Terahertz pulse imaging in archaeology

J. Bianca JACKSON, Julien LABAUNE, Rozenn BAILLEUL-LESUER, Laura D'ALESSANDRO, Alison WHYTE, John W. BOWEN, Michel MENU, Gerard MOUROU

PDF(4129 KB)
PDF(4129 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (1) : 81-92. DOI: 10.1007/s12200-014-0446-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Terahertz pulse imaging in archaeology

Author information +
History +

Abstract

The work presented in this paper was performed at the Oriental Institute at the University of Chicago, on objects from their permanent collection: an ancient Egyptian bird mummy and three ancient Sumerian corroded copper-alloy objects. We used a portable, fiber-coupled terahertz (THz) time-domain spectroscopic imaging system, which allowed us to measure specimens in both transmission and reflection geometry, and present time- and frequency-based image modes. The results confirm earlier evidence that THz imaging can provide complementary information to that obtainable from X-ray computed tomography (XRCT) scans of mummies, giving better visualisation of low density regions. In addition, we demonstrated that THz imaging can distinguish mineralized layers in metal artifacts.

Keywords

terahertz (THz) / time-domain imaging / spectroscopy / non-destructive evaluation / archaeology

Cite this article

Download citation ▾
J. Bianca JACKSON, Julien LABAUNE, Rozenn BAILLEUL-LESUER, Laura D'ALESSANDRO, Alison WHYTE, John W. BOWEN, Michel MENU, Gerard MOUROU. Terahertz pulse imaging in archaeology. Front. Optoelectron., 2015, 8(1): 81‒92 https://doi.org/10.1007/s12200-014-0446-y

References

[1]
Jackson J B, Bowen J W, Walker G C, Labaune J, Mourou G A, Menu M, Fukunaga K. A survey of terahertz applications in cultural heritage conservation science. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 220–231
CrossRef Google scholar
[2]
Öhrström L, Bitzer A, Walther M, Rühli F J. Technical note: terahertz imaging of ancient mummies and bone. American Journal of Physical Anthropology, 2010, 142(3): 497–500
CrossRef Pubmed Google scholar
[3]
Fukunaga K, Cortes E, Cosentino A, Stünkel I, Leona M, Duling I N III, Mininberg D T. Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy. Journal of the European Optical Society: Rapid Publications, 2011, 6: 11040
CrossRef Google scholar
[4]
Schmuttenmaer C A. Exploring dynamics in the far-infrared with terahertz spectroscopy. Chemical Reviews, 2004, 104(4): 1759–1779
CrossRef Pubmed Google scholar
[5]
Dragoman D, Dragoman M. Terahertz fields and applications. Progress in Quantum Electronics, 2004, 28(1): 1–66
CrossRef Google scholar
[6]
Chamberlain J M. Where optics meets electronics: recent progress in decreasing the terahertz gap. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362(1815): 199–213
CrossRef Google scholar
[7]
Walker G C, Bowen J W, Matthews W, Roychowdhury S, Labaune J, Mourou G, Menu M, Hodder I, Jackson J B. Sub-surface terahertz imaging through uneven surfaces: visualizing Neolithic wall paintings in Çatalhöyük. Optics Express, 2013, 21(7): 8126–8134
CrossRef Pubmed Google scholar
[8]
Walker G C, Berry E, Zinovev N N, Fitzgerald A J, Miles R E, Chamberlain J M, Smith M A. Terahertz imaging and international safety guidelines. Proceedings of the Society for Photo-Instrumentation Engineers, 2002, 4682: 683–690
CrossRef Google scholar
[9]
Kristensen T T, Withayachumnankul W, Jepsen P U, Abbott D. Modeling terahertz heating effects on water. Optics Express, 2010, 18(5): 4727–4739
CrossRef Pubmed Google scholar
[10]
Chan W L, Deibel J, Mittleman D M. Imaging with terahertz radiation. Reports on Progress in Physics, 2007, 70(8): 1325–1379
CrossRef Google scholar
[11]
Adriaens A. European actions to promote and coordinate the use of analytical techniques for cultural heritage studies. TrAC Trends in Analytical Chemistry, 2004, 23(8): 583–586
CrossRef Google scholar
[12]
Tonouchi M. Galore new applications of terahertz science and technology. Terahertz Science and Technology, 2009, 2(3): 90–101  
CrossRef Google scholar
[13]
Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166
CrossRef Google scholar
[14]
Pelizzari C A, Haney C R, Bailleul-LeSuer R, Brown J P, Wietholt C. Challenges in CT scanning of avian mummies. In: Bailleul-Lesuer R, ed. Between Heaven and Earth: Birds in Ancient Egypt. Chicago: Oriental Institute of the University of Chicago, 2012, 109–118
[15]
Jackson J B, Mourou G, Labaune J, Menu M. Terahertz pulse imaging of an Egyptian bird mummy. In: Bailleul-Lesuer R, ed. Between Heaven and Earth: Birds in Ancient Egypt. 1st ed. Chicago: Oriental Institute Museum Publications, 2012, 119–122
[16]
Luo W, Jin R, Qin Y, Huang F, Wang C. Analysis of the corrosion products of the ancient bronzes excavated from Qiaojiayuan tombs. Applied Physics Research, 2010, 2(2): 156–169
[17]
Jackson J B, Labaune J, Mourou G A, D’Alessandro L, Whyte A, Menu M. Pulsed terahertz investigation of corroded and mineralized copper alloy historical artifacts. In: Proceedings of 2011 International Conference on Infrared, Millimeter, and Terahertz Waves. Houston, USA: IEEE, 2011, 1–2
CrossRef Google scholar
[18]
Anastasi R F, Madaras E I. Terahertz NDE for under paint corrosion detection and evaluation. AIP Conference Proceedings, 2006, 820: 515–522
CrossRef Google scholar
[19]
Fuse N, Fukuchi T, Takahashi T, Mizuno M, Fukunaga K. Evaluation of applicability of noncontact analysis methods to detect rust regions in coated steel plates. IEEE Transactions on Terahertz Science and Technology, 2012, 2(2): 242–249
CrossRef Google scholar
[20]
Zhao G, Ter Mors M, Wenckebach T, Planken P C M. Terahertz dielectric properties of polystyrene foam. Journal of the Optical Society of America. B, Optical Physics, 2002, 19(6): 1476–1479
CrossRef Google scholar
[21]
Banerjee D, von Spiegel W, Thomson M D, Schabel S, Roskos H G. Diagnosing water content in paper by terahertz radiation. Optics Express, 2008, 16(12): 9060–9066
CrossRef Google scholar
[22]
Roman C, Ichim O, Sarger L, Vigneras V, Mounaix P. Terahertz dielectric characterisation of polymethacrylimide rigid foam: the perfect sheer plate? Electronics Letters, 2004, 40(19): 1167–1169
CrossRef Google scholar
[23]
Fletcher J R, Swift G P, Dai D, Levitt J A, Chamberlain J M. Propagation of terahertz radiation through random structures: An alternative theoretical approach and experimental validation. Journal of Applied Physics, 2007, 101(1): 013102
CrossRef Google scholar
[24]
McKnight S W, Stewart K P, Drew H D, Moorjani K. Wavelength-independent anti-interference coating for the far-infrared. Infrared Physics, 1987, 27(5): 327–333
CrossRef Google scholar

Acknowledgements

This work was supported by the European Commission’s Seventh Framework Program CHARISMA (Grant No. 228330) and the Marie Curie Intra-European project TISCH (Grant No. 330442). The authors would also like to thank Charles A. Pelizzari—associate professor and director of medical physics in the Department of Radiation and Cellular Oncology at the University of Chicago—and Christian Wietholt—an application engineer working for visage Imaging, Inc. and developer of the Amira visualization software—for their expertise in X-ray computed tomography and imaging modes.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(4129 KB)

Accesses

Citations

Detail

Sections
Recommended

/