: Study on solar radiation and energy efficiency of building glass system. Appl. Therm. Eng. 26 (8-9), 956- 961 (2006)
[7]
Prager,C., Köhl,M., Heck,M., Herkel,S.: The influence of the IR reflection of painted facades on the energy balance of a building. Energy Build. 38 (12), 1369- 1379 (2006)
[8]
Li,Z., Chen,Q., Song,Y., Zhu,B., Zhu,J.: Fundamentals, materials, and applications for daytime radiative cooling. Adv. Mater. Technol. 5 (5), 1901007 (2020)
[9]
Liu,J., Zhou,Z., Zhang,J., Feng,W., Zuo,J.: Advances and challenges in commercializing radiative cooling. Materials Today Physics 11, 100161 (2019)
[10]
Feng,C., Yang,P., Liu,H., Mao,M., Liu,Y., Xue,T., Fu,J., Cheng,T., Hu,X., Fan,H.J., Liu,K.: Bilayer porous polymer for efficient passive building cooling. Nano Energy 85, 105971 (2021)
[11]
Wang,S., Jiang,T., Meng,Y., Yang,R., Tan,G., Long,Y.: Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374 (6574), 1501- 1504 (2021)
[12]
Zhou,Z., Wang,X., Ma,Y., Hu,B., Zhou,J.: Transparent polymer coatings for energy-efficient daytime window cooling. Cell Rep. Phys. Sci. 1 (11), 100231 (2020)
[13]
Fan,D., Sun,H., Li,Q.: Thermal control properties of radiative cooling foil based on transparent fluorinated polyimide. Sol. Energy Mater. Sol. Cells 195, 250- 257 (2019)
[14]
Gamage,S., Kang,E.S., Åkerlind,C., Sardar,S., Edberg,J., Kariis,H., Ederth,T., Berggren,M., Jonsson,M.P.: Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling. J. Mater. Chem. C Mater. Opt. Electron Devices 8 (34), 11687- 11694 (2020)
[15]
Lee,K.W., Lim,W., Jeon,M.S., Jang,H., Hwang,J., Lee,C.H., Kim,D.R.: Visibly clear radiative cooling metamaterials for enhanced thermal management in solar cells and windows. Adv. Funct. Mater. 2105882 (2021)
[16]
Somasundaram,S., Chong,A., Wei,Z., Thangavelu,S.R.: Energy saving potential of low-e coating based retrofit double glazing for tropical climate. Energy Build. 206, 109570 (2020)
[17]
Zhou,J., Ren,Y., Fu,Z., Wang,C.: Review of the research and development of low emissivity coating glass. J. Build. Struct. 28 (4), 34- 40 (2007)
[18]
Llordés,A., Garcia,G., Gazquez,J., Milliron,D.J.: Tunable nearinfrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500 (7462), 323- 326 (2013)
[19]
Zhou,Y., Dong,X., Mi,Y., Fan,F., Xu,Q., Zhao,H., Wang,S., Long,Y.: Hydrogel smart windows. J. Mater. Chem. A Mater. Energy Sustain. 8 (20), 10007- 10025 (2020)
[20]
Ke,Y., Chen,J., Lin,G., Wang,S., Zhou,Y., Yin,J., Lee,P.S., Long,Y.: Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy Mater. 9 (39), 1902066 (2019)
[21]
Zhou,Y., Wang,S., Peng,J., Tan,Y., Li,C., Boey,F.Y.C., Long,Y.: Liquid thermo-responsive smart window derived from hydrogel. Joule 4 (11), 2458- 2474 (2020)
[22]
Li,X.H., Liu,C., Feng,S.P., Fang,N.X.: Broadband light management with thermochromic hydrogel microparticles for smart windows. Joule 3 (1), 290- 302 (2019)
[23]
Yuk,H., Zhang,T., Lin,S., Parada,G.A., Zhao,X.: Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15 (2), 190- 196 (2016)
[24]
Zhang,E., Duan,Q., Wang,J., Zhao,Y., Feng,Y.: Experimental and numerical analysis of the energy performance of building windows with solar NIR-driven plasmonic photothermal effects. Energy Convers. Manage. 245, 114594 (2021)
[25]
EnergyPlus: Weather data. See website of energyplus.net/weather
[26]
EnergyPlus,: Documentation. See website of energyplus.net/documentation
[27]
Jhon,M.S., Andrade,J.D.: Water and hydrogels. J. Biomed. Mater. Res. 7 (6), 509- 522 (1973)
[28]
Cooper,T.A., Zandavi,S.H., Ni,G.W., Tsurimaki,Y., Huang,Y., Boriskina,S.V., Chen,G.: Contactless steam generation and superheating under one sun illumination. Nat. Commun. 9 (1), 5086 (2018)
[29]
Philipp,H.: Optical properties of non-crystalline Si, SiO, SiOx and SiO2. J. Phys. Chem. Solids 32 (8), 1935- 1945 (1971)
[30]
Bass,M., Van Stryland,E.W., Williams,D.R., Wolfe,W.L.: Hand-book of Optics, vol. 2. McGraw-Hill, New York, (1995)
[31]
Pu,S., Fu,J., Liao,Y., Ge,L., Zhou,Y., Zhang,S., Zhao,S., Liu,X., Hu,X., Liu,K., Chen,J.: Promoting energy efficiency via a self-adaptive evaporative cooling hydrogel. Adv Mater. 32 (17), e1907307 (2020)
[32]
Pátek,J., Klomfar,J.: A computationally effective formulation of the thermodynamic properties of LiBr-H2O solutions from 273 to 500 K over full composition range. Int. J. Refrig. 29 (4), 566- 578 (2006)
[33]
Palmer,K.F., Williams,D.: Optical properties of water in the near infrared. J. Opt. Soc. Am. 64 (8), 1107- 1110 (1974)
[34]
Ziming,C., Fuqiang,W., Dayang,G., Huaxu,L., Yong,S.: Low-cost radiative cooling blade coating with ultrahigh visible light transmittance and emission within an “atmospheric window. ” Sol. Energy Mater. Sol. Cells 213, 110563 (2020)
[35]
Zhu,L., Raman,A.P., Fan,S.: Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl. Acad. Sci. U.S.A. 112 (40), 12282- 12287 (2015)
[36]
Li,W., Shi,Y., Chen,K., Zhu,L., Fan,S.: A comprehensive photonic approach for solar cell cooling. ACS Photon. 4 (4), 774- 782 (2017)

RIGHTS & PERMISSIONS

2022 The Author(s)
AI Summary AI Mindmap
PDF(2415 KB)

Accesses

Citations

Detail

Sections
Recommended

/