Preparation of shape-controlling VO2(M/R) nanoparticles via one-step hydrothermal synthesis
Yuchao LI, Fengyu KONG, Bin WANG, Yanhua ZHAO, Zuankai WANG
Preparation of shape-controlling VO2(M/R) nanoparticles via one-step hydrothermal synthesis
In this study, we developed a facile one-step hydrothermal process that allows to synthesize high-purity VO2(M/R) nanoparticles with various morphologies such as nanorods, nanogranules, nanoblocks, and nanospheres. W dopants are successfully implanted in VO2(M/R) unit cells with high doping efficiency, which allows to regulate the size, morphology, and phase of obtained nanoparticles. The underlying regulation mechanism is presented in detail to reveal how hydrothermal products vary with W doping contents, which provides a synthetic strategy for the preparation of shape-controlling VO2(M/R) nanoparticles with high purity to satisfy different specific demands for corresponding applications in the field of thermochromic smart windows.
one-step hydrothermal / W doping / shape-controlling / VO2(M/R) nanoparticles
[1] |
Corr S A, Grossman M, Furman J D, Melot B C, Cheetham A K, Heier K R, Seshadri R. Controlled reduction of vanadium oxide nanoscrolls: crystal structure, morphology, and electrical properties. Chemistry of Materials, 2008, 20(20): 6396–6404
CrossRef
Google scholar
|
[2] |
Gao Y, Wang S, Kang L, Chen Z, Du J, Liu X, Luo H, Kanehira M. VO2–Sb:SnO2 composite thermochromic smart glass foil. Energy & Environmental Science, 2012, 5(8): 8234–8237
CrossRef
Google scholar
|
[3] |
Wu C, Zhang X, Dai J, Yang J, Wu Z, Wei S, Xie Y. Direct hydrothermal synthesis of monoclinic VO2(M) single-domain nanorods on large scale displaying magnetocaloric effect. Journal of Materials Chemistry, 2011, 21(12): 4509–4517
CrossRef
Google scholar
|
[4] |
Paone A, Joly M, Sanjines R, Romanyuk A, Scartezzini J L, Schüler A. Thermochromic films of VO2:W for smart solar energy applications. In: Proceedings of Optical Modeling and Measurements for Solar Energy Systems III. San Diego: International Society for Optics and Photonics, 2009, 7410: 74100F
|
[5] |
Li M, Magdassi S, Gao Y, Long Y. Hydrothermal synthesis of VO2 polymorphs: advantages, challenges and prospects for the application of energy efficient smart windows. Small, 2017, 13(36): 1701147
CrossRef
Pubmed
Google scholar
|
[6] |
Xu Y, Huang W, Shi Q, Zhang Y, Wu J, Song L. Porous nano-structured VO2 films with different surfactants: synthesis mechanisms, characterization, and applications. Journal of Materials Science Materials in Electronics, 2013, 24(10): 3823–3829
CrossRef
Google scholar
|
[7] |
Taha M, Walia S, Ahmed T, Headland D, Withayachumnankul W, Sriram S, Bhaskaran M. Insulator–metal transition in substrate-independent VO2 thin film for phase-change devices. Scientific Reports, 2017, 7(1): 17899
CrossRef
Google scholar
|
[8] |
Zhang Z, Gao Y, Chen Z, Du J, Cao C, Kang L, Luo H. Thermochromic VO2 thin films: solution-based processing, improved optical properties, and lowered phase transformation temperature. Langmuir, 2010, 26(13): 10738–10744
CrossRef
Pubmed
Google scholar
|
[9] |
Li S, Li Y, Jiang M, Ji S, Luo H, Gao Y, Jin P. Preparation and characterization of self-supporting thermochromic films composed of VO2(M)@SiO2 nanofibers. ACS Applied Materials & Interfaces, 2013, 5(14): 6453–6457
CrossRef
Pubmed
Google scholar
|
[10] |
Wang F, Liu Y, Liu C Y. Molten salt synthesis and localized surface plasmon resonance study of vanadium dioxide nanopowders. Journal of Solid State Chemistry, 2009, 182(12): 3249–3253
CrossRef
Google scholar
|
[11] |
Zheng C, Zhang X, Zhang J, Liao K. Preparation and characterization of VO2 nanopowders. Journal of Solid State Chemistry, 2001, 156(2): 274–280
CrossRef
Google scholar
|
[12] |
Wu C, Dai J, Zhang X, Yang J, Qi F, Gao C, Xie Y. Direct confined-space combustion forming monoclinic vanadium dioxides. Angewandte Chemie International Edition, 2010, 49(1): 134–137
CrossRef
Pubmed
Google scholar
|
[13] |
Cao C, Gao Y, Luo H. Pure single-crystal rutile vanadium dioxide powders: synthesis, mechanism and phase-transformation property. Journal of Physical Chemistry C, 2008, 112(48): 18810–18814
CrossRef
Google scholar
|
[14] |
Son J H, Wei J, Cobden D, Cao G Z, Xia Y N. Hydrothermal synthesis of monoclinic VO2 micro-and nanocrystals in one step and their use in fabricating inverse opals. Chemistry of Materials, 2010, 22(10): 3043–3050
CrossRef
Google scholar
|
[15] |
Whittaker L, Jaye C, Fu Z, Fischer D A, Banerjee S. Depressed phase transition in solution-grown VO2 nanostructures. Journal of the American Chemical Society, 2009, 131(25): 8884–8894
CrossRef
Pubmed
Google scholar
|
[16] |
Zhang K F, Liu X, Su Z X, Li H L. VO2(R) nanobelts resulting from the irreversible transformation of VO2(B) nanobelts. Materials Letters, 2007, 61(13): 2644–2647
CrossRef
Google scholar
|
[17] |
Kam K C, Cheetham A K. Thermochromic VO2 nanorods and other vanadium oxides nanostructures. Materials Research Bulletin, 2006, 41(5): 1015–1021
CrossRef
Google scholar
|
[18] |
Li J, Liu C, Mao L. The character of W-doped one-dimensional VO2(M). Journal of Solid State Chemistry, 2009, 182(10): 2835–2839
CrossRef
Google scholar
|
[19] |
Gui Z, Fan R, Mo W, Chen X, Yang L, Zhang S, Hu Y, Wang Z, Fan W. Precursor morphology controlled formation of rutile VO2 nanorods and their self-assembled structure. Chemistry of Materials, 2002, 14(12): 5053–5056
CrossRef
Google scholar
|
[20] |
Alie D, Gedvilas L, Wang Z, Tenent R, Engtrakul C, Yan Y, Shaheen S E, Dillon A C, Ban C. Direct synthesis of thermochromic VO2 through hydrothermal reaction. Journal of Solid State Chemistry, 2014, 212: 237–241
CrossRef
Google scholar
|
[21] |
Li M, Kong F, Zhang Y, Li G. Hydrothermal synthesis of VO2(B) nanorings with inorganic V2O5 sol. Royal Society of Chemistry, 2011, 13(7): 2204–2207
CrossRef
Google scholar
|
[22] |
Dong Y, Li S, Zhao K, Han C, Chen W, Wang B, Wang L, Xu B, Wei Q, Zhang L, Xu X, Mai L. Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes. Energy & Environmental Science, 2015, 8(4): 1267–1275
CrossRef
Google scholar
|
[23] |
Zhang S, Li Y, Wu C, Zheng F, Xie Y. Novel flowerlike metastable vanadium dioxide (B) micronanostructures: facile synthesis and application in aqueous lithium ion batteries. Journal of Physical Chemistry C, 2009, 113(33): 15058–15067
CrossRef
Google scholar
|
[24] |
Wang N, Duchamp M, Xue C, Dunin-Borkowski R E, Liu G, Long Y. Single-crystalline W-doped VO2 nanobeams with highly reversible electrical and plasmonic responses near room temperature. Advanced Materials Interfaces, 2016, 3(15): 1600164
CrossRef
Google scholar
|
[25] |
Liu H, Wang Y, Wang K, Hosono E, Zhou H. Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. Journal of Materials Chemistry, 2009, 19(18): 2835–2840
CrossRef
Google scholar
|
[26] |
Dai L, Chen S, Liu J, Gao Y, Zhou J, Chen Z, Cao C, Luo H, Kanehira M. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability. Physical Chemistry Chemical Physics, 2013, 15(28): 11723–11729
CrossRef
Pubmed
Google scholar
|
[27] |
Zhou J, Gao Y, Liu X, Chen Z, Dai L, Cao C, Luo H, Kanahira M, Sun C, Yan L. Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature. Physical Chemistry Chemical Physics, 2013, 15(20): 7505–7511
CrossRef
Pubmed
Google scholar
|
[28] |
Chen R, Miao L, Liu C, Zhou J, Cheng H, Asaka T, Iwamoto Y, Tanemura S. Shape-controlled synthesis and influence of W doping and oxygen nonstoichiometry on the phase transition of VO2. Scientific Reports, 2015, 5(1): 14087
CrossRef
Pubmed
Google scholar
|
[29] |
Chen R, Miao L, Cheng H, Nishibori E, Liu C, Asaka T, Iwamoto Y, Takata M, Tanemura S. One-step hydrothermal synthesis of V1−xWxO2(M/R) nanorods with superior doping efficiency and thermochromic properties. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(7): 3726–3738
CrossRef
Google scholar
|
[30] |
Leroux C, Nihoul G, Tendeloo G V. From VO2(B), to VO2(R): theoretical structures of VO2, polymorphs and in situ, electron microscopy. Physical Review B, 1998, 57(9): 5111–5121
CrossRef
Google scholar
|
[31] |
Wagner C D, Riggs W M, Davis L E, Moulder J F, Muilenberg G E. Handbook of X-ray Photoelectron Spectroscopy. Minnesota: Perkin-Elmer Corporation Press, 1979, 38
|
[32] |
Kurmaev E Z, Cherkashenko V M, Yarmoshenko Y M, Bartkowski S, Postnikov A V, Neumann M, Duda L C, Guo J H, Nordgren J, Perelyaev V A, Reichelt W. Electronic structure of studied by X-ray photoelectron and X-ray emission spectroscopies. Journal of Physics Condensed Matter, 1998, 10(18): 4081–4091
CrossRef
Google scholar
|
[33] |
Cui J, Da D, Jiang W. Structure characterization of vanadium oxide thin films prepared by magnetron sputtering methods. Applied Surface Science, 1998, 133(3): 225–229
CrossRef
Google scholar
|
[34] |
Yin D, Xu N, Zhang J, Zheng X. High quality vanadium dioxide films prepared by an inorganic sol-gel method. Materials Research Bulletin, 1996, 31(3): 335–340
CrossRef
Google scholar
|
[35] |
Burkhardt W, Christmann T, Meyer B K, Niessner W, Schalch D, Scharmann A. W- and F-doped VO2 films studied by photoelectron spectrometry. Thin Solid Films, 1999, 345(2): 229–235
CrossRef
Google scholar
|
[36] |
Lu S, Hou L, Gan F. Surface analysis and phase transition of gel-derived VO2 thin films. Thin Solid Films, 1999, 353(1–2): 40–44
CrossRef
Google scholar
|
[37] |
Li F, Wang X, Shao C, Tan R, Liu Y. W doped vanadium oxide nanotubes: synthesis and characterization. Materials Letters, 2007, 61(6): 1328–1332
CrossRef
Google scholar
|
/
〈 | 〉 |