Preface to the special issue on “Biomedical Optics”
Dan ZHU, Walter BLONDEL, Junle QU, Xueding WANG, Sihua YANG
Preface to the special issue on “Biomedical Optics”
[1] |
Huang X, Fan J, Li L, Liu H, Wu R, Wu Y, Wei L, Mao H, Lal A, Xi P, Tang L, Zhang Y, Liu Y, Tan S, Chen L. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nature Biotechnology, 2018, 36(5): 451–459
CrossRef
Pubmed
Google scholar
|
[2] |
Zhang Y, Schroeder L K, Lessard M D, Kidd P, Chung J, Song Y, Benedetti L, Li Y, Ries J, Grimm J B, Lavis L D, De Camilli P, Rothman J E, Baddeley D, Bewersdorf J. Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging. Nature Methods, 2020, 17(2): 225–231
CrossRef
Pubmed
Google scholar
|
[3] |
Ughi G J, Marosfoi M G, King R M, Caroff J, Peterson L M, Duncan B H, Langan E T, Collins A, Leporati A, Rousselle S, Lopes D K, Gounis M J, Puri A S. A neurovascular high-frequency optical coherence tomography system enables in situ cerebrovascular volumetric microscopy. Nature Communications, 2020, 11(1): 3851
CrossRef
Pubmed
Google scholar
|
[4] |
Li Y, Li L, Zhu L, Maslov K, Shi J, Hu P, Bo E, Yao J, Liang J, Wang L, Wang L V. Snapshot photoacoustic topography through an ergodic relay for high-throughput imaging of optical absorption. Nature Photonics, 2020, 14(3): 164–170
CrossRef
Google scholar
|
[5] |
Chen J, Fan T, Xie Z, Zeng Q, Xue P, Zheng T, Chen Y, Luo X, Zhang H. Advances in nanomaterials for photodynamic therapy applications: status and challenges. Biomaterials, 2020, 237: 119827
CrossRef
Pubmed
Google scholar
|
[6] |
Cheng Z, Ma H, Wang Z, Yang S. In vivo volumetric monitoring of revascularization of traumatized skin using extended depth-of-field photoacoustic microscopy. Frontiers of Optoelectronics, 2020, 13(4): 307–317
CrossRef
Google scholar
|
[7] |
Gong W, Pan W, He Y, Huang M, Zhang J, Gu Z, Zhang D, Yang Z, Qu J. Super-resolution imaging of the dynamic cleavage of intercellular tunneling nanotubes. Frontiers of Optoelectronics, 2020, 13(4): 318–326
CrossRef
Google scholar
|
[8] |
Huang X, Zhou Y, Woo C, Pan Y, Nie L, Lai P. Multifunctional layered black phosphorene-based nanoplatform for disease diagnosis and treatment: a review. Frontiers of Optoelectronics, 2020, 13(4): 327–351
CrossRef
Google scholar
|
[9] |
Xu S, Akioma M, Yuan Z. The relationship between circadian rhythm and brain cognitive functions: an optical neuroimaging perspective. Frontiers of Optoelectronics, 2021, doi:10.1007/s12200-021-1090-y
CrossRef
Google scholar
|
[10] |
Yakovlev D, Farrakhova D, Shiryaev A, Efendiev K, Loschenov M, Amirkhanova L, Kornev D, Levkin V, Reshetov I, Loschenov V B. New approaches to diagnostics and treatment of cholangiocellular cancer based on photonics methods. Frontiers of Optoelectronics, 2020, 13(4): 352–359
CrossRef
Google scholar
|
[11] |
Savelieva T A, Kuryanova M N, Akhlyustina E V, Linkov K G, Meerovich G A, Loschenov V B. Attenuation correction technique for fluorescence analysis of biological tissues with significantly different optical properties. Frontiers of Optoelectronics, 2020, 13(4): 360–370
CrossRef
Google scholar
|
[12] |
Maklygina Y S, Skobeltsin A S, Savelieva T A, Pavlova G V, Chekhonin I V, Gurina O I, Chernysheva A A, Cherepanov S A, Loschenov V B. Study of possibility of cell recognition in brain tumors. Frontiers of Optoelectronics, 2020, 13(4): 371–380
CrossRef
Google scholar
|
[13] |
Ogien J, Daures A, Cazalas M, Perrot J L, Dubois A. Line-field confocal optical coherence tomography for three-dimensional skin imaging. Frontiers of Optoelectronics, 2020, 13(4): 381–392
CrossRef
Google scholar
|
/
〈 | 〉 |