Waveform LiDAR signal denoising based on connected domains

Liyu SUN, Zhiwei DONG, Ruihuan ZHANG, Rongwei FAN, Deying CHEN

PDF(366 KB)
PDF(366 KB)
Front. Optoelectron. ›› 2017, Vol. 10 ›› Issue (4) : 388-394. DOI: 10.1007/s12200-017-0747-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Waveform LiDAR signal denoising based on connected domains

Author information +
History +

Abstract

The streak tube imaging light detection and ranging (LiDAR) is a new type of waveform sampling laser imaging radar whose echo signals are stripe images with a high frame rate. In this study, the morphological and statistical characteristics of stripe signals are analyzed in detail. Based on the concept of mathematical morphology denoising, connected domains are constructed in a noise-containing stripe image, and the noise is removed using the difference in connected domains area between signals and noises. It is shown that, for stripe signals, the proposed denoising method is significantly more efficient than Wiener filtering.

Keywords

stripe signal / connected domain / denoising

Cite this article

Download citation ▾
Liyu SUN, Zhiwei DONG, Ruihuan ZHANG, Rongwei FAN, Deying CHEN. Waveform LiDAR signal denoising based on connected domains. Front. Optoelectron., 2017, 10(4): 388‒394 https://doi.org/10.1007/s12200-017-0747-z

References

[1]
Li Q, Wang Y, Wang Q, Li Z. Noise suppression algorithm of coherent ladar range image. Acta Optica Sinica, 2005, 25(05): 581–584
[2]
Li Q, Wang Q, Li Z, Li L, Jiang L. Image processing on laser imaging radar. Chinese Journal of Lasers, 2002, A29(09): 826–828
[3]
Gleckler A D, Gelbart A, Bowden J M. Multispectral and hyperspectral 3D imaging Lidar based upon the multipleslit streak tube imaging lidar. Proceedings of the Society for Photo-Instrumentation Engineers, 2001, 4377: 328–335 
CrossRef Google scholar
[4]
Gleckler A D, Gelbart A. Three-dimensional imaging polarimetry. Proceedings of the Society for Photo-Instrumentation Engineers, 2001, 4377: 175–185 
CrossRef Google scholar
[5]
Nevis A J. Automated processing for streak tube imaging lidar data. Proceedings of the Society for Photo-Instrumentation Engineers, 2003, 5089: 119–129 
CrossRef Google scholar
[6]
Gelbart A, Redman B C, Light R S, Schwartzlow C A, Griffis A J. Flash lidar based on multiple-slit streak tube imaging lidar. Proceedings of the Society for Photo-Instrumentation Engineers, 2002, 4723: 9–18 
CrossRef Google scholar
[7]
Sun J F, Liu D, Ge M D, Wang Q. Image pre-processing algorithm of underwater target for streak tube imaging lidar. Chinese Journal of Lasers, 2013, 40(07): 211–214
[8]
Sheng Y P, Sun J F, Xu D W. Application analysis of short-range ocean surface monitoring for streak tube imaging lidar. Electro-Optic Technology Application, 2012, (1): 34–36,70
[9]
Sun J F, Gao J, Wei J S, Wang Q. Research development of under-water detection imaging based on streak tube imaging lidar. Infrared and Laser Engineering, 2010, 39(05): 811–814
[10]
Li S N, Liu J B, Guang Y H, Zang J H, Wang Q. Maximum acquisition range calculation for multi-wavelength streak tube image lidar.   Acta Photonica Sinica, 2007, 36(S1): 106–109
[11]
Wei J S, Wang Q, Sun J F, Gao J. Experiment of four-dimensional imaging with single-slit streak tube lidar. Chinese Journal of Lasers, 2010, 37(5): 1231–1235 
CrossRef Google scholar
[12]
Zhang J H, Li S N, Wang Q, Liu J B. Noise analyzing and processing of streak image for streak tube imaging lidar. Acta Photonica Sinica, 2008, 37(8): 1533–1538
[13]
Dong Z W, Zhang R H, Zhang W B. Noise features in streak tube lidar echo signal. Acta Optica Sinica, 2016, 36(09): 296–300
[14]
Dong Z W, Zhang W B, Fan R W. Streak tube principle lidar imaging simulation and experiment Infrared and Laser Engineering. Infrared and Laser Engineering, 2016, 45(07): 100–104
[15]
Gleckler A. Streak tube imaging lidar for electro-optic identification. In: Proceedings of 4th International Symposium on Technology and the Mine Problem, 2001
[16]
Redman B C, Griffis A J, Schibley E B. Streak tube imaging lidar (STIL) for 3-D imaging of terrestrial targets. In: Proceedings of the MSS Specialty Group on Active E-O Systems, 2000
[17]
Bian X D. Research on stripe image processing for three-dimensional laser mapping. Dissertation for the Master Degree. Harbin: Harbin Institute of Technology, 2015, 20–21
[18]
Lim J S. Two-Dimensional Signal and Image Processing. Englewood Cliffs, NJ: Prentice Hall, 1990
[19]
Fan J M. Design and application of the labeling algorithm of 8-adjacent connecting area for massive gray scale images. Dissertation for the Master Degree. Kaifeng: Henan University, 2015
[20]
Suzuki K, Horiba I, Sugie N. Linear-time connected-component labeling based on sequential local operations. Computer Vision and Image Understanding, 2003, 89(1): 1–23 
CrossRef Google scholar

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 11004042), National Key Scientific Instrument and Equipment Development Projects (No. 2012YQ040164), National Key Laboratory of Science and Technology on Tunable laser, Space Science and Technology Fund and Science Funds of Heilongjiang Province (No. F2016015).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(366 KB)

Accesses

Citations

Detail

Sections
Recommended

/