Fiber up-taper assisted Mach-Zehnder interferometer for high sensitive temperature sensing
Lili MAO, Qizhen SUN, Ping LU, Zefeng LAO, Deming LIU
Fiber up-taper assisted Mach-Zehnder interferometer for high sensitive temperature sensing
A new in-line Mach-Zehnder interferometer (MZI) sensor consisting of a stub of multi-mode fiber and an up-taper was proposed and demonstrated. Temperature measurement can be carried out by detecting wavelength shift. Dependency of sensitivity on interferometer length and dip wavelength was discussed. Experimental results showed a maximum temperature sensitivity of 113.6 pm/°C can be achieved, which is superior to most fiber temperature sensors based on in-line MZIs within the range from 20°C to 80°C, also a good mechanical strength can be obtained. The proposed sensor is a good candidate for temperature measurement, due to the advantages of simple structure, easy fabrication, cost-effective and high sensitivity.
fiber sensor / Mach-Zehnder interferometer (MZI) / multimode fiber (MMF) / up-taper
[1] |
Li E B. Design and test of multimode interference based optical fiber temperature sensors. Proceedings of the Society for Photo-Instrumentation Engineers, 2008, 7157: 71570F-1–71570F-9
CrossRef
Google scholar
|
[2] |
Chen C, Yu S H, Yang R, Wang L, Guo J C, Chen Q D, Sun H B. Monitoring thermal effect in femtosecond laser interaction with glass by fiber Bragg grating. Journal of Lightwave Technology, 2011, 29(14): 2126–2130
CrossRef
Google scholar
|
[3] |
Guo J C, Yu Y S, Zhang X L, Chen C, Yang R, Wang C, Yang R Z, Chen Q D, Sun H B. Compact long-period fiber gratings with resonance at second-order diffraction. IEEE Photonics Technology Letters, 2012, 24(16): 1393–1395
CrossRef
Google scholar
|
[4] |
Ferreira M S, Coelho L, Schuster K, Kobelke J, Santos J L, Frazão O. Fabry-Pérot cavity based on a diaphragm-free hollow-core silica tube. Optics Letters, 2011, 36(20): 4029–4031
CrossRef
Pubmed
Google scholar
|
[5] |
Lee C L, Lee L H, Hwang H E, Hsu J M. Highly sensitive air-gap fiber Fabry-Pérot interferometers based on polymer-filled hollow core fibers. IEEE Photonics Technology Letters, 2012, 24(2): 149–151
CrossRef
Google scholar
|
[6] |
Li X F, Lin S, Liang J X, Zhang Y P, Oigawa H, Ueda T. Fiber-optic temperature sensor based on difference of thermal expansion coefficient between fused silica and metallic material. IEEE Photonics Journal, 2012, 4(1): 155–162
CrossRef
Google scholar
|
[7] |
Liu Y, Qu S, Li Y. Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown. Optics Letters, 2013, 38(3): 335–337
CrossRef
Pubmed
Google scholar
|
[8] |
Li E, Wang X, Zhang C. Fiber-optic temperature sensor based on interference of selective higher-order modes. Applied Physics Letters, 2006, 89(9): 091119
CrossRef
Google scholar
|
[9] |
Wu D, Zhu T, Liu M. A high temperature sensor based on a peanut-shape structure Michelson interferometer. Optics Communications, 2012, 285(24): 5085–5088
CrossRef
Google scholar
|
[10] |
Jasim A A, Harun S W, Arof H, Ahmad H. Inline microfiber Mach–Zehnder interferometer for high temperature sensing. IEEE Sensors Journal, 2013, 13(2): 626–628
CrossRef
Google scholar
|
[11] |
Nguyen L V, Hwang D, Moon S, Moon D S, Chung Y. High temperature fiber sensor with high sensitivity based on core diameter mismatch. Optics Express, 2008, 16(15): 11369–11375
CrossRef
Pubmed
Google scholar
|
[12] |
Lu P, Chen Q. Femtosecond laser microfabricated fiber Mach-Zehnder interferometer for sensing applications. Optics Letters, 2011, 36(2): 268–270
CrossRef
Pubmed
Google scholar
|
[13] |
Lu P, Men L, Sooley K, Chen Q Y. Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature. Applied Physics Letters, 2009, 94(13): 131110
|
[14] |
Li L, Xia L, Xie Z, Liu D. All-fiber Mach-Zehnder interferometers for sensing applications. Optics Express, 2012, 20(10): 11109–11120
CrossRef
Pubmed
Google scholar
|
[15] |
Wang Y, Li Y, Liao C, Wang D N, Yang M, Lu P. High-temperature sensing using miniaturized fiber in-line Mach–Zehnder interferometer. IEEE Photonics Technology Letters, 2010, 22(1): 39–41
CrossRef
Google scholar
|
[16] |
Geng Y, Li X, Tan X, Deng Y, Yu Y. High-sensitivity Mach-Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper. IEEE Sensors Journal, 2011, 11(11): 2891–2894
CrossRef
Google scholar
|
[17] |
Liu Y, Peng W, Liang Y Z, Zhang X, Zhou X, Pan L. Fiber-optic Mach-Zehnder interferometric sensor for high-sensitivity high temperature measurement. Optics Communications, 2013, 300: 194–198
CrossRef
Google scholar
|
[18] |
Frazão O, Silva S F O, Viegas J, Baptista J M, Santos J L, Kobelke J, Schuster K. All fiber Mach-Zehnder interferometer based on suspended twin-core fiber. IEEE Photonics Technology Letters, 2010, 22(17): 1300–1302
CrossRef
Google scholar
|
[19] |
Zhang S, Zhang W, Gao S, Geng P, Xue X. Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper. Optics Letters, 2012, 37(21): 4480–4482
CrossRef
Pubmed
Google scholar
|
[20] |
Zhao C L, Wang Z, Zhang S, Qi L, Zhong C, Zhang Z, Jin S, Guo J, Wei H. Phenomenon in an alcohol not full-filled temperature sensor based on an optical fiber Sagnac interferometer. Optics Letters, 2012, 37(22): 4789–4791
CrossRef
Pubmed
Google scholar
|
[21] |
Moon D S, Kim B H, Lin A, Sun G, Han Y G, Han W T, Chung Y. The temperature sensitivity of Sagnac loop interferometer based on polarization maintaining side-hole fiber. Optics Express, 2007, 15(13): 7962–7967
CrossRef
Pubmed
Google scholar
|
[22] |
Zheng X B, Liu Y G, Wang S, Han T T, Wei C W, Chen J. Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer. Applied Physics Letters, 2012, 100(14): 141104
CrossRef
Google scholar
|
[23] |
Han T, Liu Y G, Wang Z, Guo J, Wu Z, Wang S, Li Z, Zhou W. Unique characteristics of a selective-filling photonic crystal fiber Sagnac interferometer and its application as high sensitivity sensor. Optics Express, 2013, 21(1): 122–128
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |