Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes
Tao YUAN, Zhonghuan CAO, Guoli TU
Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes
Efficient indium tin oxide (ITO)-free inverted polymer solar cells (PSCs) were fabricated by applying ultrathin metal transparent electrodes as sunlight incident electrodes. Smooth and continuous Ag film of 4 nm thickness was developed through the introduction of a 2 nm Au seed layer. Ultrathin Ag transparent electrode with an average transmittance of up to 80% from 480 to 680 nm and a sheet resistance of 35.4 W/sq was obtained through the introduction of a ZnO anti-reflective layer. The ultrathin metal electrode could be directly used as cathode in polymer solar cells without oxygen plasma treatment. ITO-free inverted PSCs obtained a power conversion efficiency (PCE) of 5.2% by utilizing the ultrathin metal transparent electrodes. These results demonstrated a simple method of fabricating ITO-free inverted PSCs.
polymer solar cells / ultrathin metal transparent electrodes / seed layer / anti-reflective layer
[1] |
Li G, Zhu R, Yang Y. Polymer solar cells. Nature Photonics, 2012, 6(3): 153–161
CrossRef
Google scholar
|
[2] |
Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789–1791
CrossRef
Google scholar
|
[3] |
Mazzio K A, Luscombe C K. The future of organic photovoltaics. Chemical Society Reviews, 2015, 44(1): 78–90
CrossRef
Pubmed
Google scholar
|
[4] |
Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications, 2014, 5: 5293
CrossRef
Pubmed
Google scholar
|
[5] |
Liang Y, Xu Z, Xia J, Tsai S T, Wu Y, Li G, Ray C, Yu L. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Advanced Materials, 2010, 22(20): E135–E138
CrossRef
Pubmed
Google scholar
|
[6] |
Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Advanced Materials, 2016, 28(23): 4734–4739
CrossRef
Pubmed
Google scholar
|
[7] |
Lu L, Kelly M A, You W, Yu L. Status and prospects for ternary organic photovoltaics. Nature Photonics, 2015, 9(8): 491–500
CrossRef
Google scholar
|
[8] |
Ouyang X H, Peng R X, Ai L, Zhang X Y, Ge Z Y. Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte. Nature Photonics, 2015, 9(8): 520–524
CrossRef
Google scholar
|
[9] |
Huang L, Chen L, Huang P, Wu F, Tan L, Xiao S, Zhong W, Sun L, Chen Y. Triple dipole effect from self-assembled small-molecules for high performance organic photovoltaics. Advanced Materials, 2016, 28(24): 4852–4860
CrossRef
Pubmed
Google scholar
|
[10] |
Zhang Z G, Qi B, Jin Z, Chi D, Qi Z, Li Y, Wang J. Perylene diimides: a thickness-insensitive cathode interlayer for high performance polymer solar cells. Energy & Environmental Science, 2014, 7(6): 1966–1973
CrossRef
Google scholar
|
[11] |
He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics, 2012, 6(9): 593–597
CrossRef
Google scholar
|
[12] |
Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Advanced Materials, 2016, 28(42): 9423–9429
CrossRef
Pubmed
Google scholar
|
[13] |
Sergeant N P, Hadipour A, Niesen B, Cheyns D, Heremans P, Peumans P, Rand B P. Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells. Advanced Materials, 2012, 24(6): 728–732
CrossRef
Pubmed
Google scholar
|
[14] |
Kumar A, Zhou C. The race to replace tin-doped indium oxide: which material will win? ACS Nano, 2010, 4(1): 11–14
CrossRef
Pubmed
Google scholar
|
[15] |
Kim N, Kee S, Lee S H, Lee B H, Kahng Y H, Jo Y R, Kim B J, Lee K. Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Advanced Materials, 2014, 26(14): 2268–2272
CrossRef
Pubmed
Google scholar
|
[16] |
Wu Z, Chen Z, Du X, Logan J M, Sippel J, Nikolou M, Kamaras K, Reynolds J R, Tanner D B, Hebard A F, Rinzler A G. Transparent, conductive carbon nanotube films. Science, 2004, 305(5688): 1273–1276
CrossRef
Pubmed
Google scholar
|
[17] |
Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706–710
CrossRef
Pubmed
Google scholar
|
[18] |
Wu H, Kong D, Ruan Z, Hsu P C, Wang S, Yu Z, Carney T J, Hu L, Fan S, Cui Y. A transparent electrode based on a metal nanotrough network. Nature Nanotechnology, 2013, 8(6): 421–425
CrossRef
Pubmed
Google scholar
|
[19] |
Garnett E C, Cai W, Cha J J, Mahmood F, Connor S T, Greyson Christoforo M, Cui Y, McGehee M D, Brongersma M L. Self-limited plasmonic welding of silver nanowire junctions. Nature Materials, 2012, 11(3): 241–249
CrossRef
Pubmed
Google scholar
|
[20] |
Hu L, Wu H, Cui Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bulletin, 2011, 36(10): 760–765
CrossRef
Google scholar
|
[21] |
Kang H, Jung S, Jeong S, Kim G, Lee K. Polymer-metal hybrid transparent electrodes for flexible electronics. Nature Communications, 2015, 6: 6503
CrossRef
Pubmed
Google scholar
|
[22] |
Lenk S, Schwab T, Schubert S, Müller-Meskamp L, Leo K, Gather M C, Reineke S. White organic light-emitting diodes with 4 nm metal electrode. Applied Physics Letters, 2015, 107(16): 163302
CrossRef
Google scholar
|
[23] |
Formica N, Ghosh D S, Carrilero A, Chen T L, Simpson R E, Pruneri V. Ultrastable and atomically smooth ultrathin silver films grown on a copper seed layer. ACS Applied Materials & Interfaces, 2013, 5(8): 3048–3053
CrossRef
Pubmed
Google scholar
|
[24] |
Schwab T, Schubert S, Hofmann S, Fröbel M, Fuchs C, Thomschke M, Müller-Meskamp L, Leo K, Gather M C. Highly efficient color stable inverted white top-emitting OLEDs with ultra-thin wetting layer top electrodes. Advanced Optical Materials, 2013, 1(10): 707–713
CrossRef
Google scholar
|
[25] |
Qian L, Zheng Y, Choudhury K R, Bera D, So F, Xue J, Holloway P H. Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages. Nano Today, 2010, 5(5): 384–389
CrossRef
Google scholar
|
[26] |
Schubert S, Meiss J, Müller-Meskamp L, Leo K. Improvement of transparent metal top electrodes for organic solar cells by introducing a high surface energy seed layer. Advanced Energy Materials, 2013, 3(4): 438–443
CrossRef
Google scholar
|
/
〈 | 〉 |