Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes

Luhua LAN, Jianhua ZOU, Congbiao JIANG, Benchang LIU, Lei WANG, Junbiao PENG

PDF(954 KB)
PDF(954 KB)
Front. Optoelectron. ›› 2017, Vol. 10 ›› Issue (4) : 329-352. DOI: 10.1007/s12200-017-0765-x
REVIEW ARTICLE

Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes

Author information +
History +

Abstract

Inkjet printing (IJP) is a versatile technique for realizing high-accuracy patterns in a cost-effective manner. It is considered to be one of the most promising candidates to replace the expensive thermal evaporation technique, which is hindered by the difficulty of fabricating low-cost, large electroluminescent devices, such as organic light-emitting diodes (OLEDs) and quantum dot light-emitting diodes (QLEDs). In this invited review, we first introduce the recent progress of some printable emissive materials, including polymers, small molecules, and inorganic colloidal quantum dot emitters in OLEDs and QLEDs. Subsequently, we focus on the key factors that influence film formation. By exploring stable ink formulation, selecting print parameters, and implementing droplet deposition control, a uniform film can be obtained, which in turn improves the device performance. Finally, a series of impressive inkjet-printed OLEDs and QLEDs prototype display panels are summarized, suggesting a promising future for IJP in the fabrication of large and high-resolution flat panel displays.

Graphical abstract

Keywords

inkjet printing (IJP) / inks system / film formation / organic light-emitting diodes (OLEDs) / quantum dot light-emitting diodes (QLEDs)

Cite this article

Download citation ▾
Luhua LAN, Jianhua ZOU, Congbiao JIANG, Benchang LIU, Lei WANG, Junbiao PENG. Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes. Front. Optoelectron., 2017, 10(4): 329‒352 https://doi.org/10.1007/s12200-017-0765-x

Luhua Lan received his B.S. degree in Information Display and Opto-Electronic technology from South China University of Technology, Guangzhou, China, in 2016. He is currently working toward his M.S. degree in Materials Physics and Chemistry in South China University of Technology, Guangzhou, China. His current research interests include interface optimization of OLEDs and QLEDs fabricated by solotion processing.

Full size|PPT slide

Jianhua Zou is currently an Associate Research Fellow (2013) in the School of Material Science and Engineering at South China University of Technology (SCUT).He received his Bachelors degree in Materials Physics from North East University (China) in 2005, and his Ph.D. degree from the Physics Department at SCUT in 2010. His current research interests is device physics in organic electronics, including OLEDs and QLED. He has also published more than 50 papers on high-impact journals in these topics.

Full size|PPT slide

Congbiao Jiang received his B.S. degree in Material Physics from Wuhan University of Science and Technology, Wuhan, China, in 2014. He is currently working toward his Ph.D. degree in Materials Physics and Chemistry in South China University of Technology, Guangzhou, China. His current research interests include photoelectric materials, technique optimization on inkjet printed electroluminescent decives and physics of device.

Full size|PPT slide

Lei Wang received his B.S. degree in the department of Polymer Materials Science and Engineering from Hebei University of Technology in 2004, and his Ph.D. degree in Materials Physics from South China University of Technology (SCUT) in 2009. He is currently an Associate Research Fellow (2011) in the SCUT. His research interests include organic and inorganic semiconductor materials, devices and their process development, and he has done a large number of scientific research work in the field of OLED and metal oxide TFT.

Full size|PPT slide

Junbiao Peng received his B.S. degree in Physics at Jilin University in 1984 and M.S. and Ph.D. degrees respectively in 1987 and 1993 in Changchun Institute of Physics (CIP), Chinese Academy of Sciences. In the subsequent years, he did his postdoc work in the Korea Institute of Science and Technology and the National Institute of Materials and Chemical Research (NIMC), Japan. In 2001, he joined the Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, as a full professor. His current research interests include design, characterization, and application of organic optoelectronic devices such as OLEDs, OPVs and TFTs.

References

[1]
Blasse G, Bril A. A new phosphor for flying-spot cathode-ray tubes for color television: yellow-emitting Y3Al5O12–Ce3+. Applied Physics Letters, 1967, 11(2): 53–55
CrossRef Google scholar
[2]
Brody T P, Asars J A, Dixon G D A. 6 × 6 inch 20 lines-per-inch liquid-crystal display panel. IEEE Transactions on Electron Devices, 1973, 20(11): 995–1001
CrossRef Google scholar
[3]
Tang C W, VanSlyke S A. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913–915
CrossRef Google scholar
[4]
Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Light-emitting diodes based on conjugated polymers. Nature, 1990, 347(6293): 539–541
CrossRef Google scholar
[5]
Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 1994, 370(6488): 354–357
CrossRef Google scholar
[6]
Baldo M A, O’brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998, 395(6698): 151–154
CrossRef Google scholar
[7]
Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012, 492(7428): 234–238
CrossRef Pubmed Google scholar
[8]
Gather M C, Köhnen A, Meerholz K. White organic light-emitting diodes. Advanced Materials, 2011, 23(2): 233–248
CrossRef Pubmed Google scholar
[9]
Granlund T, Nyberg T, Roman L S, Svensson M, Inganäs O. Patterning of polymer light-emitting diodes with soft lithography. Advanced Materials, 2000, 12(4): 269–273
CrossRef Google scholar
[10]
Gather M C, Köhnen A, Falcou A, Becker H, Meerholz K. Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography. Advanced Functional Materials, 2007, 17(2): 191–200
CrossRef Google scholar
[11]
Malinowski P E, Ke T H, Nakamura A, Chang T Y, Gokhale P, Steudel S, Janssen D, Kamochi Y, Koyama I, Iwai Y, Heremans P. 16.3: true-color 640 ppi OLED arrays patterned by CA i-line photolithography. SID Symposium Digest of Technical Papers, 2015, 46(1): 215–218
[12]
Jin H, Sturm J C. 40.2: super-high resolution transfer printing for full-color OLED display patterning. Sid Symposium Digest of Technical Papers, 2009, 40(1): 597–599
[13]
Calvert P. Inkjet printing for materials and devices. Chemistry of Materials, 2001, 13(10): 3299–3305
CrossRef Google scholar
[14]
Tekin E, Smith P J, Schubert U S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter, 2008, 4(4): 703–713
CrossRef Google scholar
[15]
Singh M, Haverinen H M, Dhagat P, Jabbour G E. Inkjet printing-process and its applications. Advanced Materials, 2010, 22(6): 673–685
CrossRef Pubmed Google scholar
[16]
Zhan Z, An J, Wei Y, Tran V T, Du H. Inkjet-printed optoelectronics. Nanoscale, 2017, 9(3): 965–993
CrossRef Pubmed Google scholar
[17]
Cummins G, Desmulliez M P Y. Inkjet printing of conductive materials: a review. Circuit World, 2012, 38(4): 193–213
CrossRef Google scholar
[18]
Kamyshny A, Magdassi S. Conductive nanomaterials for printed electronics. Small, 2014, 10(17): 3515–3535
CrossRef Pubmed Google scholar
[19]
Huang F, Cheng Y J, Zhang Y, Liu M S, Jen A K Y. Crosslinkable hole-transporting materials for solution processed polymer light-emitting diodes. Journal of Materials Chemistry, 2008, 18(38): 4495–4509
CrossRef Google scholar
[20]
Huang F, Wu H, Cao Y. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chemical Society Reviews, 2010, 39(7): 2500–2521
CrossRef Pubmed Google scholar
[21]
Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A. Transition metal oxides for organic electronics: energetics, device physics and applications. Advanced Materials, 2012, 24(40): 5408–5427
CrossRef Pubmed Google scholar
[22]
Liang X, Bai S, Wang X, Dai X, Gao F, Sun B, Ning Z, Ye Z, Jin Y. Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells. Chemical Society Reviews, 2017, 46(6): 1730–1759
CrossRef Pubmed Google scholar
[23]
Lee Y Z, Chen X, Chen S A, Wei P K, Fann W S. Soluble electroluminescent poly(phenylene vinylene)s with balanced electron- and hole injections. Journal of the American Chemical Society, 2001, 123(10): 2296–2307
CrossRef Pubmed Google scholar
[24]
Saikia G, Singh R, Sarmah P J, Akhtar M W, Sinha J, Katiyar M, Iyer P K. Synthesis and characterization of soluble poly (p-phenylene) derivatives for PLED applications. Macromolecular Chemistry and Physics, 2009, 210(24): 2153–2159
CrossRef Google scholar
[25]
Ding A L, Pei J, Lai Y H, Huang W. Phenylene-functionalized polythiophene derivatives for light-emitting diodes: their synthesis, characterization and properties. Journal of Materials Chemistry, 2001, 11(12): 3082–3086
CrossRef Google scholar
[26]
Lee J, Cho H J, Cho N S, Hwang D H, Kang J M, Lim E, Lee J I, Shim H K. Enhanced efficiency of polyfluorene derivatives: organic-inorganic hybrid polymer light-emitting diodes. Journal of Polymer Science Part A, Polymer Chemistry, 2006, 44(9): 2943–2954
CrossRef Google scholar
[27]
Wang R, Wang W Z, Yang G Z, Liu T, Yu J, Jiang Y. Synthesis and characterization of highly stable blue-light-emitting hyperbranched conjugated polymers. Journal of Polymer Science Part A, Polymer Chemistry, 2008, 46(3): 790–802
CrossRef Google scholar
[28]
Hou Q, Xu Y, Yang W, Yuan M, Peng J, Cao Y. Novel red-emitting fluorene-based copolymers. Journal of Materials Chemistry, 2002, 12(10): 2887–2892
CrossRef Google scholar
[29]
Guan R, Xu Y, Ying L, Yang W, Wu H, Chen Q, Cao Y. Novel green-light-emitting hyperbranched polymers with iridium complex as core and 3, 6-carbazole-co-2, 6-pyridine unit as branch. Journal of Materials Chemistry, 2009, 19(4): 531–537
CrossRef Google scholar
[30]
Liang J, Zhao S, Jiang X F, Guo T, Yip H L, Ying L, Huang F, Yang W, Cao Y. White polymer light-emitting diodes based on exciplex electroluminescence from polymer blends and a single polymer. ACS Applied Materials & Interfaces, 2016, 8(9): 6164–6173
CrossRef Pubmed Google scholar
[31]
Liang J, Zhong Z, Li S, Jiang X F, Ying L, Yang W, Peng J, Cao Y. Efficient white polymer light-emitting diodes from single polymer exciplex electroluminescence. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(9): 2397–2403
CrossRef Google scholar
[32]
Liu F, Tang C, Chen Q Q, Li S Z, Wu H B, Xie L H, Peng B, Wei W, Cao Y, Huang W. Pyrene functioned diarylfluorenes as efficient solution processable light emitting molecular glass. Organic Electronics, 2009, 10(2): 256–265
CrossRef Google scholar
[33]
Li Y, Li A Y, Li B X, Huang J, Zhao L, Wang B Z, Li J W, Zhu X H, Peng J, Cao Y, Ma D G, Roncali J. Asymmetrically 4,7-disubstituted benzothiadiazoles as efficient non-doped solution-processable green fluorescent emitters. Organic Letters, 2009, 11(22): 5318–5321
CrossRef Pubmed Google scholar
[34]
Fan Z, Cheng C, Yu S, Ye K, Sheng R, Xia D, Ma C, Wang X, Chang Y, Du G. Red and near-infrared electroluminescence from organic light-emitting devices based on a soluble substituted metal-free phthalocyanine. Optical Materials, 2009, 31(6): 889–894
CrossRef Google scholar
[35]
Inaoka S, Roitman D B, Advincula R C. Cross-linked polyfluorene polymer precursors: electrodeposition, PLED device characterization, and two-site co-deposition with poly (vinylcarbazole). Chemistry of Materials, 2005, 17(26): 6781–6789
CrossRef Google scholar
[36]
Gong X, Ostrowski J C, Bazan G C, Moses D, Heeger A J. Red electrophosphorescence from polymer doped with iridium complex. Applied Physics Letters, 2002, 81(20): 3711–3713
CrossRef Google scholar
[37]
Gong X, Ostrowski J C, Moses D, Bazan G C, Heeger A J. Electrophosphorescence from a polymer guest–host system with an iridium complex as guest: Förster energy transfer and charge trapping. Advanced Functional Materials, 2003, 13(6): 439–444
CrossRef Google scholar
[38]
Sirringhaus H, Kawase T, Friend R H, Shimoda T, Inbasekaran M, Wu W, Woo E P. High-resolution inkjet printing of all-polymer transistor circuits. Science, 2000, 290(5499): 2123–2126
CrossRef Pubmed Google scholar
[39]
Liu J, Zou J, Yang W, Wu H, Li C, Zhang B, Peng J, Cao Y. Highly efficient and spectrally stable blue-light-emitting polyfluorenes containing a dibenzothiophene-S, S-dioxide unit. Chemistry of Materials, 2008, 20(13): 4499–4506
CrossRef Google scholar
[40]
Li Y, Wu H, Zou J, Ying L, Yang W, Cao Y. Enhancement of spectral stability and efficiency on blue light-emitters via introducing dibenzothiophene-S, S-dioxide isomers into polyfluorene backbone. Organic Electronics, 2009, 10(5): 901–909
CrossRef Google scholar
[41]
Liu J, Hu S, Zhao W, Zou Q, Luo W, Yang W, Peng J, Cao Y.Novel spectrally stable saturated blue-light-emitting poly[(fluorene)-co-(dioctyldibenzothiophene-S,S-dioxide)]s. Macromolecular Rapid Communications, 2010, 31(5): 496–501
CrossRef Pubmed Google scholar
[42]
Zhao L, Zou J, Huang J, Li C, Zhang Y, Sun C, Zhu X, Peng J, Cao Y, Roncali J. Asymmetrically 9, 10-disubstituted anthracenes as soluble and stable blue electroluminescent molecular glasses. Organic Electronics, 2008, 9(5): 649–655
CrossRef Google scholar
[43]
Klimov V I. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion. Journal of Physical Chemistry B, 2006, 110(34): 16827–16845
CrossRef Pubmed Google scholar
[44]
Bawendi M G, Steigerwald M L, Brus L E. The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annual Review of Physical Chemistry, 1990, 41(1): 477–496
CrossRef Google scholar
[45]
Alivisatos A P, Harris A L, Levinos N J, Steigerwald M L, Brus L E. Electronic states of semiconductor clusters: homogeneous and inhomogeneous broadening of the optical spectrum. Journal of Chemical Physics, 1988, 89(7): 4001–4011
CrossRef Google scholar
[46]
Wang Y, Suna A, McHugh J, Hilinski E F, Lucas P A, Johnson R D. Optical transient bleaching of quantum-confined CdS clusters: the effects of surface-trapped electron-hole pairs. Journal of Chemical Physics, 1990, 92(11): 6927–6939
CrossRef Google scholar
[47]
Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385): 2016–2018
CrossRef Pubmed Google scholar
[48]
Zhang F, He X W, Li W Y, Zhang Y K. One-pot aqueous synthesis of composition-tunable near-infrared emitting Cu-doped CdS quantum dots as fluorescence imaging probes in living cells. Journal of Materials Chemistry, 2012, 22(41): 22250–22257
CrossRef Google scholar
[49]
Jiang C, Liu H, Liu B, Zhong Z, Zou J, Wang J, Wang L, Peng J, Cao Y. Improved performance of inverted quantum dots light emitting devices by introducing double hole transport layers. Organic Electronics, 2016, 31: 82–89
CrossRef Google scholar
[50]
Rogach A L, Gaponik N, Lupton J M, Bertoni C, Gallardo D E, Dunn S, Pira N L, Paderi M, Repetto P, Romanov S G, O’Dwyer C, Torres C M S, Eychmuller A. Light-emitting diodes with semiconductor nanocrystals. Angewandte Chemie International Edition, 2008, 47(35): 6538–6549
CrossRef Google scholar
[51]
Mueller A H, Petruska M A, Achermann M, Werder D J, Akhadov E A, Koleske D D, Hoffbauer M A, Klimov V I. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Letters, 2005, 5(6): 1039–1044
CrossRef Pubmed Google scholar
[52]
Pattantyus-Abraham A G, Kramer I J, Barkhouse A R, Wang X, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin M K, Grätzel M, Sargent E H. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano, 2010, 4(6): 3374–3380
CrossRef Pubmed Google scholar
[53]
Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L, Sargent E H. Ultrasensitive solution-cast quantum dot photodetectors. Nature, 2006, 442(7099): 180–183
CrossRef Pubmed Google scholar
[54]
Koh W K, Saudari S R, Fafarman A T, Kagan C R, Murray C B. Thiocyanate-capped PbS nanocubes: ambipolar transport enables quantum dot based circuits on a flexible substrate. Nano Letters, 2011, 11(11): 4764–4767
CrossRef Pubmed Google scholar
[55]
Nan W, Niu Y, Qin H, Cui F, Yang Y, Lai R, Lin W, Peng X. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: synthesis and structure-dependent optical properties. Journal of the American Chemical Society, 2012, 134(48): 19685–19693
CrossRef Pubmed Google scholar
[56]
Qin H, Niu Y, Meng R, Lin X, Lai R, Fang W, Peng X. Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements. Journal of the American Chemical Society, 2014, 136(1): 179–187
CrossRef Pubmed Google scholar
[57]
Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687–692
CrossRef Pubmed Google scholar
[58]
Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H, Huang W. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Advanced Materials, 2015, 27(14): 2311–2316
CrossRef Pubmed Google scholar
[59]
Li G, Rivarola F W R, Davis N J L K, Bai S, Jellicoe T C, de la Peña F, Hou S, Ducati C, Gao F, Friend R H, Greenham N C, Tan Z K. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Advanced Materials, 2016, 28(18): 3528–3534
CrossRef Pubmed Google scholar
[60]
Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10(11): 699–704
CrossRef Google scholar
[61]
Lim J, Park M, Bae W K, Lee D, Lee S, Lee C, Char K. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots. ACS Nano, 2013, 7(10): 9019–9026
CrossRef Pubmed Google scholar
[62]
Tessier M D, Dupont D, De Nolf K D, Roo J D, Hens Z. Economic and size-tunable synthesis of InP/ZnE (E= S, Se) colloidal quantum dots. Chemistry of Materials, 2015, 27(13): 4893–4898
CrossRef Google scholar
[63]
Kim J H, Yang H. High-efficiency Cu–In–S quantum-dot-light-emitting device exceeding 7%. Chemistry of Materials, 2016, 28(17): 6329–6335
CrossRef Google scholar
[64]
Bai Z, Ji W, Han D, Chen L, Chen B, Shen H, Zou B, Zhong H. Hydroxyl-terminated CuInS2 based quantum dots: toward efficient and bright light emitting diodes. Chemistry of Materials, 2016, 28(4): 1085–1091
CrossRef Google scholar
[65]
Bol A A, Meijerink A. Luminescence quantum efficiency of nanocrystalline ZnS: Mn2+. 1. Surface passivation and Mn2+ concentration. Journal of Physical Chemistry B, 2001, 105(42): 10197–10202
CrossRef Google scholar
[66]
Shen H, Wang H, Li X, Niu J Z, Wang H, Chen X, Li L S. Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu-, Mn-doped ZnSe nanocrystals. Dalton Transactions (Cambridge, England), 2009, (47): 10534–10540
CrossRef Pubmed Google scholar
[67]
Jurbergs D, Rogojina E, Mangolini L, Kortshagen U. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Applied Physics Letters, 2006, 88(23): 233116
CrossRef Google scholar
[68]
Cheng K Y, Anthony R, Kortshagen U R, Holmes R J. High-efficiency silicon nanocrystal light-emitting devices. Nano Letters, 2011, 11(5): 1952–1956
CrossRef Pubmed Google scholar
[69]
Zhang X, Zhang Y, Wang Y, Kalytchuk S, Kershaw S V, Wang Y, Wang P, Zhang T, Zhao Y, Zhang H, Cui T, Wang Y, Zhao J, Yu W W, Rogach A L. Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano, 2013, 7(12): 11234–11241
CrossRef Pubmed Google scholar
[70]
Yuan F, Wang Z, Li X, Li Y, Tan Z, Fan L, Yang S. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Advanced Materials, 2017, 29(3): 1604436
CrossRef Pubmed Google scholar
[71]
Song J, Li J, Li X, Xu L, Dong Y, Zeng H. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Advanced Materials, 2015, 27(44): 7162–7167
CrossRef Pubmed Google scholar
[72]
Jellicoe T C, Richter J M, Glass H F J, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C, Böhm M L. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. Journal of the American Chemical Society, 2016, 138(9): 2941–2944
CrossRef Pubmed Google scholar
[73]
Yang B, Chen J, Hong F, Mao X, Zheng K, Yang S, Li Y, Pullerits T, Deng W, Han K. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angewandte Chemie International Edition, 2017, 56(41): 12471–12475
CrossRef Pubmed Google scholar
[74]
Chen Q, De Marco N, Yang Y M, Song T B, Chen C C, Zhao H, Hong Z, Zhou H, Yang Y. Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10(3): 355–396
CrossRef Google scholar
[75]
Cortecchia D, Dewi H A, Yin J, Bruno A, Chen S, Baikie T, Boix P P, Grätzel M, Mhaisalkar S, Soci C, Mathews N. Lead-free MA2CuClxBr4−x hybrid perovskites. Inorganic Chemistry, 2016, 55(3): 1044–1052
CrossRef Pubmed Google scholar
[76]
Lee K H, Lee J H, Kang H D, Park B, Kwon Y, Ko H, Lee C, Lee J, Yang H. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. ACS Nano, 2014, 8(5): 4893–4901
CrossRef Pubmed Google scholar
[77]
Anikeeva P O, Halpert J E, Bawendi M G, Bulović V. Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. Nano Letters, 2007, 7(8): 2196–2200
CrossRef Pubmed Google scholar
[78]
Bae W K, Lim J, Lee D, Park M, Lee H, Kwak J, Char K, Lee C, Lee S. R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices. Advanced Materials, 2014, 26(37): 6387–6393
CrossRef Pubmed Google scholar
[79]
Dai X, Deng Y, Peng X, Jin Y. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Advanced Materials, 2017, 29(14): 1607022
CrossRef Pubmed Google scholar
[80]
Li J, Xu L, Wang T, Song J, Chen J, Xue J, Dong Y, Cai B, Shan Q, Han B, Zeng H. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Advanced Materials, 2017, 29(5): 1603885
CrossRef Pubmed Google scholar
[81]
Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 2014, 515(7525): 96–99
CrossRef Pubmed Google scholar
[82]
Manders J R, Qian L, Titov A, Hyvonen J, Tokarz-Scott J, Acharya K P, Yang Y, Cao W, Zheng Y, Xue J, Holloway P H. High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays. Journal of the Society for Information Display, 2015, 23(11): 523–528
CrossRef Google scholar
[83]
Shen H, Cao W, Shewmon N T, Yang C, Li L S, Xue J. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes. Nano Letters, 2015, 15(2): 1211–1216
CrossRef Pubmed Google scholar
[84]
Yang Y, Zheng Y, Cao W, Titov A, Hyvonen J, Manders J R, Xue J, Holloway P H, Qian L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nature Photonics, 2015, 9(4): 259–266
[85]
Gao M, Li L, Song Y. Inkjet printing wearable electronic devices. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(12): 2971–2993
CrossRef Google scholar
[86]
Liu X, Tarn T J, Huang F, Fan J. Recent advances in inkjet printing synthesis of functional metal oxides. Particuology, 2015, 19: 1–13
CrossRef Google scholar
[87]
Jang D, Kim D, Moon J. Influence of fluid physical properties on ink-jet printability. Langmuir, 2009, 25(5): 2629–2635
CrossRef Pubmed Google scholar
[88]
Liu H M, Zheng H, Xu W, Peng J B. Technology and development of ink-jet printing electroluminescence displays. Materials China, 2014, 33(3): 163–171
[89]
Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A. Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997, 389(6653): 827–829
CrossRef Google scholar
[90]
Yunker P J, Still T, Lohr M A, Yodh A G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature, 2011, 476(7360): 308–311
CrossRef Pubmed Google scholar
[91]
Soltman D, Subramanian V. Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir, 2008, 24(5): 2224–2231
CrossRef Pubmed Google scholar
[92]
Hu H, Larson R G. Marangoni effect reverses coffee-ring depositions. Journal of Physical Chemistry B, 2006, 110(14): 7090–7094
CrossRef Pubmed Google scholar
[93]
Kim D, Jeong S, Park B K, Moon J. Direct writing of silver conductive patterns: improvement of film morphology and conductance by controlling solvent compositions. Applied Physics Letters, 2006, 89(26): 264101
CrossRef Google scholar
[94]
Still T, Yunker P J, Yodh A G. Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir, 2012, 28(11): 4984–4988
CrossRef Pubmed Google scholar
[95]
Jiang C, Zhong Z, Liu B, He Z, Zou J, Wang L, Wang J, Peng J, Cao Y. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices. ACS Applied Materials & Interfaces, 2016, 8(39): 26162–26168
CrossRef Pubmed Google scholar
[96]
Cui Z. Printed Electronics: Materials, Technologies and Applications. Beijing: Higher Education Press, 2012 (in Chinese)
[97]
Shin P, Sung J. The effect of driving waveforms on droplet formation in a piezoelectric inkjet nozzle. In: Proceedings of Electronics Packaging Technology Conference, Singapore. IEEE, 2009, 158–162
[98]
Kwon K S, Kim W. A waveform design method for high-speed inkjet printing based on self-sensing measurement. Sensors and Actuators. A, Physical, 2007, 140(1): 75–83
CrossRef Google scholar
[99]
Shin P, Sung J, Lee M H. Control of droplet formation for low viscosity fluid by double waveforms applied to a piezoelectric inkjet nozzle. Microelectronics and Reliability, 2011, 51(4): 797–804
CrossRef Google scholar
[100]
Kwon K S. Experimental analysis of waveform effects on satellite and ligament behavior via in situ measurement of the drop-on-demand drop formation curve and the instantaneous jetting speed curve. Journal of Micromechanics and Microengineering, 2010, 20(11): 115005
CrossRef Google scholar
[101]
Kim C, Nogi M, Suganuma K, Yamato Y. Inkjet-printed lines with well-defined morphologies and low electrical resistance on repellent pore-structured polyimide films. ACS Applied Materials & Interfaces, 2012, 4(4): 2168–2173
CrossRef Pubmed Google scholar
[102]
Nguyen P Q M, Yeo L P, Lok B K, Lam Y C. Patterned surface with controllable wettability for inkjet printing of flexible printed electronics. ACS Applied Materials & Interfaces, 2014, 6(6): 4011–4016
CrossRef Pubmed Google scholar
[103]
Mahajan A, Hyun W J, Walker S B, Rojas G A, Choi J H, Lewis J A, Francis L F, Frisbie C D. A self-aligned strategy for printed electronics: exploiting capillary flow on microstructured plastic surfaces. Advanced Electronic Materials, 2015, 1(9): 1500137
CrossRef Google scholar
[104]
Park K S, Baek J, Park Y, Lee L, Lee Y E, Kang Y, Sung M M. Inkjet-assisted nanotransfer printing for large-scale integrated nanopatterns of various single-crystal organic materials. Advanced Materials, 2016, 28(15): 2874–2880
CrossRef Pubmed Google scholar
[105]
Wu S F, Li S H, Wang Y K, Huang C C, Sun Q, Liang J J, Liao L S, Fung M K. White organic LED with a luminous efficacy exceeding 100 lm·W−1 without light out-coupling enhancement techniques. Advanced Functional Materials, 2017, 27(31): 1701314
CrossRef Google scholar
[106]
Chiba T, Pu Y J, Kido J. Solution-processed white phosphorescent tandem organic light-emitting devices. Advanced Materials, 2015, 27(32): 4681–4687
CrossRef Pubmed Google scholar
[107]
Vaart N C V D, Lifka H, Budzelaar F P M, Rubingh J E J M, Hoppenbrouwers J J L, Dijksman J F, Verbeek R G F A, Woudenberg R, Vossen F J, Hiddink M G H, Rosink J J W M, Bernards T N M, Giraldo A. 44.4: distinguished paper: towards large-area full-color active-matrix printed polymer OLED television. Sid Symposium Digest of Technical Papers, 2004, 35(1): 1284–1287
[108]
Hebner T R, Wu C C, Marcy D, Lu M H, Sturm J C. Ink-jet printing of doped polymers for organic light emitting devices. Applied Physics Letters, 1998, 72(5): 519–521
CrossRef Google scholar
[109]
Kobayashi H, Kanbe S, Seki S, Kigchi H, Kimura M, Yudasaka I, Miyashita S, Shimoda T, Towns C R, Burroughes J H, Friend R H. A novel RGB multicolor light-emitting polymer display. Synthetic Metals, 2000, 111–112: 125–128
CrossRef Google scholar
[110]
Duineveld P C, de Kok M M, Buechel M, Sempel A, Mutsaers K A H, van de Weijer P, Camps I G J, van de Biggelaar T, Rubingh J E J M, Haskal E I. Ink-jet printing of polymer light-emitting devices. Proceedings of the Society for Photo-Instrumentation Engineers, 2002, 4464: 59–67
CrossRef Google scholar
[111]
Fleuster M, Klein M, Roosmalen P, Wit A, Schwab H. 44.2: Mass manufacturing of full color passive-matrix and active-matrix PLED displays. SID Symposium Digest of Technical Papers, 2004, 35(1): 1276–1279
[112]
Gupta R, Ingle A, Natarajan S, So F. 44.3: Ink jet printed organic displays. SID Symposium Digest of Technical Papers, 2004, 35(1): 1281–1283
[113]
Rhee J, Wang J, Cha S, Chung J, Lee D, Hong S, Choi B, Goh J, Jung K, Kim S, Ko C, Koh B, Sung S, Park K, Kim N, Chung K, Gregory H, Bale M, Creighton C, Wild B, Shawcross A, Webb L, Hatcher M, Lees R, Richardson M, Bassett O, Coats S, Jongman J, Goddard S, Lyon P, Murphy C, Wallace P, Carte J, Athanassopoulou N. P-177: a 14.1-in. full-color polymer-LED display with a-Si TFT backplane by ink-jet printing. SID Symposium Digest of Technical Papers, 2006, 37(1): 895–897
[114]
Gohda T, Kobayashi Y, Okano K, Inoue S, Okamoto K, Hashimoto S, Yamamoto E, Morita H, Mitsui S, Koden M. 58.3: a 3.6-in. 202-ppi full-color AMPLED display fabricated by ink-jet method. SID Symposium Digest of Technical Papers, 2006, 37(1): 1767–1770
[115]
Takei S, Kitabayashi A, Hanaoka H, Shinohara K, Goto M, Nozawa T, Kubota T, Kasai T, Sakai S, Miyashita S. P-186L: late-news poster: fabrication of completely uniform OLED display using an improved inkjet method. SID Symposium Digest of Technical Papers, 2009, 40(1): 1351–1354
[116]
Zheng H, Zheng Y, Liu N, Ai N, Wang Q, Wu S, Zhou J, Hu D, Yu S, Han S, Xu W, Luo C, Meng Y, Jiang Z, Chen Y, Li D, Huang F, Wang J, Peng J, Cao Y. All-solution processed polymer light-emitting diode displays. Nature Communications, 2013, 4(3): 1971
Pubmed
[117]
Chen C, Chung Y, Chen C, Chen P Y, Lee C H, Cheng L I, Tsai L, Ting H C, Lin L F, Chen C C, Shih T H, Chen C Y, Chang L H, Lin Y. 55.2: ink-jet printed AMOLED displays based on high mobility IGZO TFTs: cost does matter! Sid Symposium Digest of Technical Papers, 2014, 44(1):760–762
[118]
Chen P Y, Chen C L, Chen C C, Tsai L, Ting H C, Lin L F, Chen C C, Chen C Y, Chang L H, Shih T H, Chen Y H, Huang J C, Lai M Y, Hsu C M, Lin Y. 30.1: invited paper: 65-inch inkjet printed organic light-emitting display panel with high degree of pixel uniformity. SID Symposium Digest of Technical Papers, 2014, 45(1): 396–398
[119]
JOLED Inc. 世界初の印刷方式4K有機ELパネル、サンプル出荷を開始! (2017/5/17)
[120]
Olivier S, Derue L, Geffroy B, Ishow E, Maindron T. Inkjet printing of photopolymerizable small molecules for OLED applications. In: Proceedings of Organic Light Emitting Materials and Devices XIX. International Society for Optics and Photonics, 2015, 9566: 95661N
[121]
Haverinen H M, Myllylä R A, Jabbour G E. Inkjet printed RGB quantum dot-hybrid LED. Journal of Display Technology, 2010, 6(3): 87–89
CrossRef Google scholar
[122]
Kim T H, Cho K S, Lee E K, Lee S J, Chae J, Kim J W, Kim D H, Kwon J Y, Amaratunga G, Lee S Y, Choi B L, Kuk Y, Kim J M, Kim K. Full-colour quantum dot displays fabricated by transfer printing. Nature Photonics, 2011, 5(3): 176–182
CrossRef Google scholar
[123]
Kim B H, Onses M S, Lim J B, Nam S, Oh N, Kim H, Yu K J, Lee J W, Kim J H, Kang S K, Lee C H, Lee J, Shin J H, Kim N H, Leal C, Shim M, Rogers J A. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Letters, 2015, 15(2): 969–973
CrossRef Pubmed Google scholar
[124]
Han J, Ko D, Park M, Roh J, Jung H, Lee Y, Kwon Y, Sohn J, Bae W K, Chin B D, Lee C. Toward high-resolution, inkjet-printed, quantum dot light-emitting diodes for next-generation displays. Journal of the Society for Information Display, 2016, 24(9): 545–551
CrossRef Google scholar
[125]
Liu Y, Li F, Xie X, Chen W, Xu Z, Zheng C, Hu H, Guo T. P-122: red and green quantum dots light-emitting diodes fabricated by inkjet printing. Sid Symposium Digest of Technical Papers, 2017, 48(1): 1715–1718
[126]
Jiang C, Mu L, Zou J, He Z, Zhong Z, Wang LMiao, Xu, Wang J, Peng J, Cao Y.Full-color quantum dots active matrix display fabricated by ink-jet printing. Science China Chemistry, 2017, https://doi.org/10.1007/s11426-017-9087-y
[127]
Xia S, Cheon K O, Brooks J J, Rothman M, Ngo T, Hett P, Kwong R C, Inbasekaran M, Brown J J, Sonoyama T, Ito M, Seki S, Miyashita S. Printable phosphorescent organic light-emitting devices. Journal of the Society for Information Display, 2009, 17(2): 167–172
CrossRef Google scholar
[128]
Chen P, Chen C, Hsieh C, Lin J M, Lin Y S, Lin Y. P-56: High resolution organic light-emitting diode panel fabricated by ink jet printing process. Sid Symposium Digest of Technical Papers, 2015, 46(1):1352–1354
[129]
Sax S, Rugen-Penkalla N, Neuhold A, Schuh S, Zojer E, List E J W, Müllen K. Efficient blue-light-emitting polymer heterostructure devices: the fabrication of multilayer structures from orthogonal solvents. Advanced Materials, 2010, 22(18): 2087–2091
CrossRef Pubmed Google scholar
[130]
Patel D G D, Graham K R, Reynolds J R. A Diels–Alder crosslinkable host polymer for improved PLED performance: the impact on solution processed doped device and multilayer device performance. Journal of Materials Chemistry, 2012, 22(7): 3004–3014
CrossRef Google scholar
[131]
Kim J S, Ho P K H, Murphy C E, Friend R H. Phase separation in polyfluorene-based conjugated polymer blends: lateral and vertical analysis of blend spin-cast thin films. Macromolecules, 2004, 37(8): 2861–2871
CrossRef Google scholar
[132]
Xia Y, Friend R H. Controlled phase separation of polyfluorene blends via inkjet printing. Macromolecules, 2005, 38(15): 6466–6471
CrossRef Google scholar
[133]
Chang S C, Liu J, Bharathan J, Yang Y, Onohara H, Kido J. Multicolor organic light-emitting diodes processed by hybrid inkjet printing. Advanced Materials, 1999, 11(9): 734–737
CrossRef Google scholar
[134]
Gorter H, Coenen M J J, Slaats M W L, Ren M, Lu W, Kuijpers C J, Groen W A. Toward inkjet printing of small molecule organic light emitting diodes. Thin Solid Films, 2013, 532: 11–15
CrossRef Google scholar
[135]
Ding Z, Xing R, Fu Q, Ma D, Han Y. Patterning of pinhole free small molecular organic light-emitting films by ink-jet printing. Organic Electronics, 2011, 12(4): 703–709
CrossRef Google scholar
[136]
Coe S, Woo W K, Bawendi M, Bulović V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 2002, 420(6917): 800–803
CrossRef Pubmed Google scholar
[137]
Kim H H, Park S, Yi Y , Son D I, Park C, Hwang D K, Choi W K. Inverted quantum dot light emitting diodes using polyethylenimine ethoxylated modified ZnO. Scientific Reports, 2015, 5: 8968
CrossRef Google scholar
[138]
Kim O S, Kang B H, Lee J S, Lee S W, Cha S H, Lee J W, Kim S W, Kim S H, Kang S W. Efficient quantum dots light-emitting devices using polyvinyl pyrrolidone-capped ZnO nanoparticles with enhanced charge transport. IEEE Electron Device Letters, 2016, 37(8): 1022–1024
CrossRef Google scholar
[139]
Liang F, Liu Y, Hu Y, Shi Y L, Liu Y Q, Wang Z K, Wang X D, Sun B Q, Liao L S. Polymer as an additive in the emitting layer for high-performance quantum dot light-emitting diodes. ACS Applied Materials & Interfaces, 2017, 9(23): 20239–20246
CrossRef Pubmed Google scholar
[140]
Kim L, Anikeeva P O, Coe-Sullivan S A, Steckel J S, Bawendi M G, Bulović V. Contact printing of quantum dot light-emitting devices. Nano Letters, 2008, 8(12): 4513–4517
CrossRef Pubmed Google scholar
[141]
Kim B H, Nam S, Oh N, Cho S Y, Yu K J, Lee C H, Zhang J, Deshpande K, Trefonas P, Kim J H, Lee J, Shin J H, Yu Y, Lim J B, Won S M, Cho Y K, Kim N H, Seo K J, Lee H, Kim T I, Shim M, Rogers J A. Multilayer transfer printing for pixelated, multicolor quantum dot light-emitting diodes. ACS Nano, 2016, 10(5): 4920–4925
CrossRef Pubmed Google scholar
[142]
Choi M K, Yang J, Kang K, Kim D C, Choi C, Park C, Kim S J, Chae S I, Kim T H, Kim J H, Hyeon T, Kim D H. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nature Communications, 2015, 6: 7149
CrossRef Pubmed Google scholar
[143]
Roy D, Munz M, Colombi P, Bhattacharyya S, Salvetat J P, Cumpson P J, Saboungi M L. Directly writing with nanoparticles at the nanoscale using dip-pen nanolithography. Applied Surface Science, 2007, 254(5): 1394–1398
CrossRef Google scholar
[144]
Gokarna A, Lee S K, Hwang J S, Cho Y H, Lim Y T, Chung B H, Lee M. Fabrication of CdSe/ZnS quantum-dot-conjugated protein microarrays and nanoarrays. Journal of the Korean Physical Society, 2008, 53(925): 3047–3050
CrossRef Google scholar
[145]
Park J S, Kyhm J, Kim H H, Jeong S, Kang J, Lee S E, Lee K T, Park K, Barange N, Han J, Song J D, Choi W K, Han I K. Alternative patterning process for realization of large-area, full-color, active quantum dot display. Nano Letters, 2016, 16(11): 6946–6953
CrossRef Pubmed Google scholar
[146]
Haverinen H M, Myllylä R A, Jabbour G E. Inkjet printing of light emitting quantum dots. Applied Physics Letters, 2009, 94(7): 073108
CrossRef Google scholar

Acknowledgements

This work was supported by the National Key Basic Research and Development Program of China (Nos. 2015CB655004, 2016YFB0401005, and 2016YFF0203603), the National Natural Science Foundation of China (Grant Nos. 21673082, U1601651, and U1301243), Guangdong Science and Technology Plan (No. 2017B090901055), the Pearl River S&T Nova Program of Guangzhou (Nos. 201710010066, and 201610010052), the Fundamental Research Funds for the Central Universities (Nos. 2017MS008 and 2017ZD001), China Postdoctoral Science Foundation (No. 2017T100627) and the Tiptop Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (Nos. 2015TQ01C777, and 2016TQ03C331).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(954 KB)

Accesses

Citations

Detail

Sections
Recommended

/