Key technologies and system proposals of TWDM-PON

Zhengxuan LI, Lilin YI, Weisheng HU

PDF(580 KB)
PDF(580 KB)
Front. Optoelectron. ›› 2013, Vol. 6 ›› Issue (1) : 46-56. DOI: 10.1007/s12200-012-0305-7
REVIEW ARTICLE
REVIEW ARTICLE

Key technologies and system proposals of TWDM-PON

Author information +
History +

Abstract

In this paper, key technologies, system proposals and future directions of next generation passive optical networks stage 2 (NG-PON2) are reviewed. We first discuss the potential solutions for NG-PON2 standardization. Then we focus on time and wavelength division multiplexed PON (TWDM-PON), which is the primary solution selected by Full Service Access Network (FSAN). The key technologies in TWDM-PON configuration are analyzed, including how to improve the bandwidth capacity and power budget of the system, and choose upstream tunable transceiver, etc. Several system proposals are illustrated as candidates for NG-PON2 configuration.

Keywords

next generation passive optical networks stage 2 (NG-PON2) / time and wavelength division multiplexed PON (TWDM-PON) / tunable transmitter / tunable receiver / power budget

Cite this article

Download citation ▾
Zhengxuan LI, Lilin YI, Weisheng HU. Key technologies and system proposals of TWDM-PON. Front Optoelec, 2013, 6(1): 46‒56 https://doi.org/10.1007/s12200-012-0305-7

References

[1]
Wong E. Next-generation broadband access networks and technologies. Journal of Lightwave Technology, 2012, 30(4): 597-608
[2]
Vetter P. Next generation optical access technologies. In: Proceedings of European Conference and Exhibition on Optical Communication. 2012, Tu.3.G
[3]
Effenberger F. XG-PON1 versus NG-PON2: Which one will win? In: Proceedings of European Conference and Exhibition on Optical Communication. 2012, Tu.4.B
[4]
Harstead E, van Veen D, Vetter P. Technologies for NGPON2: Why I think 40 G TDM PON (XLG-PON) is the clear winner. In: Proceedings of Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference. 2012
[5]
Yu J J, Jia Z S, Ji P N, Wang T. 40-Gb/s wavelength-division-multiplexing passive optical network with centralized lightwave source. In: Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference. 2008, OTuH8
[6]
Luo Y, Zhou X, Effenberger F, Yan X, Peng G, Qian Y, Ma Y. Time and wavelength division multiplexed passive optical network (TWDM-PON) for next generation pon stage 2 (NG-PON2). Journal of Lightwave Technology, 2012, (99):1-6
[7]
Liu B, Zhang L J, Xin X J, Yu J J. Constellation-masked secure communication technique for OFDM-PON. Optics Express, 2012, 20(22): 25161-25168
CrossRef Pubmed Google scholar
[8]
Shin D J, Keh Y C, Kwon J W, Lee E H, Lee J K, Park M K, Park J W, Oh Y K, Kim S W, Yun I K, Shin H C, Heo D, Lee J S, Shin H S, Kim H S, Park S B, Jung D K, Hwang S, Oh Y J, Jang D H, Shim C S. Low-cost WDM-PON with colorless bidirectional transceivers. Journal of Lightwave Technology, 2006, 24(1): 158-165
CrossRef Google scholar
[9]
Lang R. Injection locking properties of a semiconductor laser. IEEE Journal of Quantum Electronics, 1982, 18(6): 976-983
CrossRef Google scholar
[10]
Spiekman L.Active devices in passive optical networks. In: Proceedings of Optical Fiber Communication Conference. 2012, OM2I.4
[11]
Attygalle M, Wen Y J, Shankar J, Nirmalathas A, Cheng X, Wang Y. Increasing upstream capacity in TDM-PON with multiple-wavelength transmission using Fabry-Perot laser diodes. Optics Express, 2007, 15(16): 10247-10252
CrossRef Pubmed Google scholar
[12]
Chan L, Chan C, Tong D, Tong F, Chen L. Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modulator for WDM access networks. Electronics Letters, 2002, 38(1): 43-45
CrossRef Google scholar
[13]
Zhu M, Xiao S, Zhou Z, Guo W, Yi L, Bi M, Hu W, Geller B. An upstream multi-wavelength shared PON based on tunable self-seeding Fabry-Pérot laser diode for upstream capacity upgrade and wavelength multiplexing. Optics Express, 2011, 19(9): 8000-8010
CrossRef Pubmed Google scholar
[14]
Lee W, Park M Y, Cho S H, Lee J, Kim C, Jeong G, Kim B W. Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers. IEEE Photonics Technology Letters, 2005, 17(11): 2460-2462 doi:10.1109/LPT.2005.858148
[15]
Li Z, Yi L, Zhang Y, Xiao S, Hu W. Upstream multi-wavelength shared TDM-PON using RSOA based directly modulated tunable fiber ring laser. In: Proceedings of Communications and Photonics Conference and Exhibition. 2011, 1-6
[16]
Cho K Y, Lee Y J, Choi H Y, Murakami A, Agata A, Takushima Y, Chung Y C. Effects of reflection in RSOA-based WDM PON utilizing remodulation technique. Journal of Lightwave Technology, 2009, 27(10): 1286-1295
CrossRef Google scholar
[17]
Lin Z R, Liu C K, Jhang Y J, Keiser G. Tunable directly modulated fiber ring laser using a reflective semiconductor optical amplifier for WDM access networks. Optics Express, 2010, 18(17): 17610-17619
CrossRef Pubmed Google scholar
[18]
de Valicourt G, Make D, Fortin C, Enard A, Van Dijk F, Brenot R. 10 Gbit/s modulation of reflective SOA without any electronic processing. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference. 2011, OThT2
[19]
Cho K, Choi B, Takushima Y, Chung Y. 25.78-Gb/s operation of RSOA for next-generation optical access networks. IEEE Photonics Technology Letters, 2011, 23(8): 495-497
CrossRef Google scholar
[20]
Cho K Y, Takushima Y, Chung Y C. Demonstration of 11-Gb/s, 20-km reach WDM PON using directly-modulated RSOA with 4-ary PAM signal. In: Proceedings of Optical Fiber Communication Conference. 2010, OWG1
[21]
Omella M, Polo V, Lazaro J, Schrenk B, Prat J. 10 Gb/s RSOA transmission by direct duobinary modulation. In: Proceedings of 34th European Conference on Optical Communication. 2008, Tu.3.E.4
[22]
Kim H. 10-Gb/s operation of RSOA using a delay interferometer. IEEE Photonics Technology Letters ,2010, 22(18): 1379-1381 doi:10.1109/LPT.2010.2058797
[23]
Girault G, Bramerie L, Vaudel O, Lobo S, Besnard P, Joindot M, Simon J C, Kazmierski C, Dupuis N, Garreau A. 10 Gbit/s PON demonstration using a REAM-SOA in a bidirectional fiber configuration up to 25 km SMF. In: Proceedings of 34th European Conference on Optical Communication. 2008, P.6.08
[24]
Papagiannakis I, Klonidis D, Birbas A N, Kikidis J, Tomkos I. Performance improvement of low-cost 2.5-Gb/s rated DML sources operated at 10 Gb/s. IEEE Photonics Technology Letters, 2008, 20(23): 1983-1985
CrossRef Google scholar
[25]
Liu Y R, Davies A R, Ingham J D, Penty R V, White I H. Uncooled DBR laser directly modulated at 3.125 Gb/s as athermal transmitter for low-cost WDM systems. IEEE Photonics Technology Letters, 2005, 17(10): 2026-2028
CrossRef Google scholar
[26]
Ossieur P, Antony C, Naughton A, Clarke A M, Krimmel H G, Yin X, Qiu X Z, Ford C, Borghesani A, Moodie D, Poustie A, Wyatt R, Harmon B, Lealman I, Maxwell G, Rogers D, Smith D W, Smolorz S, Rohde H, Nesset D, Davey R P, Townsend P D. Demonstration of a 32×512 Split, 100 km reach, 2×32×10 Gb/s hybrid DWDM-TDMA PON using tunable external cavity lasers in the ONUs. Journal of Lightwave Technology, 2011, 29(24): 3705-3718
[27]
Wei F, Sun Y, Chen D, Xin G, Ye Q, Cai H, Qu R. Tunable external cavity diode laser with a PLZT electrooptic ceramic deflector. IEEE Photonics Technology Letters, 2011, 23(5): 296-298
[28]
Zheng J, Ge C, Wagner C, Meng L, Cunningham B, Eden J. Optically tunable ring external-cavity laser. In: Proceedings of Photonics Conference (PHO). 2011, 644-645
[29]
Hu T, Wang W J, Qiu C, Yu P, Qiu H Y, Zhao Y, Jiang X Q, Yang J Y. Thermally tunable filters based on third-order microring resonators for WDM applications. IEEE Photonics Technology Letters, 2012, 24(6): 524-526
CrossRef Google scholar
[30]
Iodice M, Cocorullo G, Della Corte F, Rendina I. Silicon Fabry-Perot filter for WDM systems channels monitoring. Optics Communications, 2000, 183(5-6): 415-418
CrossRef Google scholar
[31]
Domash L, Wu M, Nemchuk N, Ma E. Tunable and switchable multiple-cavity thin film filters. Journal of Lightwave Technology, 2004, 22(1): 126-135
CrossRef Google scholar
[32]
Lequime M, Parmentier R, Lemarchand F, Amra C. Toward tunable thin-film filters for wavelength division multiplexing applications. Applied Optics, 2002, 41(16): 3277-3284
CrossRef Pubmed Google scholar
[33]
Goh C S, Set S Y, Kikuchi K. Widely tunable optical filters based on fiber Bragg gratings. IEEE Photonics Technology Letters, 2002, 14(9): 1306-1308
CrossRef Google scholar
[34]
Li Z, Yi L, Zhang Y, Dong Y, Xiao S, Hu W. Compatible TDM/WDM PON using a single tunable optical filter for both downstream wavelength selection and upstream wavelength generation. IEEE Photonics Technology Letters, 2012, 24(10): 797-799
CrossRef Google scholar
[35]
Yi L, Li Z, Dong Y, Xiao S, Hu W. 80/10 Gb/s downstream/upstream capacity multi-wavelength TDM-PON. In: Proceedings of 8 th International Symposium on Communication Systems Networks & Digital Signal Processing (CSNDSP). 2012, 1-4
[36]
Li Z, Yi L, Zhang Y, Dong Y, Xiao S, Hu W. Mitigation of reflection-induced crosstalk in multi-wavelength TDM-PON using spectral red-shifted, tunable fiber ring laser based upstream source. In: Proceedings of Optical Fiber Communication Conference. 2012, OM2I.2
[37]
Yi L, Li Z, Dong Y, Xiao S, Chen J, Hu W. Upstream capacity upgrade in TDM-PON using RSOA based tunable fiber ring laser. Optics Express, 2012, 20(9): 10416-10425
CrossRef Pubmed Google scholar
[38]
Li Z, Yi L, Bi M, Li J, He H, Yang X , Hu W. Experimental demonstration of a symmetric 40-Gb/s TWDM-PON. In: Proceedings of Optical Fiber Communication Conference. 2013, NTh4F.3

Acknowledgements

This work was supported by the National Basic Research Program (No. 2012CB315602), the National Natural Science Foundation of China (Grant No. 61007041, 61132004, 61090393 and 60825103), the National High Technology Research and Development Program, Program of Shanghai Chen Guang Scholar (No. 11CG11) and Program of Excellent PhD in China (No. 201155).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(580 KB)

Accesses

Citations

Detail

Sections
Recommended

/