All-optical pseudo noise sequence generator using a micro-ring resonator
Rajiv KUMAR, Ajay KUMAR, Poonam SINGH, Niranjan KUMAR
All-optical pseudo noise sequence generator using a micro-ring resonator
A scheme for the generation of a pseudo noise (PN) sequence in the optical domain is proposed. The cascaded units of micro-ring resonator (MRR)-based D flip-flop are used to design the device. D flip-flops consist of a single MRR and share the same optical pump signal. Numerical analysis is performed, and simulated results are discussed. The proposed device can be used as a building block for optical computing and for creating an information processing system.
all-optical / D flip-flop / micro-ring resonator (MRR) / optical communication / pseudo noise (PN) sequence
[1] |
Haas S M, Shapiro J H. Capacity of wireless optical communications. IEEE Journal on Selected Areas in Communications, 2003, 21(8): 1346–1357
CrossRef
Google scholar
|
[2] |
Maia Borges R, Cerqueira Sodre Junior A. Reconfigurable optical-wireless communications for future generations. IEEE Latin America Transactions, 2015, 13(11): 3580–3584
CrossRef
Google scholar
|
[3] |
Chaaban A, Morvan J M, Alouini M S. Free-space optical communications: capacity bounds, approximations, and a new sphere-packing perspective. IEEE Transactions on Communications, 2016, 64(3): 1176–1191
CrossRef
Google scholar
|
[4] |
Chen R Y, Yang Z Y. CMOS transimpedance amplifier for gigabit-per-second optical wireless communications. IEEE Transactions on Circuits and Wystems. II: Express Briefs, 2016, 63(5): 418–422
CrossRef
Google scholar
|
[5] |
Anguita J A, Djordjevic I B, Neifeld M A, Vasic B V. Shannon capacities and error-correction codes for optical atmospheric turbulent channels. Journal of Optical Networking, 2005, 4(9): 586–601
CrossRef
Google scholar
|
[6] |
Niehusmann J, Vörckel A, Bolivar P H, Wahlbrink T, Henschel W, Kurz H. Ultrahigh-quality-factor silicon-on-insulator microring resonator. Optics Letters, 2004, 29(24): 2861–2863
CrossRef
Pubmed
Google scholar
|
[7] |
Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon microring resonators. Laser & Photonics Reviews, 2012, 6(1): 47–73
CrossRef
Google scholar
|
[8] |
Grover R, Absil P P, Van V, Hryniewicz J V, Little B E, King O, Calhoun L C, Johnson F G, Ho P T. Vertically coupled GaInAsP--InP microring resonators. Optics Letters, 2001, 26(8): 506–508
CrossRef
Pubmed
Google scholar
|
[9] |
Ding Y, Ou H, Xu J, Xiong M, An Y, Hu H, Galili M, Riesgo A L, Seoane J, Yvind K, Oxenløwe L K, Zhang X, Huang D, Peucheret C. Linear all-optical signal processing using silicon micro-ring resonators. Frontiers of Optoelectronics, 2016, 9(3): 362–376
CrossRef
Google scholar
|
[10] |
Lipson M. Guiding, modulating, and emitting light on silicon-challenges and opportunities. Journal of Lightwave Technology, 2005, 23(12): 4222–4238
CrossRef
Google scholar
|
[11] |
Xiao H, Li D, Liu Z, Han X, Chen W, Zhao T, Tian Y, Yang J. Experimental realization of a CMOS-compatible optical directed priority encoder using cascaded micro-ring resonators. Nanophotonics, 2018, 7(4): 727–733
|
[12] |
Ishida K. Synchronous pseudo-noise code sequence generation circuit. U.S. Patent 5519736, 1996
|
[13] |
Xu Q, Lipson M. All-optical logic based on silicon micro-ring resonators. Optics Express, 2007, 15(3): 924–929
CrossRef
Pubmed
Google scholar
|
[14] |
Lee J H, Song I, Park S R, Lee J. Rapid acquisition of PN sequences with a new decision logic. IEEE Transactions on Vehicular Technology, 2004, 53(1): 49–60
CrossRef
Google scholar
|
[15] |
Yang L, Guo C, Zhu W, Zhang L, Sun C. Demonstration of a directed optical comparator based on two cascaded microring resonators. IEEE Photonics Technology Letters, 2015, 27(8): 809–812
|
[16] |
Zhao Y, Wang X, Gao D, Dong J, Zhang X. On-chip programmable pulse processor employing cascaded MZI-MRR structure. Frontiers of Optoelectronics, 2019, 12(2): 148–156
CrossRef
Google scholar
|
[17] |
Little B E, Chu S T, Pan W, Kokubun Y. Microring resonator arrays for VLSI photonics. IEEE Photonics Technology Letters, 2000, 12(3): 323–325
CrossRef
Google scholar
|
[18] |
Condo C, Gross W J. Pseudo-random Gaussian distribution through optimised LFSR permutations. Electronics Letters, 2015, 51(25): 2098–2100
CrossRef
Google scholar
|
[19] |
Rabus D G. Realization of optical filters using ring resonators with integrated semiconductor optical amplifiers in GaInAsP /InP. Dissertation for the Doctoral Degree. Berlin: Technische Universität Berlin, 2002
|
[20] |
Rakshit J K, Chattopadhyay T, Roy J N. Design of ring resonator based all-optical switch for logic and arithmetic operations–a theoretical study. Optik, 2013, 124(23): 6048–6057
CrossRef
Google scholar
|
[21] |
Bharti G K, Rakshit J K. Design and performance analysis of high speed optical binary code converter using micro-ring resonator. Fiber and Integrated Optics, 2018, 37(2): 103–121
CrossRef
Google scholar
|
[22] |
Houbavlis T, Zoiros K E, Kanellos G, Tsekrekos C. Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach-Zehnder interferometer. Optics Communications, 2004, 232(1–6): 179–199
CrossRef
Google scholar
|
[23] |
Rakshit J K, Roy J N. Silicon micro-ring resonator-based all-optical digital-to-analog converter. Photonic Network Communications, 2017, 34(1): 84–92
CrossRef
Google scholar
|
[24] |
Rakshit J K, Roy J N. Design of all-optical universal shift register using nonlinear microring resonators. Journal of Computational Electronics, 2016, 15(4): 1450–1461
CrossRef
Google scholar
|
[25] |
Rakshit J K, Roy J N, Chattopadhyay T. A theoretical study of all-optical clocked D flip flop using single micro-ring resonator. Journal of Computational Electronics, 2014, 13(1): 278–286
CrossRef
Google scholar
|
[26] |
Asghari M, White I H, Penty R V. Wavelength conversion using semiconductor optical amplifiers. Journal of Lightwave Technology, 1997, 15(7): 1181–1190
|
/
〈 | 〉 |