Optical design in high density and high capacity multi-layer data storage system
Yuzuru TAKASHIMA
Optical design in high density and high capacity multi-layer data storage system
Fundamental requirements for optical system design for volume recording system is identified. Anastigmatic objective lens design is required for conventional page-based system, whereas for multi-layer volume recording systems, an Aplanatic and zoom optical design is needed with an afocal sub-optical system including a high numerical aperture (NA) objective element. An NA 0.4 and four element design is feasible by only using off-the-shelf components. Recording depth ranges of 0.4 mm for wavelength 532 nm and 0.2 mm for 405 nm. The design demonstrates sufficiently small as-built wavefront error, less than 0.1 waves while implementing focusing and tracking capabilities to the design.
holographic and volume memories / lens system design / optical disks
[1] |
Ashton K. That ‘internet of things’ thing: in the real world things matter more than ideas. RFID Journal, 2009, 22: 97–114
|
[2] |
McLeod R R, Daiber A J, McDonald M E, Robertson T L, Slagle T, Sochava S L, Hesselink L. Microholographic multilayer optical disk data storage. Applied Optics, 2005, 44(16): 3197–3207
CrossRef
Pubmed
Google scholar
|
[3] |
Takashima Y, Hesselink L. Design and tolerance of numerical aperture 0.8 objective lenses for page-based holographic data storage systems. Japanese Journal of Applied Physics, 2009, 48(3S1): 03A004
|
[4] |
Neifeld M A, McDonald M. Lens-design issues affecting parallel readout of optical disks. Applied Optics, 1995, 34(23): 5167–5174
CrossRef
Pubmed
Google scholar
|
[5] |
Neifeld M A, McDonald M. Lens design issues impacting page access to volume optical media. Optics Communications, 1995, 120(1–2): 8–14
CrossRef
Google scholar
|
[6] |
Zeng J Y, Wang M Q, Yan Y B, He Q S, Jin G F. Design of a short-focal-length double-Fourier-transform-lens system for holographic storage. Optical Engineering (Redondo Beach, Calif.), 2007, 46(3): 033002-1–033002-7
CrossRef
Google scholar
|
[7] |
Kubota S. Aplanatic condition required to reproduce jitter-free signals in an optical digital disk system. Applied Optics, 1987, 26(18): 3961–3973
CrossRef
Pubmed
Google scholar
|
[8] |
Stallinga S. Compact description of substrate-related aberrations in high numerical-aperture optical disk readout. Applied Optics, 2005, 44(6): 849–858
CrossRef
Pubmed
Google scholar
|
[9] |
Barbastathis G, Psaltis D. Volume Holographic Multiplexing Methods. In: Coufal H J, Psaltis D, Sincerbox G T, eds. Holographic Data Storage. Springer Berlin Heidelberg: Springer, 2000, 21–62
|
[10] |
von Bieren K. Lens design for optical fourier transform systems. Applied Optics, 1971, 10(12): 2739–2742
CrossRef
Pubmed
Google scholar
|
[11] |
Orlov S S, Phillips W, Bjornson E, Takashima Y, Sundaram P, Hesselink L, Okas R, Kwan D, Snyder R. High-transfer-rate high-capacity holographic disk data-storage system. Applied Optics, 2004, 43(25): 4902–4914
CrossRef
Pubmed
Google scholar
|
[12] |
Wynne C G. Primary aberrations and conjugate change. Proceedings of the Physical Society, 1952, 65(6): 429–437
CrossRef
Google scholar
|
[13] |
Matsui Y, Nariai K. Fundamentals of Practical Aberration Theory: Fundamental Knowledge and Techniques for Optical Designers. New Jersey: World Scientific, 1993
|
[14] |
Milster T D, Upton R S, Luo H. Objective lens design for multiple-layer optical data storage. Optical Engineering (Redondo Beach, Calif.), 1999, 38(2): 295–301
CrossRef
Google scholar
|
[15] |
Eichler H J, Kuemmel P, Orlic S, Wappelt A. High-density disk storage by multiplexed microholograms. IEEE Journal on Selected Topics in Quantum Electronics, 1998, 4(5): 840–848
CrossRef
Google scholar
|
[16] |
Shi X, Ostroverkhov V, Lawrence B, Boden E, Ren Z, Takashima Y, Ross F. Micro-holographic data storage: materials and systems. Review of Laser Engineering, 2010, 38: 349–355
|
/
〈 | 〉 |