Review of photonic Hilbert transformers

Chaotan SIMA, James C. GATES, Michalis N. ZERVAS, Peter G. R. SMITH

PDF(729 KB)
PDF(729 KB)
Front. Optoelectron. ›› 2013, Vol. 6 ›› Issue (1) : 78-88. DOI: 10.1007/s12200-012-0299-1
REVIEW ARTICLE
REVIEW ARTICLE

Review of photonic Hilbert transformers

Author information +
History +

Abstract

This paper reviews the demonstrations of photonic Hilbert transformers (PHTs), describing their progress and recent developments. The physical operating principles of PHTs including fractional Hilbert transformers are discussed, together with device applications in all-optical signal processing. Versatile approaches to realize PHTs are discussed, e.g., discrete free space optics, fiber-based schemes and integrated planar geometry. The numerical designs and experimental performances of these PHTs are analyzed in terms of spectral quality, operating bandwidth, system integration, and mechanical and thermal stability. Recent developments of the monolithically integrated photonic Hilbert transform (HT) devices include directional couplers and planar Bragg gratings which allow all-optical single-sideband (SSB) suppression and sideband switching.

Keywords

photonic Hilbert transformer (PHT) / Bragg reflectors / direct UV writing / all-optical signal processing

Cite this article

Download citation ▾
Chaotan SIMA, James C. GATES, Michalis N. ZERVAS, Peter G. R. SMITH. Review of photonic Hilbert transformers. Front Optoelec, 2013, 6(1): 78‒88 https://doi.org/10.1007/s12200-012-0299-1

References

[1]
Frederick W K. Hilbert Transforms: Volume 1. Cambridge: Cambridge University Press, 2009, 1: 1–7
[2]
Hahn S L, Poularikas A D. The Transforms and Applications Handbook. 2nd ed. Boca Raton: CRC Press, 2000, 7: 1-18
[3]
Kastler A. A system of high-contrast diffraction fringes. Review Optik, 1950, 29: 307-314
[4]
Wolter H. The minimum beam labelling as a means of increasing the accuracy of optical measurements and as a methodological tool for the replacement of the concept of the beam. Annalen der Physik., 1950, 442(7): 341-368
CrossRef Google scholar
[5]
Hauk D, Lohmann A W. Minimumstrah1ke.nnich- nung bei Gitterspektrographen. Optik (Stuttgart), 1958, 15: 275-281
[6]
Lowenthal S, Belvaux Y. Observation of phase objects by optically processed Hilbert transform. Applied Physics Letters, 1967, 11(2): 49-51
CrossRef Google scholar
[7]
Eu J K T, Lohmann A W. Isotropic Hilbert spatial filtering. Optics Communications, 1973, 9(3): 257-262
CrossRef Google scholar
[8]
Brown B R, Lohmann A W. Complex spatial filtering with binary masks. Applied Optics, 1966, 5(6): 967-969
CrossRef Pubmed Google scholar
[9]
Lohmann A W, Paris D P. Binary fraunhofer holograms, generated by computer. Applied Optics, 1967, 6(10): 1739-1748
CrossRef Pubmed Google scholar
[10]
Lohmann A W, Mendlovic D, Zalevsky Z. Fractional Hilbert transform. Optics Letters, 1996, 21(4): 281-283
CrossRef Pubmed Google scholar
[11]
Lohmann A W, Tepichín E, Ramírez J G. Optical implementation of the fractional Hilbert transform for two-dimensional objects. Applied Optics, 1997, 36(26): 6620-6626
CrossRef Pubmed Google scholar
[12]
Davis J A, McNamara D E, Cottrell D M, Campos J. Image processing with the radial Hilbert transform: theory and experiments. Optics Letters, 2000, 25(2): 99-101
CrossRef Pubmed Google scholar
[13]
Guo C S, Han Y J, Xu J B, Ding J. Radial Hilbert transform with Laguerre-Gaussian spatial filters. Optics Letters, 2006, 31(10): 1394-1396
CrossRef Pubmed Google scholar
[14]
Bokor N, Iketaki Y. Laguerre-Gaussian radial Hilbert transform for edge-enhancement Fourier transform X-ray microscopy. Optics Letters, 2009, 17(7): 5533-5539
CrossRef Pubmed Google scholar
[15]
Takano K, Hanzawa N, Tanji S, Nakagawa K. Experimental demonstration of optically phase-shifted SSB modulation with fiber-based optical Hilbert transformers. In: Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference. 2007, 1-3
[16]
Emami H, Sarkhosh N, Bui L A, Mitchell A. Wideband RF photonic in-phase and quadrature-phase generation. Optics Letters, 2008, 33(2): 98-100
CrossRef Pubmed Google scholar
[17]
Emami H, Sarkhosh N, Bui L A, Mitchell A. Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform. Optics Express, 2008, 16(18): 13707-13712
CrossRef Pubmed Google scholar
[18]
Han Y, Chi H, Zhang X, Yao J. A continuously tunable microwave fractional Hilbert transformer based on a nonuniformly spaced photonic microwave delay-line filter. Journal of Lightwave Technology, 2012, 30(12): 1948-1953
[19]
Wang X, Hanawa M, Nakamura K, Takano K, Nakagawa K. Sideband suppression characteristics of optical SSB generation filter with sampled FBG based 4-taps optical Hilbert transformer. In: Proceedings of the 15th Asia-Pacific Conference on Communications. 2009, 622-625
[20]
Asghari M H, Azaña J. All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis. Optics Letters, 2009, 34(3): 334-336
CrossRef Pubmed Google scholar
[21]
Cuadrado-Laborde C. Proposal and design of a photonic in-fiber fractional Hilbert transformer. IEEE Photonics Technology Letters, 2010, 22(1): 33-35
CrossRef Google scholar
[22]
Li M, Yao J. All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating. Optics Letters, 2010, 35(2): 223-225
CrossRef Pubmed Google scholar
[23]
Li M, Yao J. Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating. IEEE Photonics Technology Letters, 2010, 22(21): 1559-1561
CrossRef Google scholar
[24]
Ashrafi R, Azaña J. Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings. Optics Letters, 2012, 37(13): 2604-2606
CrossRef Pubmed Google scholar
[25]
Li Z, Chi H, Zhang X, Yao J. Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer. IEEE Photonics Technology Letters, 2011, 23(9): 558-560
CrossRef Google scholar
[26]
Tanaka K, Takano K, Kondo K, Nakagawa K. Improved sideband suppression of optical SSB modulation using all-optical Hilbert transformer. Electronics Letters, 2002, 38(3): 133-134
CrossRef Google scholar
[27]
Sima C, Gates J C, Rogers H L, Holmes C, Zervas M N, Smith P G R. Integrated all-optical SSB modulator using photonic Hilbert transformer with planar Bragg gratings. In: Proceedings of the European Conference on Lasers and Electro-Optics and the XIIth International Quantum Electronics (CLEO-EUROPE). Optical Society of America. 2011, CI4.5
[28]
Sima C, Gates J C, Rogers H L, Mennea P, Holmes C, Zervas M N, Smith P G R.Continuously tunable integrated single-sideband modulator with photonic Hilbert transformer and planar Bragg gratings. (in press)
[29]
Zhuang L, Beeker W, Leinse A, Heideman R, Roeloffzen C. Continuously tunable photonic fractional Hilbert transformer using ring resonators for on-chip microwave photonic signal processing. In: Proceedings of 2012 IEEE International Topical Meeting on Microwave Photonics (MWP2012). 2012, 1-4
[30]
Zhuang L, Khan M R, Beeker W, Leinse A, Heideman R, Roeloffzen C. Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter. Optics Express, 2012, 20(24): 26499-26510
CrossRef Pubmed Google scholar
[31]
Huang T X, Yi X, Minasian R A. Microwave photonic quadrature filter based on an all-optical programmable Hilbert transformer. Optics Letters, 2011, 36(22): 4440-4442
CrossRef Pubmed Google scholar
[32]
Proakis J G, Manolakis D G. Digital Signal Processing: Principles, Algorithms, and Applications. 4th ed. New Jersey: Prentice Hall, 2007, 654-659
[33]
Kashyap R. Fiber Bragg Gratings. 2nd ed. San Diego: Academic Press, 2009
[34]
Feced R, Zervas M N. Efficient inverse scattering algorithm for the design of grating-assisted codirectional mode couplers. Journal of the Optical Society of America. A. 2000, 17(9): 1573-1582
CrossRef Pubmed Google scholar
[35]
Brenne J K, Skaar J. Design of grating-assisted codirectional couplers with discrete inverse-scattering algorithms. Journal of Lightwave Technology, 2003, 21(1): 254-263
CrossRef Google scholar
[36]
Miller S E. Integrated Optics: An Introduction. Bell System Technical Journal, 1969, 48: 2059-2069
[37]
Okamoto K. Fundamentals of Optical Waveguides. 2nd ed. San Diego: Academic Press, 2006, 462-467
[38]
Emmerson G D, Watts S P, Gawith C B, Albanis V, Riziotis C, Williams R B, Smith P G R. Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings. Electronics Letters, 2002, 38(24): 1531-1532
CrossRef Google scholar

Acknowledgements

This work was supported by Engineering and Physical Sciences Research Council (EPSRC), University of Southampton, UK, and China Scholarship Council, China.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(729 KB)

Accesses

Citations

Detail

Sections
Recommended

/