Green light-emitting diode based on graphene-ZnO nanowire van der Waals heterostructure

Zhiqian WU, Yue SHEN, Xiaoqiang LI, Qing YANG, Shisheng LIN

PDF(795 KB)
PDF(795 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (1) : 87-92. DOI: 10.1007/s12200-016-0596-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Green light-emitting diode based on graphene-ZnO nanowire van der Waals heterostructure

Author information +
History +

Abstract

The rectifying behavior between graphene and semiconductors makes novel type of solar cells, photodetectors and light emitting diodes (LEDs). The interface between graphene and ZnO is the key for the performance of the optoelectronic devices. Herein, we find that green light emission is very strong for the forward biased graphene/ZnO nanowire van der Waals heterostructure. We correlated the green light emission with the surface defects locating at the ZnO nanowire surface through the detailed high resolution transmission electron microscopy and photoluminescence measurements. We pointed out engineering the surface of ZnO nanowires could bring a dimension of designing graphene/ZnO LEDs, which could be extended to other types of graphene/semiconductor heterostructure based optoelectronic devices.

Keywords

ZnO nanowire / van der Waals heterostructure / light-emitting diode (LED)

Cite this article

Download citation ▾
Zhiqian WU, Yue SHEN, Xiaoqiang LI, Qing YANG, Shisheng LIN. Green light-emitting diode based on graphene-ZnO nanowire van der Waals heterostructure. Front. Optoelectron., 2016, 9(1): 87‒92 https://doi.org/10.1007/s12200-016-0596-1

References

[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
CrossRef Pubmed Google scholar
[2]
Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 2010, 22(35): 3906–3924
CrossRef Pubmed Google scholar
[3]
Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
CrossRef Google scholar
[4]
Li X, Chen W, Zhang S, Wu Z, Wang P, Xu Z, Chen H, Yin W, Zhong H, Lin S. 18.5% efficient graphene/GaAs van der Waals heterostructure solar cell. Nano Energy, 2015, 16: 310–319
CrossRef Google scholar
[5]
Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D. Graphene-on-silicon Schottky junction solar cells. Advanced Materials, 2010, 22(25): 2743–2748
CrossRef Pubmed Google scholar
[6]
Liu Y, Wang F, Wang X, Wang X, Flahaut E, Liu X, Li Y, Wang X, Xu Y, Shi Y, Zhang R. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nature Communications, 2015, 6: 8589
CrossRef Pubmed Google scholar
[7]
Liu X, Ji X, Liu M, Liu N, Tao Z, Dai Q, Wei L, Li C, Zhang X, Wang B. High-performance Ge quantum dot decorated graphene/zinc-oxide heterostructure infrared photodetector. ACS Applied Materials & Interfaces, 2015, 7(4): 2452–2458
CrossRef Pubmed Google scholar
[8]
Shelke N T, Karche B R. Hydrothermal synthesis of WS2/RGO sheet and their application in UV photodetector. Journal of Alloys and Compounds, 2015, 653: 298–303
CrossRef Google scholar
[9]
Chang C W, Tan W C, Lu M L, Pan T C, Yang Y J, Chen Y F. Graphene/SiO2/p-GaN diodes: an advanced economical alternative for electrically tunable light emitters. Advanced Functional Materials, 2013, 23(32): 4043–4048
CrossRef Google scholar
[10]
Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Applied Physics Letters, 1994, 64(13): 1687
CrossRef Google scholar
[11]
Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T. Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method. Journal of Crystal Growth, 2004, 260(1–2): 166–170
CrossRef Google scholar
[12]
Sun X W, Kwok H S. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. Journal of Applied Physics, 1999, 86(1): 408
CrossRef Google scholar
[13]
Lin S S. Robust low resistivity p-type ZnO:Na films after ultraviolet illumination: the elimination of grain boundaries. Applied Physics Letters, 2012, 101(12): 122109
CrossRef Google scholar
[14]
Ye Y, Gan L, Dai L, Meng H, Wei F, Dai Y, Shi Z, Yu B, Guo X, Qin G. Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes. Journal of Materials Chemistry, 2011, 21(32): 11760–11763
CrossRef Google scholar
[15]
Nam G H, Baek S H, Park I K. Growth of ZnO nanorods on graphite substrate and its application for Schottky diode. Journal of Alloys and Compounds, 2014, 613: 37–41
CrossRef Google scholar
[16]
Yang J, Zhao X, Shan X, Fan H, Yang L, Zhang Y, Li X. Blue-shift of UV emission in ZnO/graphene composites. Journal of Alloys and Compounds, 2013, 556: 1–5
CrossRef Google scholar
[17]
Lin S, Ye Z, He H, Zeng Y J, Tang H, Zhao B, Zhu L. Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorods array. Journal of Crystal Growth, 2007, 306(2): 339–343
CrossRef Google scholar
[18]
Lin S S, Hong J I, Song J H, Zhu Y, He H P, Xu Z, Wei Y G, Ding Y, Snyder R L, Wang Z L. Phosphorus doped Zn1-xMgxO nanowire arrays. Nano Letters, 2009, 9(11): 3877–3882
[19]
Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947–1949
CrossRef Pubmed Google scholar
[20]
Lin S S, Chen B G, Pan C T, Hu S, Tian P, Tong L M. Unintentional doping induced splitting of G peak in bilayer graphene. Applied Physics Letters, 2011, 99(23): 233110
CrossRef Google scholar
[21]
Lin S, Ye Z, He H, Zhao B, Zhu L, Huang J. Photoluminescence properties of ZnO nanoneedles grown by metal organic chemical vapor deposition. Journal of Applied Physics, 2008, 104(6): 064311
CrossRef Google scholar
[22]
Rasool H I, Song E B, Allen M J, Wassei J K, Kaner R B, Wang K L, Weiller B H, Gimzewski J K. Continuity of graphene on polycrystalline copper. Nano Letters, 2011, 11(1): 251–256
CrossRef Pubmed Google scholar
[23]
Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C, Sood A K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology, 2008, 3(4): 210–215
CrossRef Pubmed Google scholar
[24]
Yu R, Pan C, Wang Z L. High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect. Energy & Environmental Science, 2013, 6(2): 494
CrossRef Google scholar
[25]
Fu X W, Liao Z M, Zhou Y B, Wu H C, Bie Y Q, Xu J, Yu D P. Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector. Applied Physics Letters, 2012, 100(22): 223114
CrossRef Google scholar
[26]
Čížek J, Valenta J, Hruška P, Melikhova O, Procházka I, Novotný M, Bulíř J. Origin of green luminescence in hydrothermally grown ZnO single crystals. Applied Physics Letters, 2015, 106(25): 251902
CrossRef Google scholar
[27]
Liu R, You X C, Fu X W, Lin F, Meng J, Yu D P, Liao Z M. Gate modulation of graphene-ZnO nanowire Schottky diode. Scientific Reports, 2015, 5: 10125
CrossRef Pubmed Google scholar

Acknowledgements

The authors thank the support from the National Natural Science Foundation of China (Grant Nos. 51202076 and 51202216) and X. Q. Li thanks the support from the Postdoctoral Science Foundation of China (No. 111400-X91305).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(795 KB)

Accesses

Citations

Detail

Sections
Recommended

/